1. Find the tangent plane to the surface $z=x \ln (y)+x^{2} y+2$ at the point $(x, y, z)=(2,1,6)$. Work:

Answer: $z=$
2. Find the linear approximation of the function $f(x, y)=\sqrt{x y^{2}+2}$ at the point $(x, y)=(2,1)$ and use it to estimate $f(2.02,0.99)$.
Work:

Answers: $L(x, y)=$
3. Given that $w=\ln \left(x^{2}+y+z^{2}\right), x=\cos (s), y=\frac{s}{\pi t}$ and $z=t$, use the Chain Rule to find $\frac{\partial w}{\partial t}$ and $\frac{\partial w}{\partial s}$ at the point where $t=1$ and $s=\pi$.
Work:

Answers: $\frac{\partial w}{\partial t}=$

$$
\frac{\partial w}{\partial s}=
$$

4. Determine $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $z$ is given implicitly as a function of $x$ and $y$ by the equation $x y^{2}+x e^{z}=z^{2}$.

## Work:

Answers: $\frac{\partial z}{\partial x}=$

$$
\frac{\partial z}{\partial y}=
$$

