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Abstract. If L is a Lie algebra over R and Z its centre, the natural inclusion Z ↪→
(L∗)∗ extends to a representation i∗ : ΛZ → End H∗(L, R) of the exterior algebra of
Z in the cohomology of L. We begin a study of this representation, by examining
its Poincaré duality properties, its associated higher cohomology operations and its
relevance to the toral rank conjecture. In particular, by using harmonic forms we show
that the higher operations of [9] form a subalgebra of End H∗(L, R), and that they
can be assembled to yield an explicit Hirsch-Brown model for the Borel construction
associated to 0 → Z → L → L/Z → 0.

§1. Introduction

Let L be a finite dimensional real Lie algebra and let Z be its centre. For given
z ∈ Z, the homomorphism x∗ 7→ x∗(z) from L∗ = Λ1L∗ to R extends to a derivation
iz of degree −1 of the algebra ΛL∗. For a = z1 · · · zk set ia = iz1iz2 · · · izk

and extend
by linearity to obtain an algebra homomorphism i : ΛZ → End ΛL∗. Recall that
the differential d on ΛL∗ is the unique derivation of degree 1 extending the transpose
of the Lie bracket [ , ] : Λ2L → L. The cohomology of L (with trivial coefficients)
is defined as H∗L := H∗(ΛL∗, d). It is important to note that if x ∈ L,then
ixd + d ix = 0 if and only if x ∈ Z. This shows that i induces a homomorphism of
algebras i∗ : ΛZ → End H∗L which we will call the central representation, making
H∗L a ΛZ-module. We conjecture that the central representation of every nilpotent
Lie algebra is nontrivial; see Conjecture 5.9.

Every finitely generated ΛZ-module is a direct sum of indecomposables [6], but,
ΛZ being nilpotent, it is not completely reducible. Indeed, all irreducibles have
dimension one. The question of duality seems to be subtle; Poincaré duality may
not exist in a strong sense (see Example 2.10 and Conjecture 2.11). Nevertheless,
one does have a weak form of duality. If we consider the adjoint action of ΛZ on
H∗L determined by an inner product on L, then this together with the central
representation makes H∗L a bi-ΛZ-module. If ∗ : H∗L → H∗L denotes the Hodge
star involution on L, one has:

Theorem 1.1. If L is a unimodular Lie algebra, then H∗L can be written in a
∗-invariant manner as a direct sum of irreducible bimodules for the central repre-
sentation; that is H∗L =

⊕
i Mi ⊕

⊕
j(Nj ⊕ ∗Nj), where the Mi are self-dual;

i.e., ∗Mi = Mi for each i.

The situation regarding the higher cohomology operations is by comparison more
satisfying. Recall that higher operations are usually only defined on subspaces of
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the cohomology, and take values in quotients. In our case, if z ∈ Z , then the
secondary operation (corresponding to the primary operation iz) is defined on the
kernel of i∗z and takes its image in the cokernel of i∗z; explicitly, if izα = dβ, then
the corresponding secondary operation, evaluated on [α], is [izβ], which a priori,
is only defined modulo the image of i∗z. As a consequence, there are ambiguities
when one attempts to compose higher operations. We avoid this by choosing an
inner product on L and identifying H∗L with the space H of harmonic forms on L,
as has been done for example in a different context in [10] and [11]. This enables
one to define the higher operations naturally as linear maps in End H, and has the
added advantage that the operations are given by explicit formulas involving the
Green’s function of the associated Laplacian. In this way, for each element s of the
polynomial ring S = R[ξ1, . . . , ξdim Z ], we define an associated higher cohomology
operation δs ∈ End H, and the map s 7→ δs is linear. The algebra generated
by the maps δs enjoys a form of Poincaré duality similar to that of Theorem 1.1
(see Corollary 3.3 and the subsequent remark). Moreover, the operators δs can be
assembled into a differential δ on S ⊗ H. The following theorem is the main result
in the paper (see Section 3 for more details):

Theorem 1.2. (S ⊗ H, δ) is a Hirsch-Brown model for the Borel construction
associated to the short exact sequence 0 → Z → L → L/Z → 0.

One motivation for this study is Steve Halperin’s Toral rank conjecture (TRC)
[Ha]. The toral rank r of a manifold is the largest rank of a torus acting freely on
it, and the TRC states that dimH∗(M ;R) ≥ 2r . By analogy with nilmanifolds and
their corresponding nilpotent Lie algebras over Q, the TRC for a Lie algebra L, is:
dimH∗L ≥ 2dim Z [4]. As far as we are aware, this conjecture is open for Lie algebras
over an arbitrary field k, though we will assume k = R throughout this paper. The
TRC for Lie algebras is known to hold for a large class of nilpotent Lie algebras; it
is true for algebras L possessing a grading L = ⊕k

i=0Li, with [Li, Lj ] ⊆ Li+j, such
that Z(L) = Lk [7] (see also [18]). In particular, it is true for nilpotent Lie algebras
of dimension at most 14 [4], for free n-step nilpotent Lie algebras, and for all 2-step
nilpotent Lie algebras (see [4] and [17] for other proofs of this fact).

The central representation enables an approach to the TRC in which the centre
plays a natural role. If the central representation is faithful, then H∗L contains
a copy of the exterior algebra ΛZ and so the TRC holds for L (see Lemma 4.1).
Computer computations using Mathematica show that, at least in low dimensions,
most nilpotent Lie algebras have faithful central representations; in dimension ≤ 7,
there are only a handful of exceptions. As well, there are a number of general
families of algebras having faithful central representations; we give examples in §4.
As we show in some examples in §5, when the central representation is not faithful,
one can often use higher operations to complete a “cube” in H∗L and in this way
establish the TRC for the given algebra. In fact, we have not found an algebra
where the TRC couldn’t be obtained in this manner.

Throughout this paper, we assume that (L, [ , ]) is a unimodular Lie algebra of
dimension n with centre Z.

§2 Duality for Primary Operations

Choose an isomorphism χ : L → L∗ and extend it to an isomorphism ΛL → ΛL∗

as follows: set χ(1) = 1 and for a = x1 · · ·xk, set χ(a) = χ(xk) · · ·χ(x2)χ(x1), and
extend by linearity. While this isn’t an algebra homomorphism, one has χ(ab) =
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(−1)pqχ(a)χ(b) for all a ∈ ΛpL, b ∈ ΛqL. Note that χ determines an inner product
on ΛL∗ for which the spaces ΛpL∗ are mutually orthogonal, and 〈α, β〉 = α(χ−1β)
for all α, β ∈ ΛpL∗. Choose an ordered orthonormal basis y1, . . . , yn for L∗, set
t = y1 · · · yn, and consider the map ∗ : ΛL∗ → ΛL∗ defined by ∗α = iχ−1αt. This is
the standard Hodge star map on ΛL∗; one has ∗ : ΛpL∗ → Λn−pL∗, for all p and if
α is a monomial in the variables y1, . . . , yn, then ∗α is the unique monomial such
that α ∗ α = t. It is well known that ∗ verifies the following [8]:

Lemma 2.1.
(a) ∗∗ = (−1)p(n−p) on ΛpL∗,
(b) 〈α, β〉 = ∗(α ∗ β) for all α, β ∈ ΛpL∗.
(c) 〈∗α, ∗β〉 = 〈α, β〉, for all α, β ∈ ΛL∗. (That is, ∗ is an isometry.)

If ϕ is a map on ΛL∗, let ϕ̄ denote the adjoint of ϕ relative to 〈 , 〉. The following
lemma is a straightforward consequence of Lemma 2.1:

Lemma 2.2. Let ϕ be a linear map on ΛL∗ of degree k.
(a) If ϕ is a derivation (i.e., ϕ(αβ) = (ϕα)β + (−1)k deg(α)αϕβ, for all α, β) and

ϕ̄(t) = 0, then ϕ̄ = (−1)(n−p)(p+k)+1 ∗ ϕ∗ on ΛpL∗.
(b) If ϕ̄ is multiplication on the left by an element of ΛL∗ (i.e., ϕ̄(α) = (ϕ̄1)α for

all α ∈ ΛL∗), then ϕ̄ = (−1)(n−p)(p+k)+k ∗ ϕ∗ on ΛpL∗.

Now recall the representation i : ΛZ → End ΛL∗. For each a ∈ ΛkZ, ia is a
linear map of degree −k. For each a ∈ ΛZ , let µa denote the adjoint of ia. Using
Lemma 2.2, one easily obtains:

Lemma 2.3. µaα = (χa)α = (−1)(n−p)(p+k)+k ∗ ia ∗ α, for all a ∈ ΛkZ, α ∈ ΛL∗.

The following result is a variation on the classical Hodge Decomposition Theorem
[19, Chapter 6]. In our context, its proof is a straightforward exercise in linear
algebra. We state it in some generality as we will use it both on ΛL∗ and H∗L:

Proposition 2.4. If (Ω, 〈 , 〉) is a finite dimensional inner product space and ϕ is
a differential on Ω (i.e., ϕ2 = 0), then for the Laplacian ∆ϕ := ϕϕ̄ + ϕ̄ϕ, one has:

(a) ker∆ϕ = ker ϕ ∩ ker ϕ̄, and one has the following orthogonal decompositions:
(i) Ω = ker ∆ϕ ⊕ im ∆ϕ, (ii) im ∆ϕ = im ϕ ⊕ im ϕ̄, (iii) ker ϕ = ker ∆ϕ ⊕ im ϕ,

(b) ∆ϕ restricts to an isomorphism on both im ϕ and im ϕ̄,
(c) if moreover, Ω is a graded algebra possessing a map ∗ with the properties of

Lemma 2.1, and if ϕ satisfies either of the hypotheses (a) or (b) of Lemma 2.2,
then ∆ϕ commutes with ∗, and thus ∗ restricts to an isomorphism on both ker ∆ϕ

and im ∆ϕ.

The differential d on ΛL∗ is a derivation of degree 1. As is customary, we denote
the adjoint of d by ∂. The hypothesis that L is unimodular is equivalent to the
condition that d : Λn−1L∗ → ΛnL is zero, where n = dim L, and this is equivalent
to the condition ∂t = 0. Thus d verifies the hypothesis of Lemma 2.2(a) and so:

(2.1) ∂ = (−1)n(p+1)+1 ∗ d∗

on ΛpL∗. We denote the Laplacian ∆d simply by ∆ and we denote the kernel
of the restriction of ∆ to ΛpL∗ by Hp. (The Laplacian of free 2-step nilpotent
Lie algebras is examined in [16]). The space H = ⊕Hp is the space of harmonic
forms, and from Proposition 2.4(a)(iii), H ∼= ker d/ im d = H∗L. In particular,
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by Proposition 2.4(c), ∗ induces an isomorphism ∗ : Hp → Hn−p, which yields the
Poincaré duality for H∗L.

Let π : ΛL∗ → H denote the orthogonal projection. By Proposition 2.4(c), ∗
preserves H and im ∆ and so ∗ commutes with π. Notice that H is not always
a subalgebra of ΛL∗, but it can be made into an associative graded-commutative
algebra by composing the product in ΛL∗ with the projection π. We also denote
the restriction of ∗ to H by ∗.

The space H is a natural setting to study the central representation. When H
is given the above algebra structure, the vector space isomorphism H → H∗L is
an algebra isomorphism. Under this isomorphism, the map i∗a induced by ia on
H∗L corresponds to the map πia on H; thus, the central representation i∗ : ΛZ →
End H∗L is isomorphic to the representation πi : ΛZ → End H. Notice that for
a ∈ ΛZ, the adjoint µa of ia in ΛL∗ does not naturally induce a map in H∗L.
However, relative to the inner product inherited by H from ΛL∗, the adjoint of
πia on H is πµa; indeed, for all a ∈ ΛZ, α, β ∈ H, one has 〈πiaα, β〉 = 〈iaα, β〉 =
〈α, µaβ〉 = 〈α, πµaβ〉. Notice that πµ defines a “right action” πµ : ΛZ → End H,
in that πµaπµb = πµba. Also, since π commutes with ∗, Lemma 2.3 gives πµaα =
(−1)(n−p)(p+k)+k ∗πia ∗α, for all a ∈ ΛkZ,α ∈ Hp. In particular, for homogeneous
a ∈ ΛZ, the maps πia are ∗-symmetric in the following sense:

Definition 2.5. We say that a graded linear map ϕ on H∗L is ∗-symmetric if
ϕ̄α = ± ∗ ϕ ∗ α, for all homogeneous α ∈ H∗L.

We now take a slightly more abstract approach, so that we may use the results
of this section again in §3 for the higher operations. Suppose that we have an
associative algebra A and a representation i : A → End H∗L. Let µ : A → End H∗L

denote the corresponding right action, defined by µ(a) = i(a).

Definition 2.6. We say that a graded subspace M of H∗L is
(a) an i-module (resp. a µ-module) if i(A).M ⊆ M , (resp. µ(A).M ⊆ M ).
(b) a bimodule if it is both an i-module and a µ-module,
(c) a ∗-bimodule if it is a ∗-invariant bimodule.

Recall that an i-module (resp. bimodule, resp. ∗-bimodule) M is said to be
irreducible if M has no non-zero proper sub-i-modules (resp. sub-bimodules, sub-
∗-bimodules), and it is indecomposable if it cannot be written as the direct sum of
two non-zero i-modules (resp. bimodules, ∗-bimodules). In fact, one has:

Lemma 2.7. A bimodule (resp. ∗-bimodule) M ⊆ H∗L is irreducible iff it is
indecomposable.

Proof. One direction is obvious. For the other, if N ⊆ M is a bimodule, consider
its orthogonal complement N⊥ in M , relative to the inner product 〈 , 〉. Clearly
M = N ⊕ N⊥ and N⊥ is a bimodule. Moreover, if N is a ∗-bimodule, it follows
from Lemma 2.1 that N⊥ is also a ∗-bimodule. ¤

The next lemma follows easily from Lemma 2.1(a):

Lemma 2.8. Suppose that A is generated as an algebra by elements a for which
i(a) is ∗-symmetric. If M ⊆ H∗L is a bimodule, then ∗M is a bimodule.

We can now give a result which has Theorem 1.1 as an immediate corollary, and
which we will apply again in §3 for the higher operations.
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Theorem 2.9. Suppose i is a representation of an algebra A in H∗L and that A
is generated as an algebra by elements a for which i(a) is ∗-symmetric. Then, H∗L
can be written in a ∗-invariant manner as a direct sum of irreducible bimodules;
that is, H∗L =

⊕
i Mi ⊕

⊕
j(Nj ⊕∗Nj), where the Mi are self-dual; i.e., ∗Mi = Mi

for each i.

Proof. From the proof of Lemma 2.7, H∗L is an orthogonal direct sum of irreducible
∗-bimodules. Let M ⊆ H∗L be an irreducible ∗-bimodule. It suffices to show that
either M is irreducible as a bimodule, or there is an irreducible bimodule N ⊆ M
such that M = N ⊕ ∗N , as ∗-bimodules.

Suppose that N ⊆ M is a proper sub-bimodule. From Lemma 2.8, ∗N is also a
bimodule, and hence the vector space sum N +∗N is a ∗-bimodule and so N +∗N =
M , as M is irreducible as a ∗-bimodule. Moreover, the intersection N∩∗N is also an
irreducible ∗-bimodule, and so either N ∩ ∗N = M or N ∩ ∗N = 0. But the former
case is impossible since N 6= M . Hence M = N ⊕ ∗N and it remains to show that
N is irreducible as a bimodule. Suppose that N contains some non-zero bimodule
Q. Arguing as above, Q ⊕ ∗Q is a non-zero ∗-bimodule and thus Q ⊕ ∗Q = M , as
M is irreducible as a ∗-bimodule. Therefore Q = N , and we are done. ¤

The disappointing aspect of the above result is that irreducible bimodules may
be decomposable as i-modules. We give an abstract example which shows the sort
of phenomenon that can occur:

Example 2.10. Consider the 6 dimensional associative graded-commutative alge-
bra Ω with generators α1 = 1, α2, . . . , α6, of degree 0, 1, 1, 1, 1, 2 respectively, and
defining relations: α2α3 = α4α5 = α6. Choose the inner product for which the
basis {α1, . . . , α6} is orthonormal. Consider the map ∗ defined by α2 7→ α3 7→
−α2, α4 7→ α5 7→ −α4 and ∗ : α1 ↔ α6. It is easy to see that ∗ verifies conditions
analogous to those of Lemma 2.1 (by replacing ΛpL∗ by Ωp). Consider the algebra
A generated by the maps a and b whose non-zero images on the basis elements are
as follows: aα2 = α1, aα6 = α3, bα3 = −α1, bα4 = α1, bα6 = α2 + α5.
We have A ∼= ΛR2. Note that a and b are derivations of degree −1, and they are
∗-symmetric. As an i-module, Ω decomposes as a direct sum of three irreducible
i-modules: Ω = span{α1, α3, α2 + α5, α6} ⊕ span{α5} ⊕ span{α3 + α4}. However,
it is not difficult to show that Ω is irreducible as a bimodule.

As the above example indicates, it is not possible in general to decompose H∗L
as a direct sum of i-modules in a ∗-invariant manner. There is however, an anal-
ogous (conjectured) decomposition for i-modules. Call an i-module M ⊆ H∗L
n.d.-indecomposable if the multiplication is non-degenerate on M but it cannot be
written as a direct sum of two i-submodules, on each of which the multiplication is
still non-degenerate.

Conjecture 2.11. If L is a unimodular Lie algebra, then H∗L can be written as a
direct sum of indecomposable i-modules in the form H∗L =

⊕
i Mi ⊕

⊕
j(Nj ⊕N j),

where each Mi and Nj ⊕N j is n.d.-indecomposable, and the multiplication is trivial
on Nj and N j .

§3 Higher Operations

Recall from Proposition 2.4(b) that the Laplacian ∆ on ΛL∗ restricts to an
isomorphism on im ∆. The Green’s function G : ΛL∗ → im ∆ is the linear function
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which is zero on H and equals (∆ |im ∆)−1 on im ∆. So on ΛL∗ one has:

(3.1) id = π + ∆ G.

It is easy to see that since π and ∆ are self-adjoint, so too is G. Moreover, since ∆
commutes with ∗, d, ∂, π and itself, so too does G.

For z ∈ Z, let Pz = πiz and Qz = ∂Giz. For each element z = (z1, . . . , zk)
of the k-fold Cartesian product

∏
k Z, consider the symmetric multilinear function

z 7→ 1
k!

∑
σ∈Σk

Pzσ1Qzσ2Qzσ3 . . . Qzσk , where Σk denotes the symmetric group. If
S =

∑
k≥0 Sk denotes the symmetric tensor algebra on Z, this defines a linear

function S → End H, s 7→ δs, where we take the map s 7→ δs to be 0 on S0. (Note
that the map s 7→ δs is not a homomorphism of algebras.) Adopting notation
similar to that in [9] and [1], let Z̃∗ be a copy of Z∗ regarded as being in degree
two. Choose a basis {x1, . . . , xm} for Z, let {ξ1, . . . , ξm} be the corresponding dual
basis of Z̃∗, and define an isomorphism χ̃ : Z → Z̃∗ by χ̃(xi) = ξi for all i. We
identify S with the polynomial ring in the variables ξ1, . . . , ξm. So

δ
ξ

i1
1 ...ξim

m
=

1
k!

∑

σ∈Σk

Pyσ1Qyσ2Qyσ3 . . . Qyσk ,

where k =
∑m

j=1 ij and {y1, . . . , yk} = {
i1 times︷ ︸︸ ︷

x1, . . . , x1, . . . ,

im times︷ ︸︸ ︷
xm, . . . , xm}.

Definition 3.1. For s ∈ S, we call δs the higher operation associated to s.

If s is a homogeneous polynomial of degree k > 0, then δs has degree 1 − 2k.
The following lemma follows easily from Lemma 2.3, equation (2.1) and the fact
that G commutes with ∗.

Lemma 3.2. If s is a homogeneous polynomial of degree k > 0, then the adjoint
of δs is δ̄s = (−1)n(p+1)+1 ∗ δs∗.

Now consider the algebra of higher operations: A = (δs | s ∈ S) ⊆ End H. If s is
homogeneous, δs is ∗-symmetric by the previous lemma. Hence Theorem 2.9 gives:

Corollary 3.3. If L is a unimodular Lie algebra, then for the action of the algebra
A of higher operations, the space of harmonic forms H can be written in a ∗-
invariant manner as a direct sum of indecomposable bimodules.

A remarkable feature of the operations δs is that they can be assembled into
a differential, which yields a Hirsch-Brown model for (S ⊗ ΛL∗, D), where D =
d +

∑dim Z
j=1 ξjizj . Define the S-linear function δ on S ⊗R H by setting

δ(α) =
∑

s∈M(S)

(−1)deg(s)+1c(s) sδs(α)

on H, where the sum is taken over the set M(S) of monomials (of degree ≥ 1) in
the variables ξ1, . . . , ξm, and c(s) is the multinomial coefficient:

c(ξj1
1 . . . ξjm

m ) =
( ∑

i ji

j1, . . . , jm

)
.

The sum is finite on any α because |δs| = 1 − 2s < 0, and H<0 = 0. One has:



COHOMOLOGY OPERATIONS FOR LIE ALGEBRAS 7

Theorem 3.5. δ2 = 0.

Proof. We are required to show that for each monomial s,

(3.2)
∑

s1,s2∈M(S)
s=s1s2

c(s1)c(s2)δs1δs2 = 0.

Note that these relations are analogous to those in Remark 1.3 of [1]. We first prove
that (3.2) holds for all s of the form s = ξk, with ξ ∈ Z̃∗ and k ≥ 1. We will use:

Lemma 3.6. For all z ∈ Z, the following hold on ΛL∗:
(a) Pz = iz + Qzd − dQz,
(b) Qi

zPQj
z = Qi

zizQ
j
z + Qi+1

z dQj
z − Qi

zdQj+1
z , for all i, j ≥ 0,

(c)
∑k−1

j=1 Qj−1
z PQk−j−1

z = izQ
k−2
z +Qk−1

z d−dQk−1
z , for all k ≥ 2, (where Q0

z := id).
(d)

∑k−1
j=1 PzQ

j−1
z PzQ

k−j−1
z = PzQ

k−1
z d, for all k ≥ 2.

Proof of Lemma 3.6. By equation (3.1), Pz = (id −∆ G)iz and so

Pz = iz − d∂Giz − ∂dGiz = iz − dQz + ∂Gizd = iz − dQz + Qzd,

which gives (a). Thus,

Qi
zPzQj

z = Qi
z(iz + Qzd − dQz)Qj

z = Qi
zizQ

j
z + Qi+1

z dQj
z − Qi

zdQj+1
z ,

which gives (b). By summing, (b) gives

k−1∑

j=1

Qj−1
z PQk−j−1

z =
k−1∑

j=1

Qj−1
z izQ

k−j−1
z + Qk−1

z d − dQk−1
z .

Thus, as Qziz = ∂Giziz = 0, we obtain (c). Multiplying (c) on the left by P and
using the facts that Pziz = πiziz = 0 and Pzd = πizd = −πdiz = 0, one obtains
(d). ¤

Returning now to the proof of the theorem, let z ∈ Z and set ξ = χ̃(z). When
restricted to H, equation (d) of the above lemma gives

∑k−1
j=1 PzQ

j−1
z PzQ

k−j−1
z = 0.

This yields:

(3.3)
k−1∑

j=1

δξjδξk−j = 0,

which establishes (3.2) for s = ξk. We now polarize (3.3); let z =
∑m

i=1 tixi and
ξ =

∑m
i=1 tiξi, where {x1, . . . , xm} is the basis for Z chosen above, and t1, . . . , tm

are real variables. From (3.3):

0 =
k−1∑

j=1

δξjδξk−j =
k−1∑

j=1

δ(
∑ m

i=1 tiξi)j δ(
∑ m

i=1 tiξi)k−j

=
k−1∑

j=1

∑

i1+···+im=j
j1+···+jm=k−j

c(ξi1
1 . . . ξim

m )c(ξj1
1 . . . ξjm

m )(ti1+j1
1 . . . tim+jm

m )δ
ξ

i1
1 ...ξim

m
δ
ξ

j1
1 ...ξjm

m
.
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Regarding this as a polynomial in t1, . . . , tm, the coefficient of s = ξl1
1 . . . ξlm

m is:

0 =
∑

0≤i1≤l1
...

0≤im≤lm

c(ξi1
1 . . . ξim

m )c(ξl1−i1
1 . . . ξlm−im

m )δ
ξ

i1
1 ...ξim

m
δ
ξ

l1−i1
1 ...ξlm−im

m

=
∑

s1,s2∈M(S)
s=s1s2

c(s1)c(s2)δs1δs2 ,

as required. This completes the proof of the theorem. ¤
We can now prove Theorem 1.2. Consider the differential complex (S ⊗ΛL∗,D),

where D is S-linear and is defined on ΛL∗ by D = d +
∑dim Z

j=1 ξjizj . We have:

Theorem 3.7. There is a map of differential complexes (S⊗H, δ) → (S⊗ΛL∗, D)
which induces an isomorphism in cohomology. In particular, H(S⊗H, δ) ∼= H(L/Z)
and so H(S ⊗ H, δ) is independent of the basis and the inner product used in the
definition of δ.

Proof. Consider the linear function ζ : S → End H, defined on monomials s =
ξi1
1 . . . ξim

m by:

ζ : s 7→ ζs =
1
k!

∑

σ∈Sk

Qzσ1Qzσ2Qzσ3 . . .Qzσk

where k =
∑m

j=1 ij , {z1, . . . , zk} = {
i1 times︷ ︸︸ ︷

x1, . . . , x1, . . . ,

im times︷ ︸︸ ︷
xm, . . . , xm}, and ζ1 := id. Now

define an S-linear map φ : S⊗H → S⊗ΛL∗ by φ = id |H+
∑

s∈M(S)(−1)deg(s)c(s) sζs,
where M(S) and c(s) are as before. One has:

φδ =


id |H +

∑

s1∈M(S)

(−1)deg(s1)c(s1) s1ζs1




∑

s2∈M(S)

(−1)deg(s2)+1c(s2) s2δs2

and

Dφ =


d +

m∑

j=1

ξjizj





id |H +

∑

s∈M(S)

(−1)deg(s)c(s) sζs


 ,

both of which we regard as a polynomial in ξ1, . . . , ξm with values in End H. The
constant term of φδ − Dφ is −d id |H = 0. From Lemma 3.6(a), Pzi = izi + Qzid −
dQzi and hence δξi = iz1 + ζξid − dζξi Hence the first order term of φδ − Dφ is:

m∑

i=1

δξi −


−d

m∑

i=1

ζξi +
m∑

j=1

ξjizj


 =

m∑

i=1

(
δξi + dζξi − izj

)
=

m∑

i=1

ζξid,

which is zero in End H. In order to complete the proof that φδ = Dφ, it remains
to show that

(3.4) c(s)δs +
∑

s1,s2∈M(S)
s=s1s2

c(s1)c(s2)ζs1δs2 = −c(s)dζs +
m∑

j=1
ξj |s

c(s/ξj)izj ζs/ξj
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for all s ∈ M(S) for degree ≥ 2. From Lemma 3.6(c), for all z ∈ Z and k ≥ 2, one
has

∑k−1
j=1 Qj−1

z PQk−j−1
z = izQ

k−2
z + Qk−1

z d − dQk−1
z ; that is, for ξ = ζ∗(z),

(3.5) 0 =
k−1∑

j=1

ζξj−1δξk−j − izζξk−2 − ζξk−1d + dζξk−1 .

Polarizing (3.5), in the same way that we polarized (3.3) in the proof of Theorem
3.5, one obtains:

(3.6) c(s)(δs − ζsd + dζs) +
∑

s1,s2∈M(S)
s=s1s2

c(s1)c(s2)ζs1δs2 −
m∑

j=1
ξj|s

c(s/ξj)izjζs/ξj
= 0.

When restricted to End H, one has c(s)ζsd = 0 and so (3.6) gives (3.4); so φ is a
differential map.

We now show that φ induces an isomorphism in cohomology. To see this, note
that the complexes (S ⊗ H, δ) and (S ⊗ ΛL∗,D) both have bounded decreasing
filtrations determined by the polynomial degree on S and moreover, φ is a morphism
of filtered differential graded modules. In the spectral sequences of the complexes,
one obviously has E1(S ⊗ H, δ) = E1(S ⊗ ΛL∗, D) = S ⊗ H, and the map induced
by φ between the two E1 terms is the identity. Thus, by the comparison theorem
(see [13, Theorem 3.2]), φ induces an isomorphism H(S ⊗ H, δ) → H(S ⊗ ΛL∗,D).

Lastly, consider the inclusion of complexes (ΛU, d) → (S ⊗ ΛL∗,D), where we
have written ΛL∗ = ΛU ⊗ ΛZ∗ with d(U ⊕ Z∗) ⊆ ΛU . Filtering by word length
in ΛU , it is straightforward to see that this induces an isomorphism between the
E1 terms of the associated spectral sequences (both are ΛU ) and so H(ΛU, d) ∼=
H(S ⊗ ΛL∗, D) ∼= H(L/Z) and thus H(S ⊗ H, δ) ∼= H(L/Z), which is independent
of the basis and the inner product. ¤

Thus H(S ⊗H, δ) is finite dimensional, and the following proposition shows that
while all the primary operations may be trivial (see Examples 5.6 and 5.7), suffi-
ciently many higher operations must be non-zero in order to render the cohomology
finite dimensional:

Proposition 3.8. For all s ∈ S of degree 1, there exists l > 0 such that δsl is
non-zero.

Proof. Consider ξj and let i > 0 be an integer such that ξi
j is zero in the cohomology

H(S ⊗ H, δ); that is, ξi
j = δα for some α ∈ S ⊗ H, say α =

∑
s∈M(S) sαs with

αs ∈ H for all s ∈ M(S). Then clearly there exists k < i such that δξi−k
j

αξj 6= 0.
In particular, δξi−k

j
6= 0. Thus, for each j ∈ {1, . . . ,dimZ}, there exists l > 0 such

that δξj is non-zero. Since this holds for any basis {ξ1, . . . , ξm} of Z̃∗, and since the
definition of δs is independent of the choice of basis, we conclude that for all s ∈ S
of degree 1, there exists l > 0 such that δsl is non-zero. ¤

§4. Examples with Faithful Central Representations

As usual, by an orientation for Z, we mean a choice of a non-zero element
ζ ∈ Λdim ZZ. The connection with the TRC is given by the straightforward but
key
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Lemma 4.1. The central representation i∗ is faithful if and only if there exists
α ∈ H∗L such that i∗ζα 6= 0 for any orientation ζ. Moreover, if i∗ is faithful, L
satisfies the TRC.

Proof. The “only if ” part of the first statement is clear, so suppose there is such an
α, and choose an orientation ζ. By the Poincaré duality of ΛZ, for any 0 6= β ∈ ΛZ,
there exists δ ∈ ΛZ with βδ = ζ , so that 0 6= i∗ζα = i∗βi∗δα. In particular, i∗β 6= 0,
so i∗ is injective. By the first part, choose α ∈ H∗L, an orientation ζ for Z with
i∗ζα 6= 0 and consider the linear map eα : ΛZ → H∗L, eα : β 7→ i∗βα. Exactly as
above, the Poincaré duality of ΛZ shows that eα is injective. Indeed this shows
that i∗(ΛZ)α is an indecomposable ΛZ-submodule of H∗L which is isomorphic to
ΛZ∗, establishing the result. ¤

If α ∈ H∗L is such that i∗ζα 6= 0 for any orientation ζ, we say that the central rep-
resentation is faithful on α. In this section we give a number of examples of families
of nilpotent Lie algebras whose central representations are faithful. These examples
all use the following idea: let p : Λ(L/Z)∗ → ΛL∗ be the injection induced by the
projection L → L/Z, and let ζ and ζ∗ be orientations for Z and Z∗ respectively.
If [β] ∈ H∗(L/Z) satisfies [p(β)] 6= 0, and if dα = 0 in (ΛL∗, d), where α = ζ∗p(β),
then the central representation is faithful on [α], since i∗ζ [α] = [p(β)] 6= 0.

In the following examples, the bases will be chosen to be orthonormal, and their
dual bases will as usual be denoted using ∗′s.

Example 4.2. Lie algebras possessing a codimension 1 Abelian ideal. These
algebras are all of the form span{x, yi,j | [x, yi,j] = yi,j+1, i = 1, . . . , k, j =
1, . . . , ni}; see [2] for a description of their cohomology. Here the centre is span{y∗

i,ni
|

i = 1, . . . , k} and has dimension k. Their central representations are faithful on the
harmonic (k + 1)-form α = x∗y∗

1,n1
. . . y∗

k,nk
.

Example 4.3 Algebras of truncated upper triangular matrices. Choose
k, n ∈ N with k < n and consider the algebra tn,k of n×n (strictly) upper triangular
matrices with k “off-diagonals”. Let xi,j denote the n ×n matrix with 1 in the ith-
row and (i+ j)th-column, and 0’s elsewhere. So tn,k has basis {x1,j , . . . xn−j,j | 1 ≤
j ≤ k} and relations [xi,j, xl,m] = δi+j,lxi,j+m, for all i < l, 1 ≤ j, m ≤ k, where δ
is the Kronecker delta. The centre of tn,k is span{xi,k | 1 ≤ i ≤ n − k} and has
dimension n − k. Let α be the product of the 1-forms x∗

i,j for all 1 ≤ j ≤ k and
[i] ≥ k− j, where [i] ∈ {0, . . . , k−1} denotes the remainder of i on division by k. A
computation shows that α is closed. Consider the orientation ζ∗ = x∗

1,k . . . x∗
n−k,k

of Z∗, and let β = iζ∗α; note that β is the product of the 1-forms x∗
i,j where j < k

and [i] ≥ k − j. It is not difficult to verify that β is not exact, and thus the central
representation is faithful on [α]. We remark that tn,k has an obvious grading (for
which x∗

i,j is in level j), and the TRC for tn,k can also be deduced from [7].

Example 4.4 Algebras of the form K/Z(K) with one dimensional cen-
tres. As shown in [5], a Lie algebra L is of the form K/Z(K) for some algebra
K if and only if the restriction i∗ : Z(L) → Hom(H2L,H1L) of the central repre-
sentation to H2L is injective. In this case, the central representation is non-trivial
(provided Z(L) 6= 0), and it is faithful if Z(L) has dimension 1. Well known exam-
ples of nilpotent Lie algebras of this kind include:
1. The standard filiform algebra fm = span{x, y1, . . . , ym | [x, yi] = yi+1}, for which

Z(fm) = span{ym} and fm = fm+1/Z(fm+1).
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2. The truncated nilpotent algebra of polynomial differential operators on the real
line: sn = span{xi d

dx | 2 ≤ i ≤ n + 1}, for which Z(sn) = span{xn+1 d
dx} and

sn = sn+1/Z(sn+1).
When Z(L) has dimension 1, the map i : Z(L) → Hom(H2L, H1L) is injective

precisely when there exists Ω ∈ H2L such that the evaluation map Ω: Z(L)⊗L → R
is non-zero. Such a class Ω is called an affine cohomology class in [3]. In summary,
one has: if a Lie algebra has a centre of dimension 1 and it possesses an affine
cohomology class, then its central representation is faithful.

The algebras fn and sn are all filiform; that is, the possess an element of maximum
possible nilpotency class. Filiform algebras all have centres of dimension 1, but
while many possess an affine cohomology class, some do not [3].

The Heisenberg algebra hm = span{xi, yi, z | i = 1, . . . ,m, [xi, yi] = z} has a
centre of dimension 1 but for m > 1 it is not of the form K/Z(K). Nevertheless, its
central representation is faithful; i∗z is zero except from Hm+1hm → Hmhm, where
it is an isomorphism (this is clear from the explicit computation of the cohomology
of hm given in [14], and is also proven in [12]).

§5 Examples where the Central Representation is not Faithful

Recall that a central extension 0 → C −→ L −→ K → 0 of a Lie algebra K

is determined up to isomorphism by a linear map C∗ t−→ H2K . In several of the
examples below, we will consider the canonical central extension determined by
H2K

t=id−−−→ H2K ; in this case, we will call L the full central extension of K, and
denote it F(K).

Example 5.1. Consider the 5-dimensional algebra F(h1) = span{x, y, w, z1, z2 |
[x, y] = w, [x,w] = z1, [y, w] = z2}; this is the free 3-step nilpotent Lie algebra on 2
generators (also denoted F2(3)). It is a 2-dimensional central extension of h1, with
centre Z = span{z1, z2}, and its central representation is not faithful. Its Λ(z1, z2)-
module structure is depicted in the diagram below (in this and subsequent diagrams

in this paper, arrows marked [x∗z∗
1 ]

i∗
z1−−→ [x∗], for example, are to be interpreted to

mean 0 6= i∗z1
[x∗z1

∗] ∈ span{[x∗]}):

[x∗y∗w∗z∗
1z2

∗]

[x∗w∗z∗
1z2

∗]
i∗
z2

vvmmmmmm i∗
z1

**VVVVVVVV
[y∗w∗z∗

1z2
∗]

i∗
z2

ttiiiiiiii i∗
z1

((RRRRRR

[x∗w∗z∗
1 ] [x∗w∗z2

∗] = [y∗w∗z∗
1 ] [y∗w∗z2

∗]

[x∗z∗
1 ]

i∗
z1

((QQQQQQQQ [x∗z2
∗ + y∗z∗

1 ]

i∗
z2ttiiiiiiiiiii

i∗
z1 **VVVVVVVVVVV

[y∗z2
∗]

i∗
z2

vvllllllll

[x∗] [y∗]

1

Under the algebra A of higher operations, H∗F(h1) decomposes as the direct



12 GRANT CAIRNS AND BARRY JESSUP

sum of two (dual) irreducible bimodules; here is one of the them:

[x∗y∗w∗z∗
1z∗

2 ]
δξ2

2
δξ2

2

δξ1ξ2

[x∗z∗
1 ]

δξ1 ##GGG
GGG

[x∗z∗
2 + y∗z∗

1 ]

δξ2xxpppppppp

δξ1 &&NNNNNNNN
[y∗z∗

2 ]

δξ2{{wwwww

[x∗] [y∗]

Example 5.2. The algebra 3, 5, 7B from Seeley’s classification ([15]) of nilpotent
Lie algebras of dimension 7 is

span{u, v, w, x, z1, z2, z3 | [u, v] = w, [u, w] = z1, [v, w] = z2, [u, x] = z3},

which has centre span{z1, z2, z3}. The central representation is not faithful, but
the cohomology contains the following “cube” (which is an i-module, but not a
bimodule), where the lower three edges are secondary operations:

[u∗w∗z∗
1z∗

2z∗
3 ]

δξ1

tthhhhhhhhhhhhhh
δξ2

δξ3 &&NNNNNNNN

•

δξ2
δξ3

11
11

11
11

1 •
δξ1

wwnnnnnnnnnnnnnnnnnnnn

δξ3

!!B
BB

BB
BB

BB
BB

B •

δξ2
δξ1

uukkkkkkkkkkkkkkkkkkkkkkkkk

•

δξ1ξ3
11

11
11

11
1 •

δξ1ξ2

•

δξ2
1

uukkkkkkkkkkkkkkkkkkkkkkkkk

1

Example 5.4. The Heisenberg algebras hm are examples of algebras with higher
operations of arbitrary high degree; here Z(hm) = span{z}, and in H∗hm the
operations δξi are non-zero for 1 ≤ i ≤ m. Details are given in [12].

Example 5.5. Consider the 6-dimensional nilpotent Lie algebras:

L1 = span{u, v,w, x, y, z |[u, v] = w, [u, w] = x, [u, x] = y,

[v, y] = z, [w,x] = −z},

L2 = span{u, v,w, x, y, z |[u, v] = w, [u, w] = x, [u, x] = y,

[v,w] = y, [v, y] = z, [w,x] = −z}.

L1 and L2 are not isomorphic since their quotients L1/Z(L1) ∼= f4 and L2/Z(L2) ∼=
s5 are not isomorphic. However, it is easy to see that the cohomology spaces H∗L1
and H∗L2 are isomorphic as A-modules, where A = (δs | s ∈ S) is the algebra
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of all higher operations. It follows from [1] that the complexes ΛL∗
1 and ΛL∗

2 are
homotopic as differential ΛZ-modules, and in this case one can construct such a
homotopy equivalence by first defining it from H(L1)/A+H(L1) → ΛL∗

2, extending
as an A-module map, and then pre-composing with πL1 . Furthermore, H∗L1 and
H∗L2 inherit an algebra structure from ΛL∗

1 and ΛL∗
2 respectively, and it is not

difficult to show that there is an A-module isomorphism H∗L1 → H∗L2 which is
also an algebra isomorphism.

Example 5.6. Consider the 7-dimensional nilpotent Lie algebras:

L1 = span{y1, . . . , y7 |[y1, yi] = yi+1, for i = 1, . . . , 6,

[y2, y5] = y7, [y3, y4] = −y7},

L2 = span{y1, . . . , y7 |[y1, yi] = yi+1, for i = 1, . . . , 6,

[y2, y3] = y6, [y2, y4] = y7, [y2, y5] = y7, [y3, y4] = −y7}.

(These are respectively algebras 1, 2, 3, 4, 5, 7C and 1, 2, 3, 4, 5, 7F of [15].) For both
algebras, Z = span{y7}. One finds that H∗L1 and H∗L2 are isomorphic as ΛZ-
modules, but not as A-modules, where A = (δs | s ∈ S) is the algebra of all higher
operations. Indeed, δξ3 ≡ 0 for L1, while δξ3 6≡ 0 for L2.

Example 5.7. Consider the following semi-direct product of sl2(R) and h1:

L = span{u, v,w, x, y, z |[u, v] = w, [u, w] = −2u, [v,w] = 2v,

[u, y] = x, [v, x] = y, [w, x] = u, [w, v] = −y, [x, y] = z}.

This algebra is unimodular and non-solvable; its centre is span{z}. The Betti
numbers of L are 1, 0, 0, 2, 0, 0, 1, and so the central representation is completely
trivial, as are the higher operations δs for polynomials s of (polynomial) degree
≥ 3. There are only two non-zero secondary operations: δξ : [u∗v∗w∗x∗y∗z∗] 7→
−1

2 [u∗v∗w∗] and δξ : [x∗y∗z∗] 7→ − 1
2 , which give 2 dual irreducible bimodules of

dimension 2.

Example 5.8. The 7-dimensional solvable Lie algebra

L = span{w,xi, yi, zi |[xi, yi] = zi, [w, xi] = i xi, [w, yi] = −i yi, for i = 1, 2}

has centre Z = span{z1, z2}. One finds that H∗L has dimension 8, the central
representation is trivial, as are the higher operations δs for polynomials s of de-
gree ≥ 3. The non-zero secondary operations give 2 dual irreducible bimodules of
dimension 4:

•
δξ2

2
δξ2

1

==
==

==
==

==
==

•

δξ2
2

δξ2
1 ==

==
==

==
==

==

•
δξ2

1

==
==

==
==

==
==

•
δξ2

2•

δξ2
1 <<

<<
<<

<<
<<

< •

δξ2
2

•

1
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As we saw in Proposition 3.8, every Lie algebra has non-trivial cohomology
operations, of some sufficiently high degree. In the previous two examples, which are
non-nilpotent, the central representation (i.e., the primary operations) is completely
trivial. We conclude with:

Conjecture 5.9. Every nilpotent Lie algebra has a non-trivial central representation.
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