## MAT 1322C - Assignment 1 (due on Monday January 24, 17:30pm)

Last Name (please print):
First Name:

1. Use the Comparison Test to determine if the integral converges or diverges. Justify your answer in a clear manner.
(i) $\int_{1}^{\infty} \frac{1}{\sqrt{x}+x^{4}} d x$,
(ii) $\int_{0}^{1} \frac{e^{x}}{x^{3}} d x$.

## Solution:

2. Let $R$ be the region bounded by the curves $y=1 / x, y=-1 / x$ and the vertical lines $x=1$ and $x=2$. Denote by $S$ the solid obtained by rotating $R$ about the axis $y=2$.
(i) Sketch the cross-section of the solid with the $x y$-plane. Also sketch the cross-section $S_{x}$ of the solid $S$ with the plane through $x(1 \leq x \leq 2)$ and perpendicular to the $x$-axis.
(ii) What is the area $A(x)$ of the cross-section $S_{x}$ ?
(iii) Using the result from (ii) calculate the volume of $S$.

## Solution:

3. Let $R$ be the region in the $x y$-plane determined by the conditions $2 \leq x \leq 3$ and $1 / x \leq y \leq 2 / x$. Let $S$ be the solid that is obtained by rotating $R$ about the vertical line $x=1$. Follow the steps below to calculate the volume of $S$ by the method of cylindrical shells.
(i) Sketch the cross-section of the solid with the $x y$-plane. Also sketch a typical cylindrical shell of inner radius $x$ and outer radius $x+\Delta x$ for $2 \leq x \leq 3$ and $\Delta x$ small. Include dimensions in your sketches.
(ii) Give an approximation for the volume of the cylindrical shell in (i) as a function of $\Delta x$ and $x$.
(iii) Using the result from (ii), calculate the volume of $S$.

## Solution:

4. Sketch the arc $x=e^{-t} \cos (t), y=e^{-t} \sin (t), 0 \leq t \leq \pi$ and calculate its exact length. Note: After a simplification the integral is not very complicated.

## Solution:

