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BÉLA JOÓS
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We derive the shape equations in terms of Euler angles for a uniform elastic rod with
isotropic bending rigidity and spontaneous curvature, and study within this model the
elasticity and stability of a helical filament under uniaxial force and torque. We find that
due to the special requirements on the boundary conditions, a static slightly distorted
helix cannot exist in this system except in some special cases. We show analytically that
the extension of a helix may undergo a one-step sharp transition. This agrees quan-
titatively with experimental observations for a stretched helix in a chemically-defined
lipid concentrate (CDLC). We predict further that under twisting, the extension of a
helix in CDLC may also exhibit similar behavior. We find that a negative twist tends to
destabilize a helix.
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1. Introduction

The study of a long thin rod (i.e., a filament) has a long history in mechanics and

engineering dating back to Euler and Lagrange.1,2 It has an increasing importance

due to recent experiments and theories which revealed its relevance to microscopic

objects such as carbon nanotubes3–8 and biomaterials.9–42 In a first approximation,

a rod can be viewed as an inextensible chain with a certain bending rigidity but with

negligible cross-section. This is called the worm-like chain (WLC) model.24–27 The

WLC model has been used to predict a biopolymer’s elastic response successfully

in the low force regime. But the WLC model cannot account for the behavior of a

rod under twisting. The next approximation is to regard the rod as a chain with a

spontaneous twist and a circular cross-section which ensures an isotropic bending

rigidity. The corresponding model is often referred to as the worm-like rod chain

(WLRC) model.23–31 The WLRC model has been applied successfully to explain

the supercoiling properties of double stranded DNA (dsDNA). But the WLRC

model cannot yield a free standing helix, that is a helix free of force and torque. To

describe a rod which can form a free standing helix, it is necessary to consider a

model with spontaneous curvatures,1,43,44 and this is the model we will investigate

in this work.

Of all the possible conformations of a rod, the helix is in general the first one

to be studied due to its simplicity and it is one of the most common filamentary

structures found in nature. In this paper, we attempt to provide a full picture

of the elasticity of a helical rod within a model with spontaneous curvatures and

twist. We have presented a brief report on the elasticity of a helical rod under fixed

torque in a more general model, i.e. a rod with spontaneous curvatures, torsion

and non-circular cross-section.45 In Ref. 45, we find that a helical filament may

undergo a one-step shape transition in extension under-stretching force, and the

corresponding energy-force curve is self-crossed, indicating a metastable regime.

In this paper, we present a detailed study on a slightly simplified model, i.e. a

filament with a circular cross section. The appeal of the present model is that all

variables can be separated completely so the expressions can be simplified greatly,

and consequently, it is easy to get a full picture of the physical properties of the

filament. Our results agree well with a recent experiment for a helix in a chemically-

defined lipid concentrate (CDLC).39 This experiment observed a one-step reversible

sharp transition of extension from an almost perfect helix, to an almost straight

line, and there is a metastable regime, in which upon nucleation, the helix separates

into two domains, one straight and the other helical.39 Moreover, the elasticity and

stability of a twisted helical filament with fixed force does not seem to be available

and so we present a detailed discussion of this important issue in this work.

There are in general two ways to study the behavior of a filament. The statis-

tical mechanical treatment is used to find many useful quantities such as the mean

chain extension and correlation functions. However, such an approach provides only

averaged quantities and some important information such as the shape of the
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filament is not available. On the other hand, the classical mechanical

method18,20,21,23 can provide some additional insights, and such a treatment is rea-

sonable if thermal fluctuations are negligible, such as when the persistence length

of the helix is comparable to the length of the filament, which is the case for the

experiments we will discuss.39

In this paper, we derive the shape equations for a uniform rod with a circular

cross-section in terms of Euler angles θ, φ and ψ. We find that to form a helix,

the Euler angle ψ must be a constant determined by the spontaneous curvatures.

From the boundary conditions, we find that in general, a static, slightly distorted

helix cannot exist in this model, though dynamically it is still possible. The elastic

response and stability of a helix under different constraints are also studied. We

find that negative twisting (unwinding) tends to destabilize a helix. We find that

the extension of a helix may be subject to a one-step sharp transition. Especially,

we predict that under twisting, the extension of the helix in CDLC can undergo a

sharp transition.

This paper is organized as follows. The following section introduces the model

and derives the shape equations of the helical filament. Section 3 presents our results

under external force and torque. A summary concludes the paper.

2. Shape Equations of the Model

Using arclength s as the variable, the configuration of a uniform rod can be de-

scribed by a triad of unit vectors {ti(s)}i=1,2,3, where t3 ≡ dr/ds is the tan-

gent to the center line r of the rod, and t1 and t2 are oriented along the prin-

cipal axes of the cross-section. The orientation of the triad as one moves along

the filament is given by the solution of the generalized Frenet equations that de-

scribe the rotation of the triad vectors, dti(s)/ds = −Σj,kεijkωj(s)tk(s), where

εijk is the anti-symmetric tensor, and {ωj(s)} are the curvature and torsion pa-

rameters. Using Euler angles θ(s), φ(s) and ψ(s)46 to relate the fixed coordi-

nate system to the frame rigidly embedded in the rod in its relaxed configura-

tion,19–21,23,34 we can write t3 = {sinφ sin θ,− cosφ sin θ, cos θ}, and the normal

n = {cosφ cosψ − cos θ sinφ sinψ, sinφ cosψ + cos θ cosφ sinψ, sin θ sinψ}. It fol-

lows that

ω1 = sin θ sinψφ̇+ cosψθ̇ , (1)

ω2 = sin θ cosψφ̇− sinψθ̇ , (2)

ω3 = cos θφ̇+ ψ̇ , (3)

where the symbol “ ˙ ” represents the derivative with respect to s.

The energy of a uniform rod with spontaneous curvatures ω10, ω20 and

spontaneous twist rate ω0, as well as the symmetric bending rigidities can be
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written as

E =

∫ L

0

Eds ,

E =
a1

2

[

(ω1 − ω10)
2 + (ω2 − ω20)

2
]

+
a3

2
(ω3 − ω0)

2 − f cos θ − Γφ̇− Γψψ̇ , (4)

where a1 is the bending rigidity and a3 is the twisting rigidity, f is a uniaxial force

and is along the z-axis (f < 0 for compression), and Γ is the torque which produces

the rotation of the central axis around the z-axis, and Γψ is the torque which results

in the rotation of the cross-section around the central axis of the filament (Γ < 0

for an unwinding torque). Note that if the force has all three components (such as

when fixing both ends of the rod), the term f cos θ must be replaced by f · t. We

do not consider this much more complicated case because the force used in a force

experiment is always uniaxial. Moreover, the torque may also be more complex and

difficult to realize, so we stick to the simplest geometries. In a macroscopic exper-

iment, one has often Γ = 0. In contrast, in a microscopic experiment, the torque

has often a component along the direction of the stretching force.13 In experiments,

especially for biopolymers, one also often fixes the supercoiling degree13 and in this

case, we have Γ = Γψ.21,22

In the absence of force and torque, it is obvious that the stable conformation of

the filament, with E = 0, is given by

ω1 = ω10, ω2 = ω20, and ω3 = ω0 . (5)

These equations determine the free standing helix with constant curvature

(=
√

ω2
10 + ω2

20) and constant torsion (= ω0), but the axis of the helix can

point in any direction. For a free standing helix with its axis along the z-axis,

we must have θ = θH = const., φ = φ̇hs, so θ = θ0 = tan−1(
√

ω2
10 + ω2

20/ω0),

ψ = ψ0 = tan−1(ω10/ω20), φ̇h = φ̇h0 =
√

ω2
10 + ω2

20 + ω2
0 , κ = κ0 =

√

ω2
10 + ω2

20,

τ = τ0 = ω0.

Extremizing E, we obtain the shape equations for a static filament,

a1θ̈ +
a3 − a1

2
sin 2θφ̇2 + a1(ω20 cosψ + ω10 sinψ)ψ̇

+ φ̇[a1 cos θ(ω20 cosψ + ω10 sinψ) + a3 sin θ(ψ̇ − ω0)] − f sin θ = 0 , (6)

a1 sin θ(−ω20 cosψ − ω10 sinψ + sin θφ̇) + a3 cos θ(−ω0 + cos θφ̇+ ψ̇) − Γ = C , (7)

a3(cos θφ̈+ ψ̈) + a1 sin θ(ω10 cosψ − ω20 sinψ)φ̇

− (a1ω20 cosψ + a1ω10 sinψ + a3 sin θφ̇)θ̇ = 0 . (8)

Suppose the filament is fixed at one end (s = 0), the boundary conditions (BCs) at

s = 0 are simply θ(0) = θ0, φ(0) = φ0 and ψ(0) = ψ0. The extremum in the energy

requires the following additional BCs at the other end (s = L),
(

∂E
∂θ̇

· δθ
)

s=L

=

(

∂E
∂φ̇

· δφ
)

s=L

=

(

∂E
∂ψ̇

· δψ
)

s=L

= 0 , (9)
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or

[θ̇L + ω20 sinψL − ω10 cosψL]δθL = 0 , (10)
[

1

2
(a1 + a3 + (a3 − a1) cos 2θL)φ̇L + a3 cos θL(ψ̇L − ω0)

− a1 sin θL(ω20 cosψL + ω10 sinψL) − Γ

]

δφL = 0 , (11)

[a3(cos θLφ̇L + ψ̇L − ω0) − Γψ]δψL = 0 , (12)

where ψL = ψ(L), θL = θ(L) and φL = φ(L).

Equations (6)–(8) are nonlinear coupled differential equations which are very

difficult to solve either analytically or numerically. However, it is easy to find ana-

lytic expressions for a helical filament.

3. Elasticity of a Helical Filament

3.1. General expressions for a helix

A helix with its axis along the z-direction of the fixed coordinate system can be

expressed as

r =

{

sin θH

φ̇h
[1 − cos(φ̇hs)], − sin θH

φ̇h
sin(φ̇hs), cos θHs

}

, (13)

where φ̇h and θH are constants. The handedness of the helix is determined by the

sign of φ̇h. The radius of the helix is a = sin θH/φ̇h, the torsion is τ = φ̇h cos θH ,

the curvature is κ = φ̇h sin θH , and pitch is p = 2π cos θH/φ̇h. The unit tangent

vector of such a helix is therefore

tH = {sin(φ̇hs) sin θH , −cos(φ̇hs) sin θH , cos θH} . (14)

From the requirements that a helix has constant curvature and torsion, McMillen

and Goriely showed that in general a helix must have a constant ψ,44 except for

the WLRC model with ω10 = ω20 = 0. As a consequence, θ(s) and φ̇(s) must also

be constants, otherwise we have three differential equations but only two indepen-

dent unknown functions θ(s) and φ̇(s), so the problem becomes over-determined.

Moreover, with ψ constant, we can show that under a non-uniaxial force, there

is no helical solution for the shape equations, because the independent unknown

functions in the shape equations will become θ(s) and φ(s). This is in fact resulted

from the special BCs required by a helix which we will report in the following, i.e.

one cannot fix θ(0) for a helix. These conclusions are also valid for a filament with

non-circular cross-section.

Therefore, with θ(s) = θ = constant, φ(s) = φ̇hs with φ̇h also constant,

and ψ(s) = ψ = constant, the shape equations for a helix in this model can be
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reduced to

[a1 cos θ(ω20 cosψ + ω10 sinψ) − a3ω0 sin θ]φ̇h +
1

2
(a3 − a1) sin 2θφ̇2

h − f sin θ = 0 ,

(15)

a1 sin θ(φ̇h sin θ − ω20 cosψ − ω10 sinψ) + a3 cos θ(φ̇h cos θ − ω0) − Γ = C , (16)

tanψ =
ω10

ω20

. (17)

Note that in this case, ψ is exactly the same as that of a free standing helix. For a

helix, zre ≡ cos θ is equal to the relative extension and this is also an advantage of

the use of Euler angles. Since excluded volume effects are not included, zre ≤ 0 is

allowed in this model. But zre < 0 is unphysical so we will not consider this case.

The twisted vertical line with Γ = Γψ = 0 is given by θ(s) = 0. It requires

tanψ = −ω20/ω10 = ω10/ω20, and it follows that ω10 = ω20 = 0. This brings us

back to the WLRC model.

In the general cases, for a helix, the BCs (10)–(12) become

[ω20 sinψL − ω10 cosψL]δθL = 0 , (18)

[Γ − a1 sin θ(−ω20 cosψ − ω10 sinψ + φ̇h sin θ) − a3 cos θ(φ̇h cos θ − ω0)]δφL = 0 ,

(19)

[a3(cos θLφ̇L − ω0) − Γψ ]δψL = 0 . (20)

BC (18) is automatically satisfied due to Eq. (17). But note that we have only one

undetermined constant (C) in the shape equations for a helix, so the parts in bracket

in Eqs. (19) and (20) cannot vanish simultaneously except for the WLRC model [see

Eqs. (33)–(35)] or we can always keep Γψ = a3(cos θLφ̇L − ω0) which is uneasy in

experiment, since otherwise it gives over-determined equations. Therefore, to have

a helix, we have three kinds of possible BCs. The first kind of allowed BCs is

Γ − a1 sin θ(φ̇h sin θ − ω20 cosψ − ω10 sinψ) − a3 cos θ(φ̇h cos θ − ω0) = 0 , (21)

δψL = 0 . (22)

δψL = 0 means that the ψL should be fixed. But since ψ is a constant for a helix,

fixing ψL does not provide an additional constraint. To realize this condition, one

simply does not fix the cross-section at both ends tightly on a non-deformable

substrate but allows ψ to relax to the required value. This is also the BC used in

some force experiments.39

The second kind of allowed BCs is

a3(cos θφ̇h − ω0) − Γψ = 0 , (23)

δφL = 0 . (24)

δφL = 0 means that φL should be fixed and so φ̇h = (φL − φ0)/L which would

determine C. This condition is however difficult to realize since it requires fixing
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both φ(0) and φ(L) and may require additional and complicated applied forces and

torques at both ends. In turn, the energy functional [Eq. (4)] may not be valid in

this case. Therefore, we do not discuss the behavior of the helix given by BCs (23)

and (24) in detail in this work.

The third kind of allowed BCs is

δφL = 0 and δψL = 0 . (25)

But it is easy to verify that replacing Γ by Γ + C, BCs (25) give exactly the same

results as those given by BCs (21) and (22), so they are in fact equivalent. In the

same way, we can show that to fix θ and φ at s = 0 is in fact unnecessary for a

helix.

From Eqs. (15)–(17) and (21)–(22), we can obtain

ψ = tan−1 ω10

ω20

, φ̇h =
Γ + a3zreω0 + a1

√

1 − z2
reκ0

a1(1 − z2
re) + a3z2

re

, (26)

f =

[a1a3κ0zre −
√

1− z2
re((a1 − a3)Γzre + a1a3ω0)]

× (Γ + a3zreω0 + a1

√

1 − z2
reκ0)

√

1 − z2
re[a1(1 − z2

re) + a3z2
re]

2
, (27)

Ehelix =
e1

2
√

1 − z2
reκ0[a1(1 − z2

re) + a3z2
re]

2
, (28)

e1 = −2a1[(a1 − 3(a1 − a3)z
2
re + 2(a1 − a3)z

4
re)Γ

− a3z
2
re(a1(1 − z2

re) + a3(z
2
re − 2))ω0]κ

2
0

−
√

1 − z2
reκ0[a3z

2
reΓ(3Γ + 4a3zreω0)

+ a2
1a3(−(1 − z2

re)
2ω2

0 + z2
re(1 + z2

re)κ
2
0)

− a1((3z
2
re − 1)Γ2 + 4a3z

3
reΓω0 + a2

3z
2
re((z

2
re − 3)ω2

0 + z2
reκ

2
0))] . (29)

It is clear that zre may be a multi-valued function of f and Γ, and so is the energy. It

means that the energy may be self-crossed, making abrupt changes in zre possible.

It is also interesting to note that Γψ plays no role in forming a helix. This is simply

because we cannot fix ψ0, so applying a torque directly to the cross-section will

result in a continuous rotation.

We should point out that there are many possible BCs for a filament, and

different BCs may lead to different solutions. These BCs correspond to different

constraints in experiment. Moreover, the results with different BCs are in fact not

comparable directly. These important points are however often ignored in the study

of the shape and stability of a filament. For instance, the simplest BCs are to fix

two points only, but to allow the relaxation of θ, φ and ψ at both ends. In this

case, the forces of both ends have in general all three components. One can further

fix some angles which requires the application of a torque (or stress). In a force
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experiment, one usually applies a uniaxial force at one end. But even in this case,

there are still different choices of BCs. For instance, if one fixes the initial tilting

angle θ(0) but allows the relaxation of φ and ψ at both ends, then the rod can

form a helix only in some special cases with f , Γ and Γψ given by Eq. (27). For

instance, if we fix θ(0) and Γ but vary f , then one can observe a helix only when

θ(0), Γ and f satisfy Eq. (27). That often occurs in a macroscopic force experiment

since it is relatively easy to fix θ(0), such as to clamp one end of the rod or to graft

a small portion of rod at some fixed initial angle θ(0) to a substrate. However, in

microscopic experiments, it is relatively easy to fix the initial position, but difficult

to fix θ(0). Therefore, with the adjustable θ(0), at the microscopic level it should

be easier to observe a helix under arbitrary force and torque.

With boundary conditions [Eqs. (21) and (22)], in general a static and slightly

distorted helix cannot be formed in this model as an equilibrium configuration. This

is because ψ will no longer be a constant, otherwise we will have three ordinary

differential equations [Eqs. (6)–(8)], but only two variables [θ(s) and φ̇(s)]. Further-

more, if ψ is s-dependent, the condition δψ = 0 cannot be used since it means that

we need to fix both ψ(0) and ψ(L) and impose additional and complicated forces

and torques at both ends. In turn, the energy functional [Eq. (4)] is not valid in

this case. Therefore, for a non-helical shape, ψ should be s-dependent, and so from

Eqs. (11) and (12), the BCs will become

1

2
[a1 + a3 + (a3 − a1) cos 2θL]φ̇L + a3 cos θL(ψ̇L − ω0)

− a1 sin θL(ω20 cosψL + ω10 sinψL) − Γ = 0 , (30)

a3(cos θLφ̇L + ψ̇L − ω0) − Γψ = 0 . (31)

However, in general, a helix cannot satisfy these two BCs simultaneously. For in-

stance, from Eqs. (26)–(28),

a3(zreφ̇h + ψ̇L − ω0) − Γψ =
D

a1(1 − z2
re) + a3z2

re

,

D ≡ a1a3[κ0zre
√

1 − z2
re − ω0(1 − z2

re)] + a3zreΓ − [a1(1 − z2
re) + a3z

2
re]Γψ .

(32)

For a given filament, D vanishes only for some special values of zre, with special f ,

Γ and Γψ. That means a slightly distorted helix can only be formed around these

special zre. For instance, when Γ = Γψ = 0, only the free-standing helix can satisfy

both BCs so we can observe a nearly helical shape around a free-standing helix.

But under arbitrary force and torque, in general, a static filament can be either a

perfect helix or something far from a helix, but cannot be a slightly distorted helix.

These conclusions are also correct for a filament with a non-circular cross-section.

We should point out that we do not exclude the possibility of forming a slightly

distorted helix dynamically, since dynamically, the energy of the system does not

need to be minimum.

The helical solution with s-independent ψ for the WLRC model can be obtained

from Eq. (26) by taking ω10 = ω20 = 0. ψ can be arbitrary in this case because
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the energy is independent of ψ. On the other hand, with ω10 = ω20 = 0, from

Eqs. (6)–(12), we can find another helical solution for the WLRC model as

f =
ΓΓψ(1 + z2

re) − (Γ2 + Γ2
ψ)zre

a1(1 − z2
re)

, (33)

φ(s) = αs, α =
Γ − Γψz

a1(1 − z2)
, (34)

ψ(s) =

(

ω0 − zreα+
Γψ
a3

)

s . (35)

This solution allows a s-dependent ψ, but the force always decreases with increasing

extension, so it should be not a stable solution and therefore we will not discuss it

anymore.

3.2. Stability criterion

The helix obtained so far may be unstable since it may correspond to a maximum

or a saddle point in energy. The stability (or at least metastability) of a rod requires

δ2E =

∫ L

0





∑

i,j=1,5

Sijδηiδηj



 ds > 0 , (36)

where Sij = ∂2E/∂ηi∂ηj , with η1 = θ, η2 = ψ, η3 = φ̇, η4 = θ̇, η5 = ψ̇. The positive

(negative) definiteness of matrix S (with elements Sij = ∂2E/∂ηi∂ηj , i, j = 1, 5)

gives the sufficient condition for the stable (unstable) shape since it guarantees

the validation (violation) of Eq. (36). Such a criterion may be very useful in some

special case. However, it is not a necessary condition for the stability since η4 and η5
are not independent variables so S cannot determine the stability completely. This

criterion is also too stringent for a helix because even under a very low force, the

determinant of S would be negative.45 It is also obvious that stability is boundary-

condition-dependent.

For a helix, η4 = η5 = 0 and so a necessary condition for stability is the positive

definiteness of matrix S′ (with elements S′
ij = ∂2E/∂ηi∂ηj , i, j = 1, 3). This can

be seen by noting that if we consider a simplified model with η4 = η5 = 0, we will

obtain exactly the same shape equations but the corresponding stability will be

completely determined by the positive definiteness of matrix S ′. In other words, if

all three eigenvalues of S ′ are positive, then the helix may be stable. Otherwise, if

the three eigenvalues are all negative or do not have the same sign, the shape must

be unstable. We cannot yet prove rigorously that it is also the sufficient condition

for a stable helix, but at least it is robust because from it we can find that if the

force increases with increasing extension, the helix will be stable, but if the force

increases with decreasing extension, the helix will be unstable, in accordance with

experimental observations. We should also be reminded that this criterion may be

valid only for a helix.
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Fig. 1. Extension-force (curve a) and energy-force (curve b) relations for a helix. The parameters
in figure are ω0 = 0.09818 × 105 m−1, κ0 = 0.50732 × 105 m−1, a1 = 1.7797 × 10−19 Nm2,
a3 = 18.686 × 10−19 Nm2, and Γ = 0. The units of f and E are 10−9 Newton. The elasticity of
this helix agrees well with that observed for a helix in the CDLC.

For a free-standing helix, it can be shown exactly that all three eigenvalues of

S′ are positive so that the free-standing helix should be stable. This is what should

be since the free-standing helix gives the minimum energy for the model.

Note that the positive definiteness of S ′ may only give a metastable conforma-

tion since under the same f and Γ, there may be several different solutions. A stable

conformation requires a well-defined minimum in energy.

3.3. Discontinuous extension transition for a helix under fixed

torque

This problem was tackled in a recent paper in a more general model of a rod with

a non-circular cross-section (see Ref. 45). The most significant finding is that with

proper parameters, a helical filament can be subject to a one-step first-order tran-

sition in zre under a stretching force, and the corresponding energy-force curve

is self-crossed, as shown in Fig. 1. The two tips in both the extension-force and

energy-force curves define a metastable regime, in which the part on the right side

of the cross-over point in energy corresponds to the jump in zre with increasing

force. In contrast, the part on the left side of the cross-over point of energy corre-

sponds to the possible collapse of zre with decreasing force. We find that increased

twist rigidity, spontaneous curvature or decreased spontaneous torsion sharpens the

transition of a helix under stretching. In contrast, a large bending rigidity favors

a sharp transition under extension for a helix under compression. The role of the

applied torque is complex. When the spontaneous curvature is small, under a small

torque the sharpness of the transition is reduced but under a large torque the jump

is favored. However, with a large spontaneous curvature, even a small torque favors

a sharp transition. Hysteresis may be observed under decreasing force.
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In view of the large parameter space to explore and the fact that the essential

features are the same for a symmetric rod, it is advantageous to revisit the problem

with the present model where three variables (θ or zre, φ̇ and ψ) can be separated

completely. In this model, one of the eigenvalues of S ′ can be found to be

λ1 =
a1ω20

√

1 − z2
re(Γ + a3ω0zre + a1ω20

√

1 − z2
re)

a3z2
re + a1(1 − z2

re)
. (37)

It follows that a large negative Γ tends to destabilize the helix. The other two

eigenvalues can also be written in closed form but the expressions are lengthy so

we do not present them here. A new finding with this model is that if a1 � a3 and

under compressive force (i.e. f < 0), there may also be a one-step transition of zre.

Our calculations show further that df/dzre always shares the same zeroes with one

of the eigenvalues of S ′, and the regime with df/dzre < 0 always overlaps with the

regime having negative eigenvalues. It means that the regime with df/dzre < 0 is

always unstable, as common sense would suggest. In contrast, in most cases, the

regime with df/dzre > 0 is stable or at least metastable. Furthermore, we find that

in most cases, there is only one eigenvalue which can change sign as f is varied, so

the unstable points are saddle points. Besides the metastable regime mentioned in

the first paragraph of this section, df/dzre < 0 in general occurs for large negative

torques or strong compressive forces.

Moreover, from Eq. (27), when zre → 1,

f → a3Γ(Γ + a3ω0) − a1(Γ + a3ω0)
2 + a2

1a3κ
2
0

a2
3

+
a1(Γ + a3ω0)κ0

a3

√

1 − z2
re

. (38)

It follows that except for (Γ + a3ω0)κ0 = 0, to stretch a helix to its full length

requires infinite force. As a consequence, a helix with (Γ + a3ω0)κ0 = 0 may have

quite a different behavior. In the special case with ω0 = 0 and Γ = 0, we can find

that

df

dz
=
a2
1a3κ

2
0[a1 + 3(a1 − a3)z

2
re]

[a1(1 − z2
re) + a3z2

re]
3

> 0 . (39)

Therefore, in this case, the force increases monotonically with increasing zre, so that

there is no sharp jump in zre of the helix. This gives another very important reason

why one cannot observe the sharp jump of extension for most macroscopic helical

springs since a macroscopic helical spring in general has very small or even vanishing

spontaneous torsion, and in general in experiment Γ = 0. Such phenomena should

be observable in the material having screw axes since it corresponds to an intrinsic

torsion, but such materials are in general not appropriate for a macroscopic spring.

However, many microscopic objects have spontaneous twisting. Therefore, it should

be easier to observe a sharp jump in the extension in microscopic objects. But if

Γ 6= 0, one may still observe the sharp change of zre even with ω0 = 0.

It has been reported that under a stretching force, a helix in a CDLC, which

is produced in the process of cholesterol crystallization in the native gallbladder

bile, can undergo a one-step reversible sharp transition in the relative extension zre
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from an almost perfect helix to an almost straight line (zre = 1),39 and there is a

metastable regime, zre = 0.28 to zre = 0.41 (note that the pitch angle ψ in Ref. 39

is the same as π/2− θ in this work), in which upon nucleation, the helix separates

into two domains, one straight and the other helical (zre = 0.28). Reference 39 also

constructed a free energy model to account for the phenomena. However, we find

that our model is enough to predict these experimental observations. We can first

note that in this model, zre is essentially one, or the helix becomes a straight line

in the stretched regime. By expanding around z0
re = cos θ0 = ω0/|φ̇h0| and up to

the first-order, we get f = k(zre − z0
re), where k = a1a3|φ̇h0|6/(a1κ

4
0 + a3κ

2
0ω

2
0) is

the spring constant. We use the radius R0 = 19 µm, zre = z0
re = 0.19 of the free-

standing helix, and the spring constant reported (= 4.8 × 10−6Nm−1) to remove

three of the four parameters in our model, and use a3/a1 as the unique parameter

to fit to the right tip of the sharp edge (given by df/dzre = 0 with zre ≈ 0.41) in

the extension-force curve, and find that a1 = 1.7797 × 10−19 Nm2, a3 = 18.686 ×
10−19 Nm2, ω0 = 0.09818 × 105 m−1, κ0 = 0.50732 × 105 m−1, and also recover

the solution obtained in Ref. 45. This solution gives the cross-over point of energy

at zre = 0.278 and the right tip of the sharp edge of the extension-force curve

at zre = 0.413. These two bounds provide a perfect agreement with the observed

metastable regime. Moreover, due to the self-crossing in the energy-force curve,

the two-domain (one straight and the other helical) coexistence is possible around

the cross-over point, especially if one considers thermal fluctuation, as observed in

experiment.39

Another interesting case would be the behavior of the short dsDNA chain under

low torque since it can be described by the WLRC model, although to keep a non-

vanishing torque in experiment may be difficult due to the special requirement on

the boundary conditions. For the WLRC model, we do not find the sharp change

in the extension. Furthermore, if a1 > a3, we can show df/dzre < 0 exactly so the

helix is unstable. For the dsDNA, we have a1 = 53 nm kBT , a3 = 75 nm kBT , ω0 =

2π/(10.5×0.34) nm−1, kB is the Boltzmann’s constant and T is the temperature. In

this case, we find that when Γ = 0, df/dzre > 0 requires zre > 0.8961, which means

that the helix can be stable only at a large extension. Negative torque tends to

make the helix unstable, but the positive tends to stabilize the helix. We should be

reminded that the helix for the dsDNA here represents the shape of the axial line of

the dsDNA, and is different from the shape of the backbones which is intrinsically

the double-stranded helix. We should also note that the long dsDNA chain is not

a proper object because it will be subjected to serious thermal fluctuation.

3.4. Elasticity of a helical filament under constant force

f = 0 is special. In this case, from Eq. (27), we get

Γ = −a3zreω0 − a1

√

1 − z2
reκ0 , (40)
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or Γ =
a1a3(κ0zre − ω0

√

1 − z2
re)

(a1 − a3)zre
√

1 − z2
re

. (41)

But Eq. (40) leads to φ̇h = 0 so it is not a helical solution. From Eq. (41), in this

case, zre = 0 and zre = 1 all require an infinite Γ and energy. It can be shown that

dΓ/dzre has the same sign as a1 − a3, so zre is a monotonous function of Γ and

therefore there is no sharp jump of zre in this case.

When f 6= 0, we can show that

Γ = Γ1,2 =
A± [a1(1 − z2

re) + a3z
2
re]

√
B

2(a1 − a3)zre
√

1 − z2
re

, (42)

A = a2
3ω0z

2
re

√

1 − z2
re − a2

1κ0zre(1 − z2
re)

− a1a3[ω0

√

1 − z2
re(1 + z2

re) − κ0zre(2 − z2
re)],

B = a2
3ω

2
0(1 − z2

re) − 2a1a3ω0κ0zre
√

1 − z2
re

+ zre[4(a1 − a3)f(z2
re − 1) + a2

1κ
2
0zre] , (43)

where the + in the numerator of Eq. (42) corresponds to Γ1. Note that Γ1 = Γ2

when B = 0. B may be always positive in the interval 1 > zre > 0 and in this case,

the relationship between zre and Γ is separated into two disjointed segments given

by Γ1 and Γ2 respectively. Moreover, when B has zeros in the interval 1 > zre > 0,

our calculations show that B has in general two zeros except in the case with ω0 = 0,

and it follows that the relationship between zre and Γ is also separated into two

disjointed segments. However, the stability analysis shows that the left segment (i.e.

with large negative torque) is always unstable, so we will not discuss it anymore.

This result agrees with those reported in the Sec. 3.3. When ω0 = 0, we can show

exactly that B has at most one zero in the interval 1 > zre > 0.

One of eigenvalues of S ′ can be found to be

λ1± =
a1κ0(a1κ0zre − a3ω0

√

1 − z2
re ±

√
B)

2(a1 − a3)zre
, (44)

where the + corresponds to Γ1. From Eq. (44), we find that when zre → 0, λ1+ →
−a1κ0f/(a3ω0), λ1− → a1a3ω0κ0/(a3zre−a1zre). When zre = 1, λ1+ = a2

1κ
2
0/(a1−

a3), λ1− = 0. As a consequence, if a3 < a1, λ1− < 0 when zre closes to zero, then

the helix given by Γ2 is unstable in zre ∼ 0. If a3 > a1, λ1+ < 0 when zre closes to

one, then the helix given by Γ1 is unstable in zre ∼ 1. Moreover, if f > 0, λ1+ < 0

when zre closes to zero, then the helix given by Γ1 is also unstable in zre ∼ 0.

From Eq. (42), we find that if a3 > a1 and f > 0, when f and a3 are both small,

the zre is in general a two-valued function of Γ, and the two branches are separated

by a minimum torque, Γm (with zre = zmre), as shown in the curve (a) of Fig. 2

and the solid line of Fig. 3. However, we find that the upper part with zre > zmre
and dΓ/dz > 0 has always a higher energy than the part with zre < zmre under the

same Γ, so the upper part is unstable, and the stability analysis using S ′ gets the
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Fig. 2. Typical extension-torque relation of a helix under constant force. The parameters are
(a) ω0 = 0.1, κ0 = 1, a1 = 1, a3 = 1.5 and f = 0.2. (b) The same as (a) except for f = 1.
(c) The same as (b) except for a3 = 10. The left segment of each curve is not plotted since the
corresponding shape is unstable. The dotted lines indicate the unstable regime. Γ has the same
units as a1κ0.

Fig. 3. Energy versus torque Γ for a helix corresponds to Fig. 2. The solid line corresponds to
curve (a) in Fig. 2, the dashed line corresponds to curve (b) in Fig. 2, the dotted line corresponds
to curve (c) in Fig. 2. The units of energy per unit length are those of a1κ2

0
, while for Γ they are

those of a1κ0.

same conclusion. Therefore, in fact the zre of right segment decrease monotonically

with increasing Γ, so that no jump in zre can occur. It also suggests that a helix

is prohibited in large zre. Increasing f makes the zre decrease monotonically with

increasing Γ, as shown in the curve (b) of Fig. 2 and dashed line of Fig. 3. Large a3

and f may lead to a jump or collapse in zre, as shown in the curve (c) of Fig. 2 and

the dotted line of Fig. 3. In this case, zre decreases with increasing Γ until a local

maximum Γ, in which the zre may collapse with further increase in Γ. A hysteresis
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Fig. 4. Typical extension-torque relation of a helix under constant force. The parameters in the
curve (a) are ω0 = 0.2 and κ0 = 1, a1 = 1, a3 = 2 and f = −0.1. The parameters in the curve
(b) are the same as (a) except for a3 = 15. The left segment of each curve is not plotted since the
corresponding shape is unstable. The dotted lines indicate the unstable regime. Γ has the same
units as a1κ0.

may also be observed if Γ decreases from a large value. From stability analysis using

S′, we find again that the regime with dΓ/dz > 0 is always unstable.

If a3 > a1 and f < 0, we find that there is no sharp jump in zre. When a3

and ω0 are both small, zre is a single-valued (but not monotonic) function of Γ,

as shown in the curve (a) of Fig. 4. When a3 is large but ω0 is small, the zre of

the right segment is a two-valued function of Γ with a minimum torque, Γ1m (and

zre = zmre), as shown in the curve (b) of Fig. 4. However, the part with zre > zmre has

always a lower energy so that the part with zre < zmre is in fact inaccessible. The

stability analysis using S ′ supports this conclusion again. Therefore, zre is again a

single-valued (but not monotonic) function of Γ.

If a1 > a3 and f > 0, when f is small, the zre of the right segment is again a

two-valued function of Γ, as shown in the curve (a) of Fig. 5. However, we find that

the part with zre > zmre has always a higher energy than the part with zre < zmre
with the same value of Γ, and so is unstable. Therefore, in this case, the zre value

of the right segment is in fact a single-valued (but not monotonic) function of Γ.

Increasing f makes the zre value of the right segment a monotonic function of Γ,

as shown in the curve (b) of Fig. 5.

If a1 > a3 and f < 0, and when ω0 is small or under large |f |, the zre value of

the right segment becomes a two-valued function of Γ, as shown in the curve (c) of

Fig. 5, but the part with zre < zmre has in general a higher energy than the part with

zre > zmre, and so is unstable. Hence, the zre value of the right segment is in fact a

monotonic function of Γ. A stability analysis using S ′ supports this conclusion.

The relationship between zre and Γ with fixing f can be summarized in Table 1.

We find that negative torque tends to make the helix unstable, and when a3 > a1,
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Fig. 5. Typical extension-torque relation of a helix under constant force. The parameters in (a)
are ω0 = 0.2, κ0 = 1, a1 = 5, a3 = 1 and f = 0.1. The parameters in (b) are: ω0 = 1.2, κ0 = 1,
a1 = 15, a3 = 1 and f = −0.5. The parameters in (c) are the same as (b) except for f = −2.
The left segment of each curve is not plotted since the corresponding shape is unstable. Γ has the
same units as a1κ0.

Table 1. Trends in the variation of zre as a function of Γ with fixing f .

a3 > a1 a3 < a1

f > 0 Monotonically except for large
a3, f and small ω0.

If f is small, single valued but
not monotonic. If f is large,
monotonic.

f < 0 Single valued but not mono-
tonic.

Monotonic.

and ω0 is small, and a3 and f are large, there may be a sharp change in zre because

the zre value can be trivalued functions of Γ. Otherwise the zre values of the helix

are in fact single-valued functions of Γ, and no sharp change in zre can occur.

Whether the behaviors reported in this section are observable in experiments is

an intriguing question. We have to say that due to the special requirements of the

boundary conditions, the relevant experiments may be difficult. The short dsDNA

chain under low torque which can be represented by the WLRC model, and the helix

in a CDLC are likely candidates to observe these predictions. We expect that such

experiments would give some important insights on the elastic properties of these

biopolymers as well as on how appropriate the elastic model is for describing these

biopolymers. For the WLRC model, we do not find a sharp change in the extension.

Furthermore, we find that at the same zre, the helix given by Γ2 has always a lower

energy than that with Γ1, so only the helix given by Γ2 is observable. Moreover, if

a1 > a3 or dΓ/dz > 0, the helix is always unstable so that the extension of a helix

decreases monotonically with increasing torque.
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The more interesting case should be the elastic property of the helix in a CDLC

because we can predict a sharp transition of zre under a moderate stretching force.

Using the parameters given in Sec. 3.3, we find that when f > 0.155×10−9 N, there

will be an abrupt change of extension for a helix under twisting. This follows from

the expression given by Γ2 and it has a similar behavior as shown in curve (c) of

Fig. 2. Moreover, the two-domain (one straight and the other helical) coexistence

is also possible due to the self-crossing in the energy–torque curve. In contrast, in

this case, the helix given by Γ1 is always unstable.

4. Concluding Remarks

In summary, we derive the shape equations in terms of Euler angles for an elastic

rod with spontaneous twist and curvatures and with isotropic bending rigidity. We

find the boundary conditions required to form a helical filament in a force experi-

ment. Due to the stringent requirements of the boundary conditions, we show that

in static state, there is no nearly helical solution in the model in a force experi-

ment except for some special cases. Besides these special cases, the observed nearly

helical shapes should be due to the non-uniformity of the filament, or the effect

of thermal fluctuations which allow the exploration of non-equilibrium structures

near the minimum energy configuration dynamically. We present in detail the closed

form expressions for the helical solution and study the elasticity and stability of the

helical ribbon under different conditions of stretch and twisting. We find that the

extension of a helix may be subject to a one-step sharp transition when using

the torque as the independent variable. This agrees quantitatively with experimen-

tal observations for a stretched helix in a chemically-defined lipid concentrate.39

More specifically, the sharp transition in extension zre in a helix may occur when

the twisting rigidity a3 is larger than the bending rigidity a1 and the spontaneous

twist rate ω0 is small, or when a3 > a1 with both a3 and the applied stretching

force f large, or a1 � a3 but under a compressive force. We predict further that

the extension of the helix in a CDLC may have an abrupt transition if it is subject

to a variable torque and a fixed stretching force. As mentioned above, our results

also show that there is no multiple-step transition of the extension37 for a perfect

helix under stretching. We believe that a multiple-step transition can occur only

for a distorted helix. We also find that a strong negative torque always makes the

helix unstable.

Although the shape equations we derived are very general, we focus on the

simplest helical solutions in this work. In practice, a helical filament under force and

torque may be unstable and transform into other complicated shapes.9,10,43,44 The

conditions of the transition and the relevant stability, both static and dynamical,

of the different shapes are in themselves intriguing issues. In this paper, we do

not consider thermal effects. Due to the self-crossing in the energy-force curve, the

direct effect of the temperature is to make the coexistence of the two domains

(one straight and the other helical) possible, as observed in experiment.39 Another
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important effect is a contraction of the rod due to configurational entropy, which

is analogous to a compressive force for a long rod, and it may make the transition

smoother. Therefore, it is reasonable to expect that the main characteristics of

our work, such as a first-order transition in the extension, should still be observed

even at finite temperature. Moreover, the conformational information so obtained

should be useful even in the case that entropic effects dominate, since energetics

are a crucial component in determining the most likely conformations.
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30. C. Bouchiat and M. Mézard, Phys. Rev. Lett. 80 (1998) 1556.
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