Comments on lecture 1

1.1 Some ways to represent functions

DEF: Let A, B be 2 sets (usually subsets of \mathbf{R} - the set of real numbers). A function $f: A \mapsto B$ is a rule that assigns to each element $x \in A$ a unique element, $f(x)$, in B.

- A is called the domain of the function f; the set of all possible values of $f(x)$ is called the range of the function.

Example 0.0.1. $f: \mathbf{R} \mapsto \mathbf{R}, f(x)=2 x+1$ for all $x \in \mathbf{R}$. What does it represent geometrically?

TO VISUALIZE:
DEF: THE GRAPH of a function $f: A \mapsto B$ is the set $\{(x, f(x)) \mid x \in A\}$
Example 0.0.2. Graph $f(x)=2 x+1$ for all $x \in \mathbf{R}$. Note that $(0,1)$ and $(1,3)$ are in the graph, then just join them BY a line!

Example 0.0.3. Graph $f(x)=2 x^{2}$ for all $x \in \mathbf{R}$. Note that $(0,0),(1,2)$ and $(-1,2)$ are in the graph, then just join them by curve! What is the shape?

The ways to represent a function are:
a) - verbally (using words)
b) - numerically (table of values)
c) - algebraically (using formulae)
d) - visually (using a graph)

You already encountered c), d). For a) think about $P: \mathbf{R} \mapsto \mathbf{R}, P(t)$ is the human population of Ottawa at time t. For b) think about a cheap example as follows:

$$
\begin{array}{c|c|c|c|}
& & \\
x & 1 & 2 & 3 \\
\hline f(x) & 2 & -1 & -1 \\
\hline
\end{array}
$$

Do: 30,32/page 23
FOR FUTURE LECTUREs (WE NEEDED FOR WHAT IS CALLED CALCULUS):
DEF: The difference quotient is given by $\frac{f(a+h)-f(a)}{h}$, where $h \neq 0$ (and of course f and a are given).

Do: 26,28/page 23
Natural Question: Is every curve (in the $x y$-plane) the graph of a function?
The answer is :
The Vertical Line Test: A curve in the $x y$-plane is the graph of a function (of x) if and only if (\Leftrightarrow) no vertical line cuts the curve more than once.

Example 0.0.4. Think about the circle, parabola and other graphs...
DEF: A PIECEWISE DEFINED FUNCTION is a function defined by different formulae in different parts of the domain.

Example 0.0.5. $f(x)= \begin{cases}x+\frac{7}{2} & \text { if } x \geq-1, \\ -2 & x<-1 .\end{cases}$

Graph it!

Important Example (The absolute value)
If $a \in \mathbf{R}$, then $|a|=\left\{\begin{array}{ll}a & \text { if } a \geq 0, \\ -a & \text { if } a<0 .\end{array}\right.$ is called the absolute value of a. Define now the function $f: \mathbf{R} \mapsto \mathbf{R}_{+}, f(x)=|x|$. What is the range? Graph it!

Do: 42/page 23 and READ example 9/page 19.
Symmetry DEF: a) A function f is called EVEN if $f(x)=f(-x)$ for all x in its domain.
b) A function is called ODD if $f(x)=-f(-x)$ for all x in its domain.

Example 0.0.6. $f(x)=x^{2}, f(x)=2 x^{3}$
Significance: a) The graph of an even function is symmetric with respect to the y-axis;
b) The graph of an odd function is symmetric about the origin $(0,0)$.

Do: 72,70 / page 25
DECREASING AND INCREASING FUNCTIONS
It is what you have expected: DEF: $f: I \mapsto \mathbf{R}$ is called increasing on I if $f\left(x_{1}\right)<f\left(x_{2}\right)$ provided $x_{1}<x_{2}$ in I.

DEF: $f: I \mapsto \mathbf{R}$ is called decreasing on I if $f\left(x_{1}\right)>f\left(x_{2}\right)$ provided $x_{1}<x_{2}$ in I.
Question: Is $f(x)=x^{2}$ increasing?

1.2 Important functions

a) Linear functions: $f: \mathbf{R} \mapsto \mathbf{R}, f(x)=m x+b$, where m, b are real numbers. Slope is $m ; b$ is the y-intercept.

Do: 16/page 36
b) Polynomials: $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x^{1}+a_{0}$; degree n if $a_{n} \neq 0$; $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ are called the coefficients of the polynomial.
Example 0.0.7. 1) A cubic function is just a polynomial of degree 3: $P(x)=a_{3} x^{3}+a_{2} x^{2}+$ $a_{1} x+a_{0}, a_{3} \neq 0$
2) A quadratic is just a polynomial of degree 2: $P(x)=a_{2} x^{2}+a_{1} x+a_{0}, a_{2} \neq 0$. Graph it for \pm leading coefficient!
c) Power function: $f(x)=x^{a}$, where a is a real number.

Important:

- If $a=-1, f(x)=x^{-1}=\frac{1}{x}, x \neq$
— If $a=\frac{1}{n}, n$ positive integer, $f(x)=x^{\frac{1}{n}}=\sqrt[n]{x}$
d) Rational function: $f(x)=\frac{P(x)}{Q(x)}$, where P, Q are polynomials.
e) Algebraic function: One obtained from polynomials using,,$+- \times, \div, \sqrt[n]{ }$.

Example: $f(x)=\sqrt[7]{x-\frac{x}{2 x+5}}$
f) Trigonometric functions: Sine, cosine, tangent $=$ sin over cos etc...
g) Exponential function: $f(x)=a^{x}$, where a - the base - is a positive number; graph $f(x)=2^{x}, g(x)=\left(\frac{1}{5}\right)^{x}$.
h) Logarithmic function: $f(x)=\log _{a} x$, the base a is a positive number. It is the inverse of the EXP function.

NOTE THAT: $\log _{a} x=y$ iff $x=a^{y}$.
Do: 2/page 35
1.3 Getting new functions from old ones

Recall (otherwise read) the TRANSLATIONS (TO THE LEFT, RIGHT, UPWARD, DOWNWARD) + STRETCHING and REFLECTING

MORE IMPORTANT:
Combinations Given f and g one may define: $f+g, f-g, f g, \frac{f}{g}$ as follows $(f+g)(x)=f(x)+g(x),(f-g)(x)=f(x)-g(x),(f g)(x)=f(x) g(x),\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$. The domain of the last one is the set of all x such that $g(x) \neq 0$ and $f(x)$ is defined. Find the domains of the others!

Do: 30/page 44
COMPOSITION Given f and g one defines their composition $f \circ g$ as follows $(f \circ g)(x)=$ $f(g(x))$; what about the domain?

Do: 48,34,46/pages $44 ; 45$

1.5 EXPONENTIAL FUNCTIONS

DEF: $f(x)=a^{x}$, where $a>0$
WHAT IS IT?
— If $x=n>0$ then $a^{x}=a^{n}=a \times a \times \ldots a$

- If $x=0$ then $a^{0}=1$
- If $x=-n<0$ then $a^{x}=a^{-n}=\frac{1}{a^{n}}=\left(\frac{1}{a}\right)^{n}$
- If $x=\frac{p}{q}$ is rational then $a^{x}=a^{\frac{p}{q}}=\sqrt[q]{a^{p}}$ etc
- If x is irrational...

Laws of exponents:
$-a^{x+y}=a^{x} a^{y}$
$-a^{x-y}=\frac{a^{x}}{a^{y}}$
$-\left(a^{x}\right)^{y}=a^{x y}$
$-(a b)^{x}=a^{x} b^{x}$
The Number e
e is the positive number a such that the slope of the tangent line $(=?)$ at $(0,1)$ to $f(x)=a^{x}$ IS 1. For the moment $e \approx 2.71828$

Do: 20,30/pages 59

Comments on lecture 4

3.5 Some exercises

Exc 12. We have (by differentiating both sides) that $y^{\prime}\left(\sin \left(x^{2}\right)\right)+y \cos \left(x^{2}\right)(2 x)=1 \sin \left(y^{2}\right)+$ $x \cos \left(y^{2}\right)(2 y)\left(y^{\prime}\right)$, so $y^{\prime}\left(\sin \left(x^{2}\right)-x \cos \left(y^{2}\right)(2 y)\right)=\sin \left(y^{2}\right)-2 y x \cos \left(x^{2}\right)$, hence $y^{\prime}=\frac{\sin \left(y^{2}\right)-2 y x \cos \left(x^{2}\right)}{\sin \left(x^{2}\right)-x \cos \left(y^{2}\right)(2 y)}$.

Exc 16. We have (by differentiating both sides, and by product Rule) that $\cos (x)-$ $\sin (y) y^{\prime}=\cos (x) \cos (y)+\sin (x)(-\sin (y)) y^{\prime}$, hence $y^{\prime}\{-\sin (y)+\sin (x) \sin (y)\}=\cos (x) \cos (y)-$ $\cos (x)$. Therefore $y^{\prime}=\frac{\cos (x) \cos (y)-\cos (x)}{-\sin (y)+\sin (x) \sin (y)}$.

Exc 18. We have (by differentiating both sides, and by product Rule) that $g^{\prime}(x)+$ $1 \sin (g(x))+x \cos (g(x)) g^{\prime}(x)=2 x$. Plug in $x=0$ and get $g^{\prime}(0)+\sin (g(0))=0$, therefore $g^{\prime}(0)=-\sin (g(0))$.

Exc 22. Say the equation is $y=m x+n$, where $m=y^{\prime}(\pi)$. But $\cos (x+y)\left\{1+y^{\prime}\right\}=2-2 y^{\prime}$, hence $y^{\prime}=\frac{2-\cos (x+y)}{\cos (x+y)+2}$. From here we get $y^{\prime}(\pi)=\frac{2-\cos (\pi+\pi)}{\cos (\pi+\pi)+2}=\frac{2-1}{1+2}=\frac{1}{3}$, so $m=\frac{1}{3}$, thus $y=\frac{1}{3} x+n$. From $\pi=(1 / 3) \pi+n$ we get $n=(2 / 3) \pi$, so you may write the equation!

Exc 24. Say the equation is $y=m x+n$, where $m=y^{\prime}(1)$. But $2 x+2 y+2 x y^{\prime}-2 y y^{\prime}+1=0$, hence $y^{\prime}=\frac{-1-2 y-2 x}{2 x-2 y}$, thus $m=\frac{7}{2}$. Since $2=\frac{7}{2} \times 1+n$, one gets $n=-3 / 2$.

Exc 28. Just doo it!
Comments on lecture 6
We did 3.7, 3.9, 4.1, and 4.2

