MAT 1322 Summer Assignment 4 (Due THU. June 23rd at 19:00)
No late Assignments!!! Student Number:

1. Starting from the Maclaurin series for $\frac{1}{1-x}$, find the Maclaurin series of (i) $\ln \left(1+3 x^{2}\right)$ and
(ii) $\int \ln \left(1+3 x^{2}\right) d x$ and give their intervals of convergence.

Work:

Answers:

2. Using the definition (and a test), find if the following series is absolutely convergent or not: $\sum_{n=2}^{\infty} \frac{\sin (6 n)}{4^{n}}$

Work:

Answer:

3. Assume that the series $\sum_{n=1}^{\infty} a_{n} x^{n}$ is convergent when $x=-3$, and it is divergent when $x=20$.
(a) Is the series $\sum_{n=1}^{\infty} a_{n}(-2)^{n}$ divergent?
(b) Is the series $\sum_{n=3}^{\infty} a_{n} 24^{n}$ convergent?

Work:

Answers: (a)
(b)
4. Find the radius and interval of convergence of the power series.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n+7}(x-2011)^{n+1}}{(n+20)!}$
(b) $\sum_{n=2}^{\infty} \frac{(-1)^{n+2011}(x-2011)^{n+3}}{2011^{n+1} n^{10}}$

Work:

