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Département de Mathématiques

Université d’Angers
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Abstract

Explicit formulae for rational L-S category (cat0) are rare, but some are available
for a class of spaces which includes homogeneous spaces G/H when H is a product of
at most 3 rank 1 groups, and rank G − rank H ≤ 1. We extend the applicability of
these formulae to the case when rank G = 5 and H is a 4−torus or (SU2)4. With a
Sullivan minimal model as data, implementing the formula requires the selection of a
regular subsequence of length 4 from a sequence f1, . . . , f5 of homogeneous polynomials
in 4 variables satisfying

dimQ[x1, . . . , x4]/(f1, . . . , f5) < ∞.

Such subsequences are readily obtainable, and the ease of computation is in contrast
to most available methods for determining rational L-S category, which usually involve
both upper and lower bounds and a good measure of luck.

The proof of the formula is a pretty application of ideal class groups in algebraic
topology. We also present some examples to illustrate our result.

1 Introduction

The Lusternik-Schnirelmann [LS] category catT of a topological space T is the least number
of contractible (in T ) open sets need to cover T , less one. It is a subtle homotopy invariant
which is usually difficult to compute. The difficulties are attenuated somewhat by localizing
at the rationals, where Felix and Halperin [FH] used Sullivan models [S] to provide a tractable
algebraic characterization of cat0 T := catTQ, the L-S category of the rationalization TQ of
a simply connected CW complex.

∗The work of this author was partially supported by NSERC.
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Moreover, Félix, Halperin and Lemaire [FHL] recently established a long-standing con-
jecture that the rational L-S category of an elliptic space (i.e. where dim π∗(T ) ⊗ Q +
dim H∗(T ;Q) < ∞) is the same as the rational Moore – Toomer invariant, e0T , which is
the largest integer p such that in the spectral sequence of Milnor and Moore, Ep,?

∞ T 6= 0 [T].
This reduces the calculation of cat0T to the problem of finding a “longest” representative
of the top cohomology class. However, even if one has (rationally) complete algebraic data
such as a Sullivan minimal model, considerable obstacles remain, and much effort continues
to be spent in obtaining estimates. (See [C],[CFJP],[CJ],[GJ], [JS] and [J3], for example.)

Here we consider the case motivated by the example of a homogenous space G/H , where
G is a compact, connected Lie group and H is either an embedded n−torus or (SU2)n. The
value of cat0 = e0 may be found as follows. If X is a graded vector space, let ΛX denote
the (graded-commutative) algebra Q[Xeven] ⊗ΛXodd, where the second factor is an exterior
algebra). A Sullivan minimal model for G/H is of the form

(Λ(x1, ..., xn, y1, ...yr), d)(1)

where |xi| = 2 if H is an embedded n−torus or |xi| = 4 if H = (SU2)n, the yj are of
odd degree, r is the rank of G and dyj is a homogeneous polynomial in the cocyles xi

[GHV, Chp. XI]. It is a model of G/H in the sense that (in particular), H∗(G/H ;Q) ∼=
H∗(Λ(x1, ..., xn, y1, ...yr), d) as algebras. If ΛkX denotes the subspace generated by mono-
mials of word length k, then for any class β ∈ H∗(G/H), define the length of β to be

e0(β) = max
{
k | ∃ b ∈ Λ≥k(x1, ..., xn, y1, ...yr) with [b] = β

}
,

Then, e0(G/H) is simply the maximum of all the lengths of non-zero cohomology classes
[FH], and since H∗(G/H) is a Poincaré duality algebra, it is clear that this occurs for the
top class α, whose representatives lie in Q[x1, ..., xn] ⊗ Λr−n(y1, ...yr) [GHV, p. 78].

In the special case when rank H = rank G, i.e., r = n, all representatives of α are in the
subalgebra Λ(x1, ..., xr), and so for degree reasons they will all have the same length, which
we can compute by noting [H] that dim G/H = n(1 − d) +

∑n
i=1 |yi|:

e0(G/H) =
1
d

dim G/H = −n +
∑

i

Di,(2)

where Di = |yi|+1
2 is the degree of the polynomials dyi, and d = 2 or 4 respectively when

H is an n− torus or (SU2)n. In particular, when rank H = rank G, e0(G/H) depends only
on the graded vector space π∗(G/H) ⊗ Q, i.e., the degrees of the generators in a minimal
model1.

When rank H is not maximal, the situation is more complicated, since then the top class
has its representatives in Q[x1, ..., xn] ⊗ Λr−n(y1, ...yr) and, as the degrees of the yj may not
be the same, different representatives of α may have different lengths2. We can however

1This simplicity is not totally unexpected, since in this case, G/H is a formal space, meaning that its
complete rational homotopy type (and hence its model) is determined by the algebra H∗(G/H).

2Suppose dy1 = x2
1, dy2 = x4

2 and dy3 = x1x
3
2. Then a = x1x

3
2y3 − x5

2y1 and a′ = x2
1x2y2 − x5

2y1 are
representatives of the top class of different lengths.
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always assume that some subsequence dyi1 , ..., dyin is a regular sequence in the polynomial
ring Q(x1, ..., xn)3[J1, Lemma 3.3].

In particular, when r = n + 1, there is an j such that dy1, . . . , d̂yj , . . . , dyn+1 is a regular
sequence, and dyj is a zero divisor in the quotient Q[x1, ..., xn]/(dy1, . . . , dyj−1). One may
also assume that |yi| ≤ |yi+1| for all i. Straightforward attempts [J1] to compute e0 in
this case lead one to pose a natural algebraic question (conjecture 2.3), which implies the
following formula for e0.

Conjecture 1.1 Suppose a space T has a minimal model of the form (1), but where the
xi may now have any (fixed) even topological degree. Let Di denote the degree of dyi as a
polynomial 4. If dy1, . . . , d̂yj, . . . , dyr is a regular sequence in Q[x1, ..., xr−1] and dyj is a zero
divisor in the quotient by (dy1, . . . , dyj−1), then

e0(T ) = 2 − r +
∑

i 6=j

Di.(3)

This is known [J1] to be true when j = 1, 2, r − 1 or r, and hence in general for r ≤ 4.

The principal result of this note is

Theorem 1.2 Conjecture 1.1 holds for j = 3 (and hence for r ≤ 5) when dy1 or dy2 has a
factor of degree 2.

In the case of a homogeneous space G/H , one knows that dy1 is of degree 2, since |y1| = 3
and dy1 is essentially the restriction of the Killing form of G to H [GHV, Chp. XI].

This paper is organized as follows. In the next section we establish that conjecture 1.1
follows from the purely algebraic conjecture 2.3 below. We then deduce theorem 1.2 from
proposition 2.6, which yields some special cases of 2.3. In section 3, we give the proof of
proposition 2.6, and in the last section we give further evidence for conjecture 2.3 and end
with two examples.

2 Reduction to commutative algebra

In the sequel, we will let r = n + 1 for convenience. Since all the above formulae remain
valid if one works over C rather than Q [J2, Thm 4], we shall do this henceforth, and will
denote C[x1, . . . , xn] by R.

As above, we suppose that a space T has a minimal model of the form
3This is not always possible when the degrees of the xi are not the same, as in the example

Λ(x1, x2, y1, y2, y3; d) with |x1| = 6, |x2| = 8, dy1 = x1(x4
1 + x3

2), dy2 = x2(x4
1 + x3

2) and dy3 = x3
1x

2
2,

where the computation of e0 is more difficult. Estimates from [CJ] show that e0 ≥ 8.
4We may assume that each dyi 6= 0 because e0 is additive on products [T].
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(ΛX ⊗ ΛY ; d) = (R ⊗ Λ(y1, . . . , yn+1); d),

where dyi = fi ∈ R and |fj | ≤ |fj+1|. We bigrade this model by defining (R ⊗ ΛY )n
j :=

(R ⊗ ΛjY )n, and, since the differential is homogeneous of bidegree (1, −1) (in the order:
topological, lower), this induces a bigradation on the cohomology which we will write as
Hp

∗ =
∑

j Hp
j . A key fact for us is that H∗

1 6= 0, and H∗
>1 = 0 [GHV, p. 78].

Lemma 2.1 (cf.[J1, P. 51]) Suppose that f1, ..., f̂i, ..., fn+1 is a regular sequence in R. Then,

e0(T ) ≤ 1 − n +
∑

j 6=i

Dj.

Proof. Let (ΛU, d) denote the (formal) model (R ⊗ Λ(y1, . . . , ŷi, . . . , yn+1); d). By analogy
with the case of maximal rank, we know that

cat0(ΛU, d) = e0(ΛU, d) = −n +
∑

j 6=i

Dj .

Since the model of T is just (ΛU ⊗ Λyi, d), by [FH, Lemma 6.6],

e0(T ) = cat0(T ) ≤ cat0(ΛU, d) + 1 = 1 − n +
∑

j 6=i

Dj . ¤

Now suppose that f1, . . . , f̂i, . . . , fn+1 is a regular sequence in R and that fi is a zero
divisor in R/(f1, . . . , fi−1). Since any re-ordering of the (homogeneous) elements in a regular
sequence in R is still a regular sequence, we may assume that |fj | ≤ |fj+1|, j = 1, . . . , n, and
that i < j ⇒ Dj > Di.

We now show that conjecture 1.2 is equivalent to conditions I and II in the

Lemma 2.2 Suppose f1, . . . , f̂i, . . . , fn+1 is a regular sequence in R and that fi is a zero
divisor in R/(f1, . . . , fi−1). Then

e0(T ) = 1 − n +
∑

j 6=i

Dj

iff there is h ∈ R such that

I. hfi ∈ (f1, . . . , fi−1), and

II. h 6∈ (f1, . . . , f̂i, . . . , fn+1).

Proof. Suppose that e0(T ) = 1 − n +
∑

j 6=i Dj. A straightforward degree argument shows
that there is a representative of the top class of the form α = [hyi +

∑
j<i βjyj], where

h and β1, . . . , βi−1 are homogeneous polynomials in the xi. The fact that this is a cycle
shows that (I) is true. To see that (II) holds, let (ΛU, d) denote the (formal) model (R ⊗
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Λ(y1, . . . , ŷi, . . . , yn+1); d), as in lemma 2.1. The Gysin sequence associated to the fibration
(ΛU, d) → (ΛU ⊗ Λyi, d) → (Λyi, 0) is of the form

· · · → HN(ΛU, d) q−→ HN(ΛU ⊗ Λyi, d) p−→ HN−|yi|(ΛU, d) → HN+1(ΛU, d) → · · · ,

where q is induced by the inclusion and p([ϕ + ψyi]) = [ψ], for ϕ,ψ ∈ ΛU . If h ∈
(f1, ..., f̂i, ..., fn+1), then p(α) = h = 0 in H∗(ΛU, d) = R/(f1, ..., f̂i, ..., fn+1), so by ex-
actness, α = q([β]) for some polynomial β ∈ R. But the differential is homogeneous in the
lower degree, and 0 6= α ∈ H1, so this is impossible. Hence, (II) holds.

Now suppose that there is a h satisfying (I) and (II). Lemma (2.1) then shows that it
suffices to show there is α 6= 0 with e0(α) ≥ 1−n +

∑
j 6=i Dj. However, (I) implies that that

there are homogeneous polynomials h, β1, . . . , βi−1 such that d(hyi +
∑

j<i βjyj) = 0. If we
let γ = hyi +

∑
j<i βjyj, to see that [γ] 6= 0, simply note that p[γ] = [h], which is non-zero

in H∗(ΛU, d), by (II). Using the Poincaré duality in H∗(T ), we may now multiply γ up to
a representative α of the top class. A straightforward degree and length counting argument
shows that e0(α) ≥ 1 − n +

∑
j 6=i Dj , completing the proof of the lemma. ¤

As usual, for an ideal a and a polynomial g, we denote (a : g) = {h | hg ∈ a}. With
lemma 2.2 in mind, we now make the promised algebraic

Conjecture 2.3 Let g1, . . . , gn be a regular sequence of homogeneous polynomials in the ring
C[x1, . . . , xn], written in order of increasing degree, and consider the ideals a = (g1, . . . , gi)
and b = (gi+1, . . . , gn), where 1 ≤ i ≤ n. Suppose further that deg gi < deg gi+1. If g 6∈ a is
any polynomial satisfying deg gi ≤ deg g < deg gi+1, such that (a : g) 6= a, then there exists a
polynomial h such that
I. h ∈ (a : g)
II. h 6∈ a + b

For completeness we state the following proposition, which is an obvious consequence of
lemma 2.2 (upon noting that the r and j of 1.1 are, respectively, n + 1 and i − 1 in the
notation of 2.3).

Proposition 2.4 Conjecture 2.3 implies conjecture 1.1.

With the obvious modifications to hypotheses and conclusions for i = 0 and n understood,
it is known that conjecture 2.3 holds for i = 0, 1, n − 1, and n [J1].

We now make the following important reduction:

Lemma 2.5 If Conjecture 2.3 holds for a fixed regular sequence and some fixed i with g1 = u,
then, for any homogeneous v such that uv, g2, . . . , gn is also a regular sequence, the conclusion
of Conjecture 2.3 holds for the same i. In particular, it suffices to prove Conjecture 2.3 in
the case where each of g1, . . . , gi is irreducible.

Proof. Suppose g is a non-trivial zero divisor modulo (uv, g2, . . . , gi). If g ∈ (u, g2, . . . , gi),
then vg ∈ (uv, g2, . . . , gi). Moreover, v 6∈ (uv, g2, . . . , gn), otherwise v ∈ (g2, . . . , gi) for
degree reasons, and so the sequence uv, g2, . . . , gn would not be regular.
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If g 6∈ (u, g2, . . . , gi) then g is a non-trivial zero divisor modulo the latter ideal and by
hypothesis we get h′ 6∈ (u, g2, . . . , gn) such that h′g ∈ (u, g2, . . . , gi), and so h = h′v clearly
satisfies hg ∈ (uv, g2, . . . , gi). If h ∈ (uv, g2, . . . , gn), then for some polynomial a, (h′−au)v ∈
(g2, . . . , gn). However, v is not a zero divisor modulo this ideal, because of the regularity
of the sequence uv, g2, . . . , gn, and the fact that any re-ordering of a regular sequence (of
homogeneous polynomials) is still a regular sequence. This yields the contradiction h′ ∈
(u, g2, . . . , gn), so we must have h 6∈ (uv, g2, . . . , gn) as required.

To see that it suffices to prove Conjecture 2.3 in the case where each of g1, . . . , gi is
irreducible, simply note that u, g2, . . . , gn is a regular sequence whenever uv, g2, . . . , gn is,
and use the first part of the lemma. ¤

We will now show that Theorem 1.2 follows from the following

Proposition 2.6 Conjecture 2.3 is true for i = 2 if g1 is irreducible of degree two.

Proof of theorem 1.2. Using lemma 2.5 and proposition 2.6, conjecture 2.3 holds when
i = 2, if g1 has an irreducible factor of degree 2. If g1 has a reducible factor of degree two
then it has a linear factor and so one can suppose g1 is linear. We are then reduced to the
case of one less variable, and i = 1, where conjecture 2.3 holds by [J1]. Moreover, since the
order of the generators for a or b is irrelevant in conjecture 2.3, it is clear that proposition 2.6
implies that conjecture 2.3 is true if i = 2 and either of g1 or g2 has a factor of degree 2.

Finally, lemma 2.1 now shows that conjecture 1.1 holds for i = 3 if either dy1or dy2 has
a factor of degree 2. ¤

3 Proof of Proposition 2.6

In this section we will prove Proposition 2.6, and we keep the notation of conjecture 2.3.
The requisite commutative algebra may be found in [Ha],or [AM].

Since the gj form a regular sequence, the ring Si = C[x1, . . . , xn]/(g1, . . . , gi) is of pure
dimension n−i and the zero ideal has no embedded prime ideals. It follows that all associated
prime ideals of the annihilator (0 : g) have height zero in Si, or, equivalently, that all
associated prime ideals of (gi : g) have height one in S := Si−1. One can then see that
conjecture 2.3 is equivalent to showing that (gi : g) 6⊂ (gi, gi+1, . . . gn), in S. In particular,
the conjecture intrinsically concerns the ideal (gi : g) in S and not the explicit polynomial
g. When S is a normal domain (see definition 3.2), any ideal in S having only height one
associated primes, is in fact of the form (gi : g) for some pair g, gi and, in this case, the
conjecture concerns all ideals in I1(S) (see after 3.3). We shall use this fact to reformulate
proposition 2.6 in the form of 3.1 below, but first we fix some notation.

Let Jk denote the elements of degree k of a homogeneous ideal J . Since

(gi, gi+1, . . . , gn)deg gi = 〈gi〉
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for reasons of degree, if one can show that in the ring S one has

dim(gi : g)deg gi ≥ 2,

then the conclusion of conjecture 2.3 follows.

We now specialize to the case i = 2. In view of the above discussion, Proposition 2.6
now follows from

Proposition 3.1 Let g1, g2 ∈ C[x1, . . . , xn] be a regular sequence with g1 a quadratic form
of rank ≥ 3 (hence irreducible), and g2 of degree d ≥ 2. If S = C[x1, . . . , xn]/(g1), then
for any homogeneous ideal a ⊂ S, all of whose associated primes have height one and which
strictly contains the ideal (g2), dimC ad ≥ 2.

Though we only work with the quotient of a polynomial ring by a quadratic form, we will
now recall some results from commutative algebra for normal domains.

Definition 3.2 A normal domain is a Noetherian integral domain which is integrally closed
in its field of quotients.

Remarks 3.3

1. Being normal is a local property (see [AM, 5.13]). Krull has shown that the normality of
A is equivalent to the conjunction of the following two properties:

1. Ap is a PID for all height one prime ideals p of A (i.e. is regular)

2. If f ∈ A is neither zero nor a unit then every associated prime of the ideal (f ) has
height one.

2. A Noetherian ring is a UFD if and only if every height one prime ideal is principal ([Ma]
p.141), and every UFD is normal.

3. The ring C[x1, . . . , xn]/(x2
1 + · · · + x2

r) is normal for r ≥ 3 and a UFD for r ≥ 5 ([Ha] ch
2, §6, ex 6.5).

Now let S = ⊕k≥0S
k be a graded normal domain and let I1(S) be the set of homogeneous

ideals in S, all of whose associated prime ideals have height one. Note that these associated
primes are themselves homogeneous. The primary decomposition of any a ∈ I1(S) is then
unique and has the form

a = p
(n1)
1 ∩ · · · ∩ p(ns)

s

where the pi are the associated primes of a and p(n) is the nth symbolic power of p, i.e. the
contraction of pnSp in S. As usual, p(0) = S.

It is well known that the ideals a, b ∈ I1(S) are isomorphic as graded ideals, if and only
if fa = gb for some f, g ∈ Sk with f 6= 0 6= g. Note that a ⊆ b and a ' b together imply
that a = b. Since (f) ' (g) for any 2 non-zero f, g ∈ Sk, we define a graded vector space

7



S(−k) by S(−k)l = S l−k, and when we write a ' S(−k), we shall mean that a ' (f) for
some f with deg f = k. In particular, a ' S(−k) will imply that a ∼= S(−k) as graded
vector spaces.

Further facts we will need are as follows:

Remarks 3.4

1. For any f ∈ S that is neither zero or a unit, the principal ideal (f) is in I1(S).

2. If a ∈ I1(S) and f ∈ S is neither zero or a unit, then fa ∈ I1(S).

3. If a, b and ab are all in I1(S) with primary decompositions a = p
(n1)
1 ∩ · · · ∩ p

(ns)
s

and b = p
(m1)
1 ∩ · · · ∩ p

(ms)
s respectively (where some ni or mi may be zero) then ab =

p
(n1+m1)
1 ∩ · · · ∩ p

(ns+ms)
s .

4. If S is a UFD, then every a ∈ I1(S) is principal, and so a ' S(−m) for some positive
integer m. Moreover, if f ∈ Sk is homogeneous of degree k and Sf := S[ 1

f ] is a UFD, then

every ideal a ∈ I1(S) is isomorphic as a graded ideal to an ideal of the form p
(n1)
1 ∩· · ·∩p

(ns)
s ,

where p1, . . . , ps are the associated primes of the principal ideal (f). (These follow from
standard facts about the (homogeneous) divisor class group of a normal domain; see for
example [Ha] ch 2, §6.)

Proof of proposition 3.1

We treat three cases. Recall that S = C[x1, . . . , xn]/(g1) and let r = rank g1. Note that
n ≥ r, so that dim Sk ≥ 2 whenever k > 0.

Case (1)
For r ≥ 5, S is a UFD by 3.3 (3), so that by 3.4 (4), every ideal a ∈ I1(S) is isomorphic
to S(−m) for some m > 0. If an ideal a ' S(−m) strictly contains a principal ideal
(g2) ' S(−d), then d > m and so ad has dimension dim(Sd−m) ≥ 2.

Case (2)
When r = 4, S is normal by 3.3 (3), and we may write g1 as x1x2 − x3x4 after a change of
basis.

Since S(−1) ' (x1) = (x1, x3) ∩ (x1, x4), the ideals p1 = (x1, x3) and p2 = (x1, x4) are
prime of height one and p1∩p2 = (x1). Since Sx1 ' C[x1, x3, x4, 1/x1] is clearly a UFD, by 3.4
(4), any ideal a ∈ I1(S) is isomorphic to one of the form p

(m1)
1 ∩ p

(m2)
2 where m1, m2 ≥ 0 and

m1 + m2 > 0.

If m1 = m2 = m, then p
(m)
1 ∩ p

(m)
2 = (xm

1 ) ' S(−m) by 3.4 (2,3), and if this strictly
contains a principal ideal isomorphic to S(−d), then d > m and dimC[p(m)

1 ∩ p
(m)
2 ]d =

dimSd−m ≥ 2.

By symmetry it remains to consider the ideals

xm
1 p

(n)
1 = p

(n+m)
1 ∩ p

(m)
2 ⊂ p

(n+m)
1
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for n > 0 and m ≥ 0. Clearly dimC[p1]1 = 2 so that dimC[p1]k ≥ 2 for k ≥ 1. Also, xm
1 [p1]1 ⊂

p
(m+1)
1 so that dimC[p(m+1)

1 ]d ≥ 2 for d ≥ m + 1. Then, dimC[xm
1 p

(n)
1 ]d = dimC[p(n)

1 ]d−m ≥ 2
for d ≥ n+m. However, if p

(n+m)
1 ∩p

(m)
2 contains a principal ideal isomorphic to S(−d) then

d ≥ n + m, completing the proof of this case.

Case (3)
If r = 3, S is again normal by 3.3 (3) and we can write g1 as x2

1 − x2x3. Clearly p = (x1, x2)
is prime of height one in S and p(2) = (x2) ' S(−1). Since Sx2 is a UFD, by (3.4 (4)), every
ideal a ∈ I1(X) is either isomorphic to (xm+1

2 ) ' S(−(m + 1)) or to p(2m+1) ' p(−m) =
p(−m), where m ≥ 1. Clearly dimk(p(2m))d = dimkS

d−m ≥ 2 for d > m. As in the
previous case we also have dimk(p(2m+1))d ≥ dimk(p)1 = 2 for d > 2m + 1. If p(2m) (resp.
p(2m+1)) strictly contains a principal ideal ' S(−d) ' p(2d) then m > d (resp. m ≥ d) and
consequently dimk(a)d ≥ 2. ¤

4 Remarks and Examples

4.1 Comments on conjecture 2.3

In the terminology of the conjecture, let S = C[x1, . . . , xn]/(g1, . . . , gn). As we have already
said this is a complete intersection ring, hence Gorenstein, and hence Cohen-Macaulay. If
S/(0 : g) is a Cohen-Macaulay ring, then, deg S/(0 : g) + b < degS/b, where the degree is
that of a graded ring of finite type over C, so that in the ring S we have (0, g) 6= b and the
conjecture holds for this g.

If all the gi are general then the conjecture holds trivially, because i = n in this case.
If we just consider the case i = 2, then for n ≥ 5 and a general g1, C[x1, . . . , xn]/(g1) is a
UFD by the Grothendieck-Lefschetz theorem for hypersurfaces. In this case one can apply
the same argument as in the first case of the proof of proposition 3.1. A similar result holds
for general g1 when n = 4 provided the degree of g1 is ≥ 4 (Noether-Lefschetz theorem).

4.2 Examples

We present 3 examples. In the first, we see that previous lower bounds for cat0 are sharp, but
the formula of this paper is much easier to use. The second is an example where the formula
is applicable and for which known results are not good enough to determine cat0. The third
gives evidence that conjecture 2.3 is true without the hypotheses of theorem 1.2. All are
spaces with model (Λ(x1, · · · , x4, y1, · · · , y5); d) where a straightforward calculation shows
that dy1, dy2, dy4, dy5 is a regular sequence in Q[x1, · · · , x4], and that dy3 is a non-trivial
zero divisor in Q[x1, · · · , x4]/(dy1, dy2).

Example 1. Suppose dy1 = x1x
2
2, dy2 = x3x

3
4, dy3 = x1x

4
3, dy4 = x6

1+x6
2 and dy5 = x6

3+x6
4.

The best lower bound for cat0 obtainable from previously known results is 16, and is found
by applying [CJ, Theorem 1] to the fibration with (Λx3; 0) as base, where the 2-holonomy is

9



weakly trivial. One then computes cat0 of the fibre using the additivity of cat0 on products
and the equal rank formula 2 of the introduction. Formula 3 of this paper (i.e., the r = 5,
i = 3 case of conjecture 1.1) quickly yields cat0 = 16, showing this lower bound to be sharp.

Example 2. Here we consider dy1 = x1x2 + x3x4, dy2 = x1x3 − x2
4, dy3 = x2(x2

3 − x2x4),
dy4 = x4

1 + x2
2x

2
3 and dy5 = x4

2 + x4
3. The lower bounds of [CJ] are not applicable, as the

holonomy is non-trivial for all choices of base, and the best estimate for cat0 previously
available is 8 ≤ cat0 ≤ 9. The lower bound is found by applying the Mapping Theorem
to the fibration with (Λx1, x4; 0) as base, and then computing cat0 of the fibre using [J1,
Theorem 3.2]). The upper bound is a consequence of lemma 2.1. The formula of this paper
immediately shows that cat0 = 9.

Example 3. Here, dy1 = x2
1x2 + x3x

2
4, dy2 = x1x2x3 − x3

4, dy3 = x4
4, dy4 = x5

1 + x5
2 and

dy5 = x5
3. A lower bound of 13 may be found by applying [GJ, Theorem 1] to the fibration

with (Λx4; 0) as base, and then proceeding as in example 2. Again, lemma 2.1 shows this
bound to be sharp. This shows that Conjecture 2.3 is true in this case, though neither dy1

nor dy2 has a factor of degree 2.
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