MAT 1302 E, Fall 2011
Homework 2
Professor: Catalin Rada
DUE DATE 1 November 2011

For all of the questions below, you must show each step in any row reduction and state what operation you are performing at each step.

1. Let $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 0 & 2 k \\ 0 & -1 & k+1\end{array}\right]$.
(a) (3 points) Find all values of k for which A is invertible.
(b) (2.5 points) Find the inverse of A when $k=0$
(c) (1.5 points) Use part (b) to solve the matricial equation $A x=b$ where

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 1
\end{array}\right] \text { and } b=\left[\begin{array}{l}
2 \\
0 \\
4
\end{array}\right]
$$

2. (4 points)

Let $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 2011 \\ 10 & 100\end{array}\right]$ be 2 invertible matrices. Is there a 2×2 matrix X such that $A^{-1} B^{-1}\left(B+2 A X^{T}\right) B A=I_{2}$? If the answer is affirmative, find X.
3. (3 points) Let $A=\left[\begin{array}{llll}0 & 1 & 2 & 4 \\ 0 & 0 & 3 & 5 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0\end{array}\right]$. Compute A^{2011}.

Hint: Find A^{n} for $n \leq 4$.

