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Abstract. An elliptic space is one whose rational homotopy and rational cohomol-
ogy are both finite dimensional. We prove, for Toomer’s invariant, two improvements
of the estimate of the Mapping theorem relying on data from the homotopy Lie al-
gebra of the space. In particular, we show that if S is elliptic,

cat0S ≥ dimLeven
S + dimZLodd

S ,

where LS is the rational homotopy Lie algebra of S and ZLS its centre.
Several interesting examples are presented to illustrate our results.

Introduction

The Lusternik-Schnirelmann category of a space S is the least number of con-
tractible (in S) open sets need to cover S, minus one. It is a rather subtle homotopy
invariant which is difficult to compute, except in special cases where it agrees with
other simpler invariants, such as the dimension or the cup length of the cohomology
ring. The difficulties are attenuated somewhat for rational spaces, where Felix and
Halperin [FH] used Sullivan models to provide a tractable algebraic characterization
of the L-S category of the rationalization SQ of a simply connected CW complex.

However, even if one is given an elliptic minimal model, where the model data
and the cohomology are both finite, and for which recent results [FHL] reduce the
calculation of cat0S := catSQ considerably, one must still find a “longest” repre-
sentative of the top cohomology class, something which is non-trivial in examples
with more than a few generators. Some formulae are available in very special cases
[J1] but useful estimates are still important, and we will provide some new lower
bounds which depend on simple invariants of the rational homotopy Lie algebra of
S.

Our method is to use the Postnikov tower of a space S, building up S by fibrations
over one (rational) homotopy class at a time. At each step, we will have a fibration
F → E

p−→ K(Q, n) with zero connecting homomorphsim, where E is some highly
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connected cover of S. We then estimate cat0E in terms of cat0F by imposing some
restrictions on the homotopy Lie algebra of E involving the pre-image under p of
the fundamental class ιn of K(Q, n). Since the Postnikov fibre F is the total space
of the next step, the method will terminate if S has finite total rational homotopy.
Since cat0S < ∞ and dim π∗S ⊗ Q < ∞ characterize S as elliptic [FHT], this
partially explains our interest in elliptic spaces.

The first result relating cat0E and cat0F in this situation was the Mapping
theorem [FH], which implies in particular that if F → E

p−→ K(Q,n) is a rational
fibration with zero connecting homomorphism in rational homotopy, then cat0E ≥
cat0F . Then, in [J], this was generalized to show that if n is odd and the holonomy
action of the base on the homology of the fibre is locally nilpotent, one can improve
the estimate to cat0E ≥ cat0F + 1. Indeed, in this result there is already a clue
that the homotopy Lie algebra may be implicated in these matters.

Recall that for a space S, the rational homotopy Lie algebra of S is the graded
Lie algebra whose underlying graded vector space is

L∗
S := π∗ΩS ⊗ Q Ω←−

∼=
π∗+1S ⊗ Q,

where ΩS denotes the space of based loops on S, and we have also denoted the
isomorphism π∗+1S ∼= π∗ΩS by Ω. The Lie bracket is the Samelson product
[ , ] : Lp

S ⊗ Lq
S → Lp+q

S , which may be defined using either the commutator of loops
[W, p.467]or the Whitehead product [W, p.472].

It was noted in [J,§3] that if the homotopy class Ω(p∗)−1ιn acts locally nilpotently
in LE in the fibration F → E

p−→ K(Q,n), and n is odd, then cat0E ≥ cat0F + 1.
The first of our theorems for even n is in this same spirit. To motivate the second,
consider the fibrations

(1) S3 → S2 q−→ K(Z, 2)

and

(2) S5 → CP2 r−→ K(Z, 2),

where both q and r are chosen to represent the generators of the cohomology groups
in dimension 2. In (1), cat0S2 = cat0S3 = 1 while in (2), cat0CP2 = cat0S5+1. One
of the differences between these examples is that the fundamental homotopy class
ι2 of the base satisfies [Ωq−1

∗ ι2, Ωq−1
∗ ι2] 6= 0 in π2ΩS2, while [Ωr−1

∗ ι2, Ωr−1
∗ ι2] = 0 in

π2ΩCP2 = 0. While we present an example later to show that [Ωp−1
∗ ιn, Ωp−1

∗ ιn] = 0
is not sufficient to guarantee that cat0E ≥ cat0F +1, our second theorem gives some
extra conditions under which this will suffice.

To avoid unhelpful notation, when we have a fibration F → E
p−→ K(Q, n) with

zero connecting homomorphism, we will identify Ωp−1
∗ ιn with ιn, and say that ιn

is in the centre of LE if Ωp−1
∗ ιn is.

In fact, the results we obtain here are really about Toomer’s invariant e0 [T],
which we define in the next section, but the equality cat0 = e0 for Poincaré duality
complexes established by Félix, Halperin and Lemaire [FHL] imply the same for
cat0 in the case of elliptic spaces.
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Theorem 1. Suppose n is even, F → E → K(Q, n) is a rational fibration with
zero connecting homomorphism in rational homotopy, and H∗(F ) satisfies Poincaré
duality. If the fundamental homotopy class of the base is in the centre of the rational
homotopy Lie algebra of E, we have

cat0E ≥ cat0F + 1.

We can relax the hypothesis on the fundamental homotopy class of the base
somewhat and still obtain the same result if we further restrict the fibre:

Theorem 2. Suppose n is even, F → E → K(Q, n) is a rational fibration with
zero connecting homomorphism in rational homotopy, and F is a coformal Poincaré
duality complex. If the fundamental homotopy class ιn of the base satisfies [ιn, ιn] =
0 in π∗(E), we have

cat0E ≥ cat0F + 1.

We remark that these theorems improve the estimates of [FH, Theorem 10.4(iv)].
This paper is organized as follows. The next section summarizes just as much

rational homotopy theory as we will need, along with the characterizations of cat0
and Toomer’s invariant in terms of Sullivan minimal models. We then prove Theo-
rems 1 and 2, and the last section gives some corollaries and examples to illustrate
the utility of our results.

Rational Homotopy and cat0.

All our spaces will be simply connected spaces with the homotopy type of CW
complexes with rational cohomology of finite type. We will work with Q as ground
field and our principal tools are Sullivan models. A detailed description of these
and the standard tools of rational homotopy can be found in [BG],[F], [H] and [S].
For our purposes, the following will suffice.

A commutative graded differential algebra (hereafter cgda) (A, dA) is c-connected
if H0(A, dA) ∼= Q. A morphism φ : (A, dA) → (B, dB) is a quasi -isomorphism if
H∗φ is an isomorphism. If φ : (A, dA) → (B,dB) is a morphism of c-connected
cgda’s, a Sullivan Model of φ is a factoring φ = ψ i in

(A, dA)
φ−−−−→ (B, dB)

i

y
∥∥∥

(A ⊗ ΛX, d) ψ−−−−→ (B, dB)

where i(a) = a ⊗ 1 for a ∈ A and ψ is a quasi-isomorphism. Here, as elsewhere,
ΛX denotes the free commutative-graded algebra on the graded vector space X =∑

n≥0 Xn which has a well ordered, homogeneous basis {xα} such that, if X<α

denotes span{xβ | β < α}, we have
1. dxα ∈ A ⊗ ΛX<α and
2. α < β =⇒ deg α ≤ deg β.

If X = X≥2, (1) and (2) are equivalent to dxα ∈ Λ≥2(X<α). Such a basis is called
a K-S basis. The factoring is determined up to isomorphism by φ and we say that
i represents φ.
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The projection A ⊗ ΛX
ρ−→ A ⊗ ΛX/I ∼= ΛX (in which I denotes the differential

ideal generated by the augmentation ideal of A) induces a differential d̃ in ΛX and
the sequence (A,dA) i−→ (A ⊗ ΛX,d) ρ−→ (ΛX, d̃) is called a minimal K-S extension.

Sullivan defined a contravariant functor A which associates to each space S a
cgda A(S) over Q which computes the rational homotopy of S. A Sullivan minimal
model of (Q,0) → A(S) is of the form (Q, 0) → (ΛX, d) → A(S) and (ΛX,d)
is called the (Sullivan) minimal model of S, and it is unique up to isomorphism.
If S → T is a continuous map, a standard lifting lemma applied to A(f) gives a
unique homotopy class of morphisms between their minimal models, any of which
is called a Sullivan representative of f .

For every Serre fibration ξ : F
i−→ E

p−→ B, there is a commutative diagram of
augmented cgda’s

A(B)
A(p)−−−−→ A(E)

A(i)−−−−→ A(F )

'
xφB '

x
xα

(ΛX,d) −−−−→ (ΛX ⊗ ΛY, d) −−−−→ (ΛY, d̃)

in which (ΛX, d) is a Sullivan model for B, and the bottom row is the minimal
model of A(p) ◦ φB. If α : (ΛY, d̃) → A(F ) is a quasi-isomorphism, ξ is called a
rational fibration. In particular, if B is simply connected, ξ is a rational fibration
[G]. We call the bottom row of this diagram a minimal K-S extension associated
to the fibration. Note that in general, the middle CGDA need not be a minimal
model of E. It will be, precisely when the image of the connecting homomorphism
∂ : πk(B) → πk−1(F ) is strictly torsion (see [H1].)

The minimal model of S carries the rational homotopy type of S, that is, the
homotopy type of its localization at the rationals SQ : In particular, as graded vector
spaces, X̂ := Hom(X,Q) ∼= π(S) ⊗ Q. Moreover, if we define (sX̂)n := X̂n+1 for
n > 0, then (sX̂)n is isomorphic to πn(ΩS) ⊗ Q, and the homotopy Lie algebra of
S is encoded in the minimal model (ΛX,d) as follows.

The differential d can be written as a sum of derivations d = d2 + d3 + . . .
where di : X → ΛiX. The fact that d2 = 0 implies the same for d2. The dual of
d2 : X → Λ2X induces a bilinear and antisymmetric map L : X̂ ⊗ X̂ → X̂ , which
represents the Samelson product in π(ΩS) ⊗ Q via

[sx̂, sŷ] = sL(x̂ ⊗ ŷ),

where we have denoted by s the isomorphism X̂
∼=−→ sX̂ , which is of degree −1.

The Jacobi identity for [ , ] is equivalent to d2
2 = 0. Henceforth, we shall also call

sX̂ with this product the (rational) homotopy Lie algebra of S.
In particular, if {xα} is a K-S basis for X, and {x̂α} its dual basis, then

1. [sx̂α, sx̂β ] = 0 iff the coefficient of xαxβ in d2xγ is zero for all γ, so that
2. sx̂α is in the centre of the homotopy Lie algebra iff

d2 : X → Λ2〈xβ | β 6= α〉.

Where no confusion will arise, we shall say that xα belongs to the centre of LS

if sx̂α does.
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A space S is coformal if d = d2 in a minimal model of S. In this case, the
rational homotopy type of S is completely determined by its rational homotopy Lie
algebra. Moreover, a space is elliptic iff dim X and dim H(ΛX, d) are both finite in
any minimal model.

We now briefly recall the description of rational L-S category and Toomer’s
invariant in terms of Sullivan models. Let S be a space and (ΛX, d) a minimal
model of S. Consider the projection ΛX → ΛX/Λ>mX . This induces a differential
D in ΛX/Λ>mX which makes the projection a map of differential algebras. Let

(ΛX, d) → (ΛX ⊗ ΛV, d) '−→ (ΛX/Λ>mX, D)

be a minimal model for the projection.
The rational category of (ΛX,d), denoted cat0S, is the least m such that there

is a map r : (ΛX ⊗ ΛV, d) → (ΛX, d) of CGDAs which satisfies r(x) = x for all
x ∈ X . Félix and Halperin [FH] proved that cat0S = catSQ.

Toomer’s invariant, denoted e0S, may be defined as the least m such that there
is a map r : (ΛX ⊗ ΛV, d) → (ΛX, d) of graded differential vector spaces which
satisfies r(x) = x for all x ∈ X. It is straightforward that

e0S = sup{k | ∃α ∈ Λ≥kX with 0 6= [α] ∈ H∗S}.

Clearly, e0S ≤ cat0S and it is known that coformal spaces [FH, p.30] and Poincaré
duality spaces [FHL] satisfy cat0 = e0. In particular, since elliptic spaces are
Poincaré duality spaces [H1, p.188], they also satisfy cat0 = e0.

Proofs of the theorems

With the notions and notation of the previous section, Theorems 1 and 2 now
follow directly from the following:

Proposition 1. Suppose the degree of a is even, Λ(a; 0) → Λ(a, X;d) → Λ(X; d̄)
is a minimal K-S extension with zero connecting homomorphism, and H∗Λ(a, X;d)
satisfies Poincaré duality. Then, if a is in the centre of the homotopy Lie algebra
of Λ(a, X; d), we have

cat0Λ(a, X; d) ≥ e0Λ(X; d̄) + 1.

Proposition 2. Suppose the degree of a is even, Λ(a; 0) → Λ(a, X;d) → Λ(X; d̄)
is a minimal K-S extension with zero connecting homomorphism. Suppose further
that d̄ = d̄2, and that H∗Λ(X; d̄) is a Poincaré duality algebra. Then, if [a, a] = 0,
we have

cat0Λ(a, X; d) ≥ e0Λ(X; d̄) + 1.

Proof of Proposition 1. First note that we can write d = d̄+
∑

i aiηi, where each ηi

is a derivation of ΛX of odd degree. The fact that a is in the centre of the homotopy
Lie algebra of Λ(a, X; d), implies that η1 : ΛkX → Λ≥k+1X, η2 : ΛkX → Λ≥kX
and ηj : ΛkX → Λ≥k−1X for j > 2. In particular, if β ∈ Λ≥eX and we write
dβ = d̄β + aβ1, then β1 ∈ Λ≥e+1(a, X).
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Since the fibre is a Poincaré duality space and the base is Gorenstein, by [Thm
4.3, FHT1], the total space is also Gorenstein. Moreover, since we may assume
that cat0Λ(a, X; d) < ∞, by Theorem 3.1 of the same article, we conclude that
H∗Λ(a, X; d̄) is a Poincaré duality algebra. Then, by Propositions 5.1 and 5.3,
again of [FHT1], the formal dimension of the fibre is strictly greater that of the
total space.

Now suppose e0Λ(X; d̄) = e, and let β ∈ Λ≥eX be a cycle representing a top
class. Then, dβ = aα, where dα = 0 and α ∈ Λ≥e+1(a, X), by previous remarks.
Suppose that α is exact in Λ(a, X;d), say α = dγ. Then, β − aγ is a d-cycle of
degree greater than the formal dimension of Λ(a,X ;d). Hence, β − aγ = dz for
some z = z0 + az1, where z0 ∈ ΛX. Comparison of coefficients of powers of a on
both sides of β − aγ = dz yields d̄z0 = β, a contradiction. Thus, the class of α is
nonzero in H∗Λ(a, X;d), and so e0Λ(a, X; d) ≥ e + 1. ¤

Proof of Proposition 2. This is much like the previous proof, but here, the hypothe-
ses on the homotopy Lie algebra imply only that η1 : ΛkX → Λ≥kX , η2 : ΛkX →
Λ≥kX and ηj : ΛkX → Λ≥k−1X for j > 2.

Hence, if e0Λ(X; d̄) = e and β ∈ Λ≥eX is a cycle representing the top class, then
we can write dβ = aα0 + a2α1, where d(α0 + aα1) = 0 as before, and α0 ∈ Λ≥eX
and aα1 ∈ Λ≥e+1(a, X).

Now d2 = 0 implies that d̄α0 = 0, and |α0| < |β|, so if α0 were not a d̄-boundary,
using the Poincaré duality, we could multiply it up to the top class, and this would
give a nonzero cohomology class in the fibre of length at least e + 1, contrary to
assumption. Since d̄ increases the length of monomials by exactly one, we can
choose ε ∈ Λe−1X with d̄ε = α0. Then, d(β − aε) = a2α′ with aα′ ∈ Λ≥e+1(a, X).
The proof that aα′ is a nonzero class in H∗Λ(a, X; d) now follows as before. ¤
Remarks. The association β 7→ α in both proofs above is just the connecting
homomorphism of the long exact sequence obtained from 0 → Λ(a, X; d) .a−→
Λ(a, X; d) p−→ Λ(X; d̄) → 0, where p is the projection onto Λ(X; d̄). Note that
the argument above (without any assumptions on a) also gives a simple Mapping
theorem for e0 in this particular case.

The argument of Proposition 2 also yields the same conclusion if we replace
the assumption of coformality by l0(F ) = 1, where l0(F ) is the rational Ginsburg
invariant, namely the least m for which the rational Milnor-Moore spectral sequence
for F collapses at the (m + 1)st stage. This implies that if dε ∈ Λ≥k+1X, we may
assume that ε ∈ Λ≥kX, so ε would still has the desired length.

Applications to Elliptic Spaces and Examples

If S is elliptic, and F → S → B is a rational fibration with zero connecting
homomorphism, then the Mapping theorem implies that F will also be elliptic.
Now let LS denote the rational homotopy Lie algebra of an elliptic space S, and
ZLS its centre. An obvious induction using Theorem 1 and [J] yields

Theorem 3. If E is elliptic and F → E
p−→ B is a fibration with cokerπ∗(p) strictly

torsion, then

cat0E ≥ dim Leven
B + dim π∗(Ωp)ZLodd

E + cat0F.

In particular,
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Corollary 1. If S is elliptic, cat0S ≥ dim Leven
S + dim ZLodd

S .

Note that cat0S ≥ dim Leven
S was proven in [FH].

Corollary 2. If Lodd
S ⊂ ZLS (e.g. if LS is abelian), then cat0S ≥ dim LS .

It doesn’t seem fruitful to inductively apply Theorem 2 to an elliptic space E,
since if F is coformal in F → E → K(Q, 2n), no element of Lodd

F can satisfy
[a, a] = 0 (because F is also elliptic.)

Exactly the same arguments as in Theorems 1 and 2 yield

Corollary 3. If d : X → Λ≥kX in a Sullivan model for S, then

cat0S ≥ (k − 2) dim Xeven + dim Xodd.

Examples 1-4 below show that the estimates of the corollaries can be sharp. We
also present two examples (4 and 5), showing that ιn ∈ Z(L) is not necessary, while
the hypothesis [ιn, ιn] = 0 is not sufficient. In our final example, the conclusion
of Theorems 1 and 2 holds, but ιn is not central and Poincaré duality is absent.
However, the fibre is coformal.

The actual computation of rational L.S. category in examples 1-5 is carried
out using the Mapping Theorem [FH], the rational Ganea conjecture [J2,He], the
equality cat0 = e0 [FHL], and simple arguments about the length of a representative
of the top class. In all these cases, the minimal models are pure towers, i.e. 2-stage
models with d(Xeven) = 0 and d : Xodd → ΛXeven. In this situation, there is a
second grading, namely the lower grading (ΛX)p := ΛXeven ⊗ ΛpXodd, and we use
the fact that Cartan [C] showed that the top class has lower degree dim Xodd −
dim Xeven. (A detailed proof is given in [GHV, Chapter 2].) Moreover, we also
rely on the fact that for an elliptic space (ΛX, d), the formal dimension N , i.e. the
largest n for which Hn(ΛX, d) 6= 0, is given by [H1, p.188]

N = dim Xeven −
dimX∑

i=1

(−1)|xi||xi|.

Example 1. Consider the model Λ(a, b, y1, y2, y3; d) where a and b are of even degree,
dy1 = a2, dy2 = b3 and dy3 = ab2. Here, dim Leven = 3, dim ZLodd = 1 (generated
by “b”), and cat0 = 4, which is the estimate of corollary 1.

Example 2. Consider Λ(a, b, y1, y2, y3; d) where dy1 = a3, dy2 = b3 and dy3 = a2b.
Here, the homotopy Lie algebra is abelian, and cat0 = 5 = dim L, the lower bound
guaranteed by corollary 2.

Example 3. To illustrate Corollary 3, consider Λ(a, y; d) where dy = ak and k ≥ 2.
Here, cat0 = k − 1 = (k − 2).1 + 1.

Indeed, the bound of corollary 3 is also sharp in many non-formal examples. In a
pure tower where the even and odd dimensional homotopy are both concentrated in
a fixed degree, the estimate is exact: If Xeven = X2D has dimension p and Xodd =
X2kD−1 has dimension q, d : X → ΛkX , so corollary 3 yields cat0 ≥ p(k − 2) + q.
On the other hand, the formal dimension is N = p − q + 2D(qk − p), and the top
class has lower degree exactly q − p. But (ΛX)N

q−p = Λq−pXodd ⊗ Λpk−pXeven, as
a short calculation shows. Hence, all representatives of the top class have the same
length, so we can conclude that cat0 = (q−p)+(pk− p) = p(k−2)+q, as required.
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Example 4. To see that the hypothesis ι ∈ Z(L) is not necessary for the conclusion
of Theorem 1, and that the bounds of Theorem 2 can be sharp, consider the model
A = Λ(a, b, y1, y2, y3; d) where dy1 = a3, dy2 = b2 and dy3 = ab. Here, if ιx denotes
the element in LA corresponding to the generator x, we see that [ιa, ιb] 6= 0, and
[ιa, ιa] = 0. Short computations show that cat0A = 4 while cat0 of the fibre by Λa,
namely Λ(b, y1, y2, y3; d̄), is 3, agreeing with the estimate of Theorem 2.

Example 5. On the other hand, [ιa, ιa] = 0 is not sufficient by itself, for consider
Λ(a; 0) → Λ(a, b, y1, y2, y3; d) → Λ(b, y1, y2, y3; d̄), where dy1 = a3, dy2 = b3 and
dy3 = ab. Here, if |a| = |b| = 2, the fibre is (rationally) CP 2 × S5 × S3, which has
category 4. The formal dimension of the total space is 11, so if its category were
5, this would require the top class to have a representative of the form αy3, where
α is a polynomial in a and b. But this is not a cycle unless α = 0, so the category
of the total space is at most 4. But the Mapping theorem guarantees at least the
category of the fibre, which is 4, so in this example the category of the total space
is the same as that of the fibre.

Example 6. Finally, to show that neither Poincaré duality nor any assumption on
the centre of the homotopy Lie algebra past [ι, ι] = 0 is necessary, let X be a
space of category n and let the homotopy fibre of the collapse of the suspension in
X ∨ ΣY

c−→ X, be F . Using the cube lemma [M](the utility of which was patiently
and expertly illustrated to the seond author by Octav Cornea), one computes the
fibre and finds that F ' Σ(ΩX × Y/ΩX). In particular, when Y = Sm−1, F '
ΩX × Sm/ΩX ' Σm(ΩX × S0/ΩX) = Σm(ΩX ∨ S0) = ΣmΩX ∨ Sm.

In any case, F is a suspension and so catF = 1. Thus, if X is not contractible,
in the fibration F → X ∨ S2 c−→ X, we have cat(X ∨ S2) = catX while catF = 1.

Now we specialize to the case when X = CPn, n ≥ 2 where there is an auxiliary
fibration S2n+1 → CPn → K(Z,2) defined by a generator of H2CPn. Consider
the composition CPn ∨ S2 c−→ CPn → K(Z, 2), and define H by

H −−−−→
pull

CPn ∨ S2

y
yc

S2n+1 −−−−→
pull

CPn

y
y

∗ −−−−→ K(Z, 2)

where “pull” denotes the pullback.
We compute H as before, and find that

H = S2n+1 ∨ (S1 × S2/S1) = S2n+1 ∨ S3 ∨ S2,

and so catH = 1. Hence, in the fibration (with zero connecting homomorphism)

H → CPn ∨ S2 → K(Z, 2),

we have n = cat(CPn ∨S2) ≥ catH +1 = 2, while neither fibre nor total space is a
Poincaré duality complex. Moreover, computations at the level of minimal models
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show that the Whitehead product of the fundamental class of K(Z,2) and that of
the S2 summand in the total space is the class represented by the S3 summand in
the fibre, and hence is not zero. That is, the fundamental class is not in the centre
of the homotopy Lie algebra of CPn ∨ S2. Note, however, that since H is a wedge
of spheres, it is coformal.

Finally, we make some remarks about this example to illustrate that this increase
in category from the fibre to the total space does not occur for ‘other’ reasons, in
particular because of [J] applied to a locally nilpotent action in some associated
fibration. Suppose CPn ∨ S2 → B is a fibre map (with zero connecting homo-
morphism) collapsing the sphere to a finite Postnikov piece B of CPn with fibre
F (B), necessarily non-contractible. We would then have a commutative diagram
of pullbacks

F (B) F (B)
y

y

H −−−−→
pull

CPn ∨ S2

y
y

G
q−−−−→

pull
B

y
y

∗ −−−−→ K(Z,2)

In particular, F (B) → H → G is a fibration with zero connecting homomorphism.
Now, if 0 6= πodd(B) ⊗ Q (necessarily = π2n+1(B) ⊗ Q), then 0 6= πodd(G) ⊗ Q

as well, since q induces an isomorphism in odd-dimensional homotopy groups. If
an element u ∈ πodd(G) ⊗ Q acted locally nilpotently on the homology of the fibre
F (B), we’d have cat0(H) ≥ 1 + cat0F (B) ≥ 2 by [J]. Since catH = 1, this cannot
occur, and so cat0F (B) = cat0(H) = 1 also.

The naturality of the holonomy action implies that the action of q∗(u) on H∗F (B)
cannot be locally nilpotent either, so the fact that the L-S category of CPn ∨ S2 is
strictly greater than that of H cannot be deduced from any local nilpotence in the
holonomy action in the fibration

F (B) → CPn ∨ S2 → B

and the fact that cat0F (B) = cat0(H): it is ‘essentially’ due to the even-dimensional
homotopy in B.
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