1. Consider the initial value problem $y^{\prime}=-4 x y, y(0)=3$.
(a) Use Euler's Method to estimate $y(1)$ to 4 decimal places, with 10 steps.
(b) What is the true solution of the initial value problem?
(c) What is the true value of $y(1)$ to 4 decimal places?
(d) What is the error of the approximation in (a)?

Solution:
Answers: (a) $y(1) \approx$
(b) $y(x)=$
(c) $y(1)=$
(d) $\epsilon=$
2. A detective finds a murder victim in a room with constant temperature $21^{\circ} \mathrm{C}$. At $5: 00 \mathrm{am}$, the body's temperature was $34.2^{\circ} \mathrm{C}$. One hour later, it was $31.8^{\circ} \mathrm{C}$. Normal body temperature is $37^{\circ} \mathrm{C}$. Assume the body's temperature, $B(t)$, follows Newton's Law of Cooling.
(a) Set up and solve the differential equation for $B(t)$.
(b) Estimate the time of the murder.
Solution:
Answers: (a) $B(t)=$
(b) murder occured at
3. A reservoir contains 500 litres of pure water. Brine (salty water) that contains $0.1 \mathrm{~kg} / \mathrm{L}$ of salt is added at a rate of $2 \mathrm{~L} / \mathrm{min}$. Brine from a second source with $0.05 \mathrm{~kg} / \mathrm{L}$ of salt is added at a rate of $3 \mathrm{~L} / \mathrm{min}$. Assume that the reservoir is instantaneously well-mixed. The reservoir is drained at a rate of $5 \mathrm{~L} / \mathrm{min}$. Let $Q(t)$ be the amount of salt (in kg) at time t (in min).
(a) Set up and solve the differential equation for $Q(t)$.
(b) How much salt is there in the reservoir after 4 hours?

Solution: Answers: (a) $Q(t)=\quad$ (b) kg
4. A conservation group estimates that a wildlife preserve can sustain a herd of 2000 gnus. They also know that the relative growth rate of gnus would be 0.125 (per year) in an unconstrained environment. A herd of 800 gnus is placed in the preserve.
(a) Give the formula for the number $P(t)$ of gnus after t years, assuming that the population follows the Logistic Model.
(b) How long will it take for the population to grow to 1000 ?

Solution: Answers: (a) $P(t)=$
(b) years
5. Do the following sequences converge or diverge? If they converge, give the limit.
(a) $a_{n}=\frac{(-1)^{n} 2 n}{n^{2}+3 n}$
(b) $a_{n}=\sin (n+1)$
(c) $a_{n}=\frac{5 n^{2}+6 n+3}{3 n^{2}+7}$
(d) $a_{n}=\frac{3^{n+1}}{2^{n+3}}$

Solution: Answers: (a)
(b)
(c)
(d)

