MAT 1302E, Fall 2011

Homework 3

Professor: Catalin Rada

At the beginning of class 15 November 2011

For full marks show all details of your work!.

1. A certain economy is composed of 2 sectors, A and B, subject to the following conditions:

- For each unit of output, the sector A requires 0.3 units from sector A and 0.4 units from sector B.
- For each unit of output, the sector B requires 0.2 units from sector B and 0.4 units from sector A.
(a) (1 point) Find the matrix C associated to this economy.
(b) (2 points) Find the inverse of $(I-C)$.
(c) (2 points) Find the production vector for a final demand of 50 units of sector A and 20 units dof sector B.

2. Consider $A=\left[\begin{array}{ccccc}1 & 2 & 1 & 0 & 0 \\ 2 & 5 & 1 & 1 & 0 \\ 3 & 7 & 2 & 2 & -2 \\ 4 & 9 & 3 & -1 & 4\end{array}\right]$. The reduced row echelon form of A is $\left[\begin{array}{ccccc}1 & 0 & 3 & 0 & -4 \\ 0 & 1 & -1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(a) ($\mathbf{1}$ point) Find a basis for $\operatorname{Col} \mathrm{A}$, the columns space of A .
(b) ($\mathbf{1}$ point) What is the rank of A?
(c) (2 points) Find a basis for Null A, the null space of A.
(d) (1 point) What is the dimension of Null A?
(e) ($\mathbf{1}$ point) Is it true that the columns of A form a bassis of \mathbb{R}^{4} ? Justify your answer!
3. Determine if the following sets are SUBSPACES of \mathbb{R}^{3} or not. Justify your answer!
(a) (2 points)

$$
V=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{1}=x_{2} x_{3}\right\}
$$

(b) (2 points)

$$
W=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, 4 x_{1}-x_{2}+5 x_{3}=0\right\}
$$

4. The following questions are independent of each other.
(a) (2.5 points) Assume that:

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=5 .
$$

Compute:

$$
\left|\begin{array}{ccc}
a_{21} & a_{22} & a_{23} \\
-3 a_{11} & -3 a_{12} & -3 a_{13} \\
a_{31}+5 a_{11} & a_{32}+5 a_{12} & a_{33}+5 a_{13}
\end{array}\right|
$$

(b) (2.5 points) Let A, B and C be matrices of size $(2,2)$ such that $\operatorname{det} A=-2, \quad \operatorname{det} B=-1, \quad \operatorname{det} C=1$. Find $\operatorname{det}\left[-3 A B^{4} C^{-1} A^{T} B^{-3}\left(C^{T}\right)^{-1}\right]$.

