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Abstract. An elliptic space is one whose rational homotopy and rational cohomol-
ogy are both finite dimensional. David Anick conjectured that any simply connected
finite CW-complex S can be realized as the k-skeleton of some elliptic complex as
long as k > dim S, or, equivalently, that any simply connected finite Postnikov piece
S can be realized as the base of a fibration F → E → S where E is elliptic and F is
k-connected, as long as k > dim S. This conjecture is only known in a few cases, and
here we show that in particular if the Postnikov invariants of S are decomposable,
then the Anick conjecture holds for S. We also relate this conjecture with other
finiteness properties of rational spaces.

§1. Introduction. A topological space is elliptic if its rational homotopy and ra-
tional cohomology are both finite dimensional. This class includes many interesting
and well-known spaces which enjoy important structural properties ([H1], [FHT]).
Elliptic spaces are very special, as the generic space is not elliptic, even amongst
those satisfying one of the finiteness conditions. However, Anick conjectured the
following:

Conjecture (Anick). Any simply connected finite CW-complex S can be approx-
imated arbitrarily closely on the right by an elliptic space. That is, for each natural
number n there is an elliptic space En and an n-equivalence S → En.

In [JM], we showed that in the category of simply connected spaces with the
homotopy type of a CW complex, this is equivalent to

Conjecture∗(Anick). Any simply connected finite Postnikov piece S can be ap-
proximated arbitrarily closely on the left by an elliptic space. That is, for each
natural number n there is an elliptic space En and an n-equivalence En → S.

The Anick conjecture is most naturally viewed in the full subcategory Q1 of
simply connected rational spaces with finite type (rational) homology (where we
shall work henceforth), and in this setting it is known to be true in several cases.
Elliptic spaces, which abound, themselves satisfy the conjecture. For example, if
π∗(S) = πodd(S) has finite dimension, then S is already elliptic and so Anick’s
conjecture is trivially true. Dually, if H∗(S) = Hodd(S) has finite dimension, then
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S is a finite wedge of odd spheres and so any finite Postnikov piece is elliptic.
Moreover, as we shall see as a consequence of Theorem 2, if H∗(S) is Noetherian,
the conjecture holds and the approximation En → S can be chosen so its homotopy
fibre is, rationally, a product of Krull-dimH∗(S) odd spheres.

In [JM], we also showed that Anick’s conjecture holds for spaces essentially built
from those where π∗(S) = πodd(S) by amplifying [W, P. 427] by an odd-dimensional
cohomology class.

Here, we establish Anick’s conjecture for spaces with decomposable Postnikov
invariants. To be precise, first note that if S(n) denotes the nth Postnikov piece of
S, then the Postnikov invariants of S, kn:S(n−1) → K(πnS, n+1), are cohomology
classes of Hn+1(S(n−1);πnS) ∼= Hn+1(S(n−1);Q) ⊗ πnS. We prove

Theorem 1. Suppose that S is a finite Postnikov piece such that its even Postnikov
invariants are decomposable, i.e.,

kn(S) ∈ H+(S(n−1);Q) · H+(S(n−1);Q) ⊗ πnS, for all even n.

Then, Anick’s conjecture holds for S.

We also characterize those finite Postnikov pieces for which the Anick conjecture
is true “in one step”:

Theorem 2. If S is a finite Postnikov piece, then there is a fibration F → E → S
in which E is elliptic and F is a product of (rational) odd spheres if and only if
H∗(S) is finitely generated as an algebra over Q.

Finally, we also relate the Anick conjecture with other classical problems in
rational homotopy concerning finiteness properties of spaces (see theorems 9 and
10). Of special interest is a generalization of a deep result of S. Halperin which
characterizes non elliptic spaces [H2].

The principal tool we shall use is the Sullivan minimal model, and a basic
reference is [FHT]. For our purposes, we note that to any 1-connected space S
there corresponds, in a contravariant way, a commutative differential graded al-
gebra (ΛX, d), called the minimal model of S, which is unique up to isomorphism
and algebraically models the rational homotopy type of the space. By ΛX we mean
the free commutative graded algebra generated by the graded vector space X, i.e.,
ΛX = TX/I where TX denotes the tensor algebra over X and I is the ideal gener-
ated by x⊗y− (−1)|y||x|y⊗x, x, y ∈ X. The differential d of any element of X is a
polynomial in ΛX with no linear term. This fact is equivalent to the existence of a
basis of X (hereafter called a KS-basis) {xi}i≥0 for which dxi ∈ ΛX<i, where X<i

denotes the subspace of X generated by {xj}j<i. This correspondence yields an
equivalence between the homotopy categories of 1-connected rational spaces of fi-
nite type and that of 1-connected rational commutative graded differential algebras
of finite type.

Moreover, to any fibration F → E → B of 1-connected spaces is associated a
relative Sullivan algebra (hereafter called a KS-extension)

(ΛX, d) → (ΛX ⊗ ΛY, d) → (ΛY, d̄)

in which (ΛY, d̄) is the quotient (ΛX ⊗ ΛY, d)/I, being I the differential ideal
generated by Λ+X, and (ΛX, d) (resp. (ΛY, d̄)) is the minimal model of the base
B (resp. the fibre F ). If (ΛX ⊗ ΛY, d) is itself a minimal model we shall call it a
minimal KS-extension.

Hence, the Anick conjecture above can be expressed as follows.
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Conjecture A. Given a minimal model (ΛX, d) in which dimX < ∞,ss and a
fixed integer N , there is an elliptic minimal KS-extension (ΛX ⊗ ΛY, d) in which
Y = Y ≥N .

The paper is organized as follows. In the next section we prove theorem 2. Then
in section §3 we present another approach to the Anick conjecture, prove theorem 1
and give two examples. Finally, in section §4 we present some finiteness properties
of rational spaces related to these results.

§2. Elliptic closures and Almost elliptic spaces

If (ΛX, d) is a Sullivan model with dimX < ∞, a minimal KS-extension (ΛX ⊗
ΛY, d) is said to be an elliptic closure of (ΛX, d) if (ΛX ⊗ ΛY, d) is elliptic, and in
this case we call (ΛY, d̄) the fibre of the closure. Here, we characterize those spaces
whose elliptic closures are just “one step away”. To be precise, we call a Sullivan
model (ΛX, d) with dimX < ∞ almost elliptic if it is not elliptic, but has an elliptic
closure of the form

(ΛX, d) → (ΛX ⊗ ΛY, d) → (ΛY, 0)

where d : Y → ΛX. We remark that if (ΛX, d) is almost elliptic, then by part 2
of Theorem 4 in the next section, any such elliptic closure (ΛX ⊗ ΛY, d) as above
necessarily satisfies Y = Y odd.

Theorem 2 is equivalent to:

Theorem 2′. If (ΛX, d) is a Sullivan model with dimX < ∞, then the following
are equivalent:

A. H(ΛX, d) is finitely generated as an algebra over Q.

B. (ΛX, d) is almost elliptic.

We begin with a lemma.

Lemma 3. Let (H, 0) be finitely generated as an algebra over Q. Consider a 1-step
extension of the form (H ⊗ ΛY, d) with Y = Y odd < ∞. Then

dimH∗(H ⊗ ΛY, d) < ∞ ⇐⇒ dimH/(dY ) < ∞.

(Remark: it suffices to assume that ker d is a finitely generated H-module, instead
of assuming H Noetherian.)

Proof. Suppose that dimH∗(H ⊗ ΛY, d) < ∞. Because the differential is zero in
H, the spectral sequence obtained from the filtration F p = H ⊗Λ≤pY collapses at
the E2 term. Thus, E0

2 = H/(dY ) is a sub-algebra of H∗(H ⊗ΛY, d), and hence is
also finite dimensional.

Now suppose that dimH/(dY ) < ∞. Since Y = Y odd < ∞, H ⊗ΛY is a finitely
generated H-module. Since H is Noetherian, ker d is a finitely generated H-module.
Therefore, H∗(H ⊗ΛY, d) is also finitely generated over H, and, as (dY ) ·H∗(H ⊗
ΛY, d) = 0, it is also finitely generated over H/(dY ). Since dimH/(dY ) < ∞,
dimH∗(H ⊗ ΛY, d) < ∞. �
Proof of Theorem 2 ′. (A ⇒ B) This argument is implicit in the proof of Proposition
2 of [H1]. Let H = H∗(ΛX, d), and let (ΛX, d) �−→ (ΛZ, d) be the bigraded model of
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(ΛX, d) [HS]. Recall that Z =
∑

p≥0,q Zq
p is bigraded, and that Z0

∼= H+/(H+·H+)
has as basis a set of generators of H and is therefore finite dimensional. For each
zi in a basis of Zeven

0 , add a generator yi with dyi = zN
i . Let Y = span{yi}

and consider the extension (ΛZ ⊗ ΛY, d). Note that this lifts to an extension
(ΛX ⊗ ΛY, d) �−→ (ΛZ ⊗ ΛY, d).

Now filter (ΛZ ⊗ ΛY, d) by F p = ΛZ ⊗ Λ≤pY , yielding a convergent spectral
sequence. Then (E1, d1) = (H(ΛZ) ⊗ ΛY, d1) with d1yi = [zi]N . It clearly suffices
to show that H(E1, d1) is finite dimensional. By lemma 3 above, this is equivalent
to showing that H(ΛZ)/(dY ) ∼= H(ΛX)/(dY ) is finite dimensional. However,
H(ΛX) ∼= H(ΛZ) is a finitely generated Heven-module, indeed, the classes of ΛZodd

0

are generators. Therefore, H(ΛZ)/(dY ) is a finitely generated Heven/(dY )even-
module. But the latter is a quotient of ΛZeven

0 /(dY ) ⊗ ΛevenZodd
0 , which is finite

dimensional by construction. Hence, H(ΛZ)/(dY ) is finite dimensional, and so by
lemma 3, H(E1, d1) is finite dimensional. Thus, H∗(ΛX ⊗ ΛY, d) < ∞, and the
extension clearly satisfies the other conditions.

(B ⇒ A) Suppose that (ΛX, d) is almost elliptic, so that there is a minimal
extension

(ΛX, d) → (ΛX ⊗ ΛY, d) → (ΛY, 0)

where (ΛX ⊗ ΛY, d) is elliptic. We will consider H := H(ΛX, d) as a module over
the subalgebra A generated by 1 and dY . Now let Ȳ be a graded vector space with
Ȳ d+1 = Y d, and consider the extension

(1) (ΛȲ , 0) → (ΛȲ ⊗ ΛX ⊗ ΛY, D) → (ΛX ⊗ ΛY, d),

where we define Dyi = −ȳi + dyi on basis elements yi of Y . Note that (ΛȲ ⊗
ΛX ⊗ ΛY, D) is a ΛȲ -module, so that H ∼= H(ΛȲ ⊗ ΛX ⊗ ΛY, D) is one as well.
Moreover, since ȳi · [α] = [dyi −Dyi][α] = [dyi][α], this coincides with the structure
of H over A mentioned above.

The E2 term of the Serre spectral sequence for the fibration (1) is

E2 = ΛȲ ⊗ H(ΛX ⊗ ΛY, d)

which is a finitely generated ΛȲ -module, since dim H(ΛX ⊗ ΛY, d) < ∞. Thus,
E∞ ∼= G(H), the associated-graded algebra of H, is also a finitely generated ΛȲ -
module. Since the filtration is finite in each degree, this shows that H is a finitely
generated A-module. But A is also finitely generated over Q, so H is a finitely
generated algebra over Q. This concludes the proof of the theorem. �

§3 Tickling Anick’s conjecture

We first collect some important (known) results bearing on this conjecture in
theorem 4 below. In the next section, we will generalize some of what follows when
the homotopy is not necessarily finite dimensional.

In the following, cat(ΛX, d) denotes the Lusternik-Schnirelmann category of any
rational space with minimal model (ΛX, d), which can be characterized in terms of
models as follows [FH]. Consider the commutative diagram

(ΛX, d)
q ��

� �

i

�������������� (ΛX/Λ>mX, d)

(ΛX ⊗ (Q ⊕ M), δ)ρ

��

�p

��
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in which (ΛX, d) → (ΛX ⊗ (Q ⊕ M), δ) is a a semi-free extension of (ΛX, d)-
differential modules which is a model of the quotient map q, meaning that p ◦ i = q
and that p is a quasi-isomorphism. Then, cat(ΛX, d) is the smallest m such that i
admits a retraction, that is, a map ρ as above of (ΛX, d)-differential modules with
ρi = τidΛX [FH, HL, He].

Theorem 4 ([H1], [H2], [FH]). If (ΛX, d) is a minimal model with dimX < ∞,
then the following are equivalent:

1. dimH(ΛX, d) < ∞.
2. Given a KS-basis {x1, . . . , xn}, for 1 ≤ i ≤ n, each [xi] is nilpotent in the

cohomology of the fibre of

(ΛX<i, d) → (ΛX, d) → (ΛX≥i, d̄).

3. cat(ΛX, d) < ∞.
4. There are no non-trivial morphisms (over C) (ΛX, d) → (Λa, 0), where |a| =

2.

One method of attack on Anick’s conjecture would be to attempt an induction
on dimX. In this approach, one views (ΛX, d) = (Λ(x1, . . . , xn), d) as a series of
extensions

(Λ(x1, . . . , xi−1), d) → (Λ(x1, . . . , xi), d) → (Λxi, 0).

For each i, we then add spaces of odd generators Zi so that

(Ai, di) := (Λ(x1, . . . , xi) ⊗ Λ(Z1 ⊕ · · · ⊕ Zi), di)

is elliptic, and consider the extension

(Ai ⊗ Λxi+1, d),

which we then wish to render elliptic. Using theorem 4 above, we see that this step
is equivalent to the existence of a finite dimensional extension

(Ai ⊗ Λxi+1 ⊗ ΛZi+1, d)

in which the class [xi+1] is nilpotent in the fibre of

(Ai, di) → (Ai ⊗ Λxi+1 ⊗ ΛZi, d) → (Λxi+1 ⊗ ΛZi, d̄),

The induction begins very easily. If |x1| is odd, we can set Z1 = 0, since (Λx1, 0)
is elliptic in that case, and if |x1| is even, we set Z1 = 〈z〉 with dz = xN

1 . To
proceed, if |xi+1| is odd, we can set Zi+1 = 0, since [xi+1]2 = 0 then. However, if
|xi+1| is even, we are faced with the special case of Anick’s conjecture stated below,
which, as our discussion has just shown, is in fact equivalent to the full conjecture.

Conjecture A′. Suppose that N ∈ N, (ΛY, d) is elliptic and that |x| is even in
the extension (ΛY ⊗ Λx, d). Then, there is an extension

(ΛY, d) → (ΛY ⊗ Λx ⊗ ΛZ, d) → (Λx ⊗ ΛZ, d̄)

for which the class [x] is nilpotent in H∗(Λx ⊗ ΛZ, d̄), and in which Z = Z≥N is
finite dimensional.

Another interesting question related to this conjecture through theorem 4 is
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Conjecture A′′. Let (ΛX, d) be a minimal model in which both Xeven and
Heven(ΛX, d) are finite dimensional. Then, given a KS-basis {xn}n≥0 of (ΛX, d),
each [xn] is nilpotent in the cohomology algebra H∗(ΛX≥n, d).

Proposition 5. Conjecture A′′ implies the Anick conjecture.

Proof. Let (ΛX, d) be a minimal model with dimX < ∞ and let N be a fixed
integer. Introduce new generators Z of odd degree greater than N so that in
the minimal model (ΛX ⊗ ΛZ, d) the even cohomology in degrees greater than N
vanishes. Hence, by conjecture A′′, every xi of even degree in a KS-basis of (ΛX, d)
is such that its cohomology class is nilpotent in H∗(ΛX≥i⊗ΛZ, d). Therefore, since
there are a finite number of even generators there is a finite dimensional subspace
Z ⊂ Z such that the same property also holds in (ΛX ⊗ΛZ, d). By theorem 4, this
minimal model is elliptic. �

We remark that conjecture A′ is clearly true in the case where [dx] ∈ H(ΛY, d)
is spherical, since then we may change the KS-basis {y1, . . . , yn} in (ΛY, d) so that
dx = yi for some i. Then,

(ΛY ⊗ Λx, d) ∼= (Λ(yi, x) ⊗ Λ(y1, . . . , ŷi, . . . , yn); d) ∼= (Λ(y1, . . . , ŷi, . . . , yn); d̄),

where (Λ(y1, . . . , ŷi, . . . , yn); d̄) is the fibre of

(Λyi; 0) → (Λ(y1, . . . , yi, . . . , yn); d)
ρ−→ (Λ(y1, . . . , ŷi, . . . , yn); d̄).

Then, the Mapping theorem [FH] applied to ρ yields cat(Λ(y1, . . . , ŷi, . . . , yn); d̄) <
∞, so by theorem 4, (ΛY ⊗ Λx, d) is already elliptic.

A principal result of this paper is that conjecture A′ holds at the other end of
the spectrum, when [dx] is actually decomposable in the algebra H(ΛY ). In this
case, we are able to establish the conjecture even when dim Y = ∞, as long as
cat(ΛY, d) < ∞. This result together with its corollary clearly implies theorem 1.

Theorem 6. Suppose that cat(ΛY, d) < ∞, that |x| is even in a minimal extension
(ΛY ⊗ Λx, d), and that [dx] ∈ H+(ΛY ) · H+(ΛY ). Then, for any N ∈ N, there is
a minimal extension

(ΛY ⊗ Λx, d) → (ΛY ⊗ Λx ⊗ ΛU, d) → (ΛU, d̄)

for which the class [x] is nilpotent in H∗(Λx ⊗ ΛU, d̄), and in which U = Uodd =
U≥N is finite-dimensional.

Proof. Suppose that dx =
∑n

i=1 αiβi + dε, where dαi = dβi = 0, and αi, βi and
ε ∈ Λ+Y . Then, y �→ y and x �→ x′ − ε defines an isomorphism of (ΛY ⊗ Λx, d)
with (ΛY ⊗ Λx′, d′), where d′y = dy and d′x′ =

∑n
i=1 αiβi. Hence, we will assume

without loss of generality that

dx =
n∑

i=1

αiβi

for cycles αi, βi ∈ Λ+Y . Since |x| is even, we may suppose that each |αi| is even
and each |βi| is odd.
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We next replace (ΛY, d) by an algebra where “long” cohomology classes actually
vanish. First, choose

K = max{cat(ΛY, d),
N + 3 − |x|

2
}.

This choice of K will also guarantee that the new generators we add are of degree
at least N .

Denote by (ΛY, d)
q−→ (ΛY/Λ>KY, D) the canonical quotient map and let

(ΛY/Λ>KY, D) → (ΛY/Λ>KY ⊗ Λx, D)

be the pullback of (ΛY, d) → (ΛY ⊗ Λx, d) over q. With the reader’s indulgence,
we will continue to denote the images of αi and βi under q by the same symbols,
and will denote ΛY/Λ>KY by A.

Now consider the vector space Pk of homogeneous polynomials of degree k in n
commuting variables a1, . . . , an, so that for m > K,

p ∈ Pm ⇒ p(α1, . . . , αn) = 0 in A.

For 0 ≤ j ≤ K, let Uj be a vector space of the same dimension as Pj , and let
uj : Pj → Uj be an isomorphism. Choose, for each K ≥ j > 0, a basis Bj of
Pj which consists of monomials and such that aip ∈ Bj+1 whenever p ∈ Bj . Set
B0 = {1} and define an extension (A⊗Λx⊗ΛU, d) as follows. For convenience, let
x(i) denote xi

i! .
For each p ∈ BK , define

(1) duK(p) = xp(α1, . . . , αn).

Use this equation to determine the topological degree of uK(p), for each p ∈ BK ,
so that d is of topological degree +1. This is clearly possible since each such p is
a monomial, and this makes UK a graded vector space. (If we wished, we could
extend d by linearity to all of UK , where it would still satisfy (1).) This defines d
on UK .

We recursively extend d to U = UK ⊕UK−1 ⊕ · · ·⊕U0 as follows: for K > j ≥ 0
and for all p ∈ Bj ,

(2) duj(p) = x(K−j+1)p(α1, . . . , αn) −
n∑

i=1

uj+1

(
αip(α1, . . . , αn)

)
βi.

Note that at step j, uj+1

(
αip(α1, . . . , αn)

)
makes sense and its derivative has al-

ready been defined. As in the case when j = K, we use this equation to determine
the topological degree of each uj(p), for p ∈ Bj , so that d is of topological degree
+1. This makes each Uj a graded vector space, with Uj = Uodd

j , and the choice of
K ensures that Uj = U>N

j , for 0 ≤ j ≤ K.
We now prove by (descending) induction that d2Uj = 0 for K ≥ j ≥ 0. To begin,

we note that p ∈ PK implies that

d
(
xp(α1, . . . , αn)

)
= (dx) · p(α1, . . . , αn) =

( n∑
i=1

αiβi

)
· p(α1, . . . , αn) = 0
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because each term αi ·p(α1, . . . , αn) in the sum is zero in A, as we remarked above.
Hence, d2UK = 0.

Now suppose that we have shown that d2Uj = 0 for K ≥ j > m. For a monomial
p ∈ Bm, we let p denote p(α1, . . . , αn) for convenience and compute:

d2um(p) = d
(
x(K−m+1)p −

n∑
i=1

um+1

(
αip

)
βi

)

=
n∑

i=1

x(K−m)αipβi −
n∑

i=1

dum+1

(
αip

)
βi

=
n∑

i=1

x(K−m)αipβi −
n∑

i=1

(
x(K−m)αipβi −

n∑
k=1

dum+2

(
αkαip

)
βkβi

)

=
n∑

i,k=1

dum+2

(
αkαip

)
βkβi

= 0.

The last equality holds because of the degrees of the α’s and β’s: um+2

(
αkαip

)
is

symmetric in i and k, while βkβi is anti-symmetric in these indices. This closes the
induction and we see that (ΛY/Λ>KY ⊗Λx⊗U, D) is a well-defined extension for
which [x]K+1 = D̄u0(1) in the fibre (Λx ⊗ U, D̄).

Now let p : (ΛY ⊗ ΛW, d) �−→ (ΛY/Λ>KY, D) be the Sullivan relative model
of (ΛY, d)

q−→ (ΛY/Λ>KY, D). Since p is onto and induces an isomorphism in
cohomology, we can use it to obtain an extension (ΛY ⊗ ΛW, d) → (ΛY ⊗ ΛW ⊗
Λx ⊗ ΛU, d′) so that we have the commutative diagram

(ΛY ⊗ ΛW, d) ✲ (ΛY ⊗ ΛW ⊗ Λx ⊗ ΛU, d′) ✲ (Λx ⊗ ΛU, d̄′)

(ΛY/Λ>KY, D)

� p

❄❄
✲ (ΛY/Λ>KY ⊗ Λx ⊗ ΛU, D)

� p′

❄❄
✲ (Λx ⊗ ΛU, D̄).

���������

Lastly, since K ≥ cat(ΛY, d), there is a retraction r : (ΛY ⊗ ΛW, d) → (ΛY, d)
satisfying r(y) = y for y ∈ Y . To conclude, let

(ΛY ⊗ Λx, d) → (ΛY ⊗ Λx ⊗ ΛU, d) → (Λx ⊗ ΛU, d̄)

be the pushout of the first row of the diagram above over r. Then, the equa-
tion [x]K+1 = d̄u0(1) holds in the fibre (Λx ⊗ U, d̄), showing that [x] is nilpotent
there. �

Since dimH(ΛY, d) < ∞ ⇒ cat(ΛY, d) < ∞, this immediately yields

Corollary 7. Conjecture A′ holds if [dx] is decomposable in the algebra H(ΛY, d).
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Example a. Let S be any simply connected elliptic space, and n any integer.
Then, if α ∈ Hn(S,Q) is homogeneous, as in [W, P. 427] the amplification of S by
α is a space S(α) obtained as the pullback of the path space fibration PK(Q, n) →
K(Q, n) over any map S → K(Q, n) representing α. If |α| is even, S(α) will always
be elliptic, but if α �= 0 and |α| is odd, dimH∗(S(α),Q) = ∞. However, if α is
decomposable in the algebra H∗(S,Q), corollary 7 shows that, given any integer
N , there is an elliptic space E and a map E → S(α) which is an isomorphism
on rational homotopy groups in dimensions less than N , i.e., the Anick conjecture
holds for S(α).

Example b. A simple example of a case not covered by Theorem 1 is the 4-
Postnikov stage (S2 ∨ S2)(4) of S2 ∨ S2 : its minimal model is

(Λ(a, b, u, v, y, c, e), d)

with |a| = |b| = 2, du = a2,dv = b2, dy = ab, dc = ay − bu, and de = by − av.
If {c∗, e∗} is the basis of π4(S2 ∨ S2) ⊗ Q which is dual to {c, e}, the Postnikov
invariant

k4[(S2 ∨ S2)(3)] = [ay − bu] ⊗ c∗ + [by − av] ⊗ e∗

is not decomposable, since [ay − bu] is not decomposable in the algebra H∗((S2 ∨
S2)(3),Q). (Neither is [by − av], of course.)

However, we may proceed as follows. We focus on the extension (Λ(a, b, u, v, y, c), d),
the case with both generators c and e being completely analogous. Let N be given.

First, we replace the model above with the quasi-isomorphic model

(A, d) = (Λ(a, b, y)/(a2, b2) ⊗ Λc, d),

where |a| = |b| = 2, dy = ab, and dc = ay,. We now add odd generators ui ∈ U>N

to make the class of dc{N+1} = c{N}ay decomposable in H(A ⊗ ΛU, d): Let z{k}

denote the divided power zk

k! to minimize cumbersome coefficients.
If we set du0 = c{N}a, then d(c{N}y−u0b) = 0, and d(au0) = 0, and we see that

dc{N+1} = c{N}ay = a · (c{N}y − u0b) + b · (au0)

is decomposable in H(A ⊗ Λu0, d).
Now, set x = c{N+1}, so that

dx{2} = xdx = x(a(c{N}y − u0b) + bau0) = x(aβ1 + bβ2),

where we denote c{N}y − u0b = β1 and au0 = β2. As in the proof of theorem 6, we
now set du1 = xa and du2 = xb − yβ1.

Then,

dx{2} = x(aβ1 + bβ2) = (xa − yβ2)β1 + (xb − yβ1)β2 = d(u1β1 + u2β2)

This shows that dc{2N+2} = (N+1)!2

(2N+2)!d(u2β1 + u3β2) is a boundary, and if we set

du3 = c{2N+2} − (N+1)!2

(2N+2)! (u2β1 + u3β2), we see that

dimH(A ⊗ Λ(u0, u1, u2, u3), d) < ∞.

We remark that we could replace u1 by xu0, since d(xu0) = du1.

The proof of theorem 6 and the same kind of argument used in the preceding
example establishes:
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Theorem 8. Let (ΛY ⊗ Λx, d) be a minimal model in which cat(ΛY, d) < ∞ and

|x| is even. Suppose that there is a k ∈ N and a minimal extension (ΛY, d)
j−→

(ΛY ⊗ Λx ⊗ ΛU, d) in which U = Uodd = U≥N is finite-dimensional, [dxk] =∑
i αi.βi is decomposable in H∗(ΛY ⊗ Λx ⊗ ΛU, d), with each even class αi having

a representative in the ideal generated by Λ+Y . Then, for any N ∈ N, there is a
minimal extension

(ΛY ⊗ Λx, d) → (ΛY ⊗ Λx ⊗ ΛV, d) → (ΛV, d̄)

for which the class [x] is nilpotent in H∗(Λx ⊗ ΛV, d̄), with V = V odd = V ≥N

finite-dimensional.

§4. Infinities in a minimal model

The results above indicate the importance of theorem 4 in these questions. Here
we obtain results in the same spirit in a general model, where we do not assume
finiteness of the rational homotopy. Clearly, there is no direct generalization of
theorem 4 to a general model. For example, in an infinite wedge of odd spheres, all
generators of a minimal model are of odd degree and therefore parts (2) and (4) of
theorem 4 are satisfied, whereas the cohomology is infinite dimensional. It is true
however, via the Mapping theorem, that the existence of a non trivial morphism
(ΛX, d) → (Λa, 0) implies dimH(ΛX, d) = ∞. Here we continue this discussion
with the following results.

Theorem 9. If (ΛX, d) is any Sullivan minimal model, then either

1. There is a non-trivial morphism (over C) ϕ : (ΛX, d) → (Λa, 0), or

2. Each [xi] in a KS-basis {xi}i∈N of X is nilpotent in (ΛX≥i, d̄).

Proof. Let (ΛX, d) be a minimal model and assume there is no non-trivial mor-
phism (ΛX, d) → (Λa, 0). Then, for each i ∈ N there is no non-trivial morphism
(ΛX≥i, d̄) → (Λa, 0), since pre-composing such a morphism with the projection
(ΛX, d) → (ΛX, d)/(Λ+X<i, d) ∼= (ΛX≥i, d̄) would yield a non zero morphism
(ΛX, d) → (Λa, 0). Hence, it is enough to prove that if x is the first element of a
KS-basis of X, then [x] is nilpotent in H∗(ΛX, d). We suppose that x is of even
degree and introduce some notation:

Let {x} ∪ {xn | n ≥ 1, n ∈ N} (resp. {yk | k ≥ 1, k ∈ N}) be a KS-basis for
Xeven (resp. a KS-basis for Xodd). Also write

dyk = pk + qk, pk ∈ ΛXeven, qk ∈ Λ+Xodd · ΛX,

and observe that the for each k, the polynomial pk in the variables {xn} is precisely
d0yk where d0 denotes the differential in the associated pure model (ΛX, d0) (see
[H1]).

A map of graded algebras ϕ : ΛX → Λa must satisfy ϕ(yk) = 0, and ϕ(xn) =
λna

|xn|/2
2 , λn ∈ C and k, n ∈ N. On the other hand, since

ϕdyk = ϕpk = dϕyk = 0,

the existence of a non-trivial morphism is equivalent to finding a non-trivial solution
of the system

pk = 0, k ≥ 1.
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Now let I = (pk | k ∈ N) be the ideal of C[Xeven] generated by these polyno-
mials. As usual, Z(I) denotes the zero set of I, i.e. Z(I) = {λ ∈ Cℵ0 | pk(λ) =
0, ∀k ∈ N}. Then, since |C| > ℵ0, the infinite form of Hilbert’s Nullstellensatz [L],
implies that Z(I) = {0} iff

√
I = C+[Xeven]. Since we are assuming there are no

non-trivial solutions to the system above, there exists N ∈ N and fj ∈ C[Xeven]
such that xN =

∑
j fjpj . This implies that xN =

∑
j fjd0yj = d0(

∑
j fjyj) = d0Φ,

where Φ denotes
∑

j fjyj . Thus, dΦ = xN + Ω, where Ω ∈ Λ+Xodd · ΛX, and so
[xN ] = [Ω], where the latter is clearly nilpotent.

Another approach to a generalization of theorem 4 is

Theorem 10. Let (ΛX ⊗ ΛY, d) be a minimal model with

1. dimX < ∞,

2. dimH(ΛX ⊗ ΛY, d) = ∞, and

3. dimH(ΛY, d̄) < ∞.

Then, there exists a non-trivial morphism ϕ : (ΛX ⊗ ΛY, d) → (Λa, 0) which is
non-zero when restricted to (ΛX, d).

Proof. We proceed by induction on dimX. To begin, assume dim X = 1 and let x
be a generator of X. If the degree of x were odd the complex (Λx ⊗ ΛY, d) would
have finite dimensional cohomology in view of the Serre spectral sequence, so x is of
even degree. Suppose there is no non-trivial morphism (Λx⊗ΛY, d) → (Λa, 0). By
theorem 9 above, xM = dφ for some φ. Consider the extension (Λx ⊗ ΛY ⊗ Λu, d)
with du = xM . Then, the Serre spectral sequence with base (Λx ⊗ Λu, d) has
E2 = H(Λx ⊗ Λu, d) ⊗ H(ΛY, d̄), which is finite dimensional because both factors
are. Thus, dimH(Λx ⊗ ΛY ⊗ Λu, d) < ∞. Moreover, the map

(Λx ⊗ ΛY, d) ⊗ (Λv, 0) → (Λx ⊗ ΛY ⊗ Λu, d)

defined as the identity on Λx ⊗ ΛY and sending v → u − φ is an isomorphism of
differential algebras, so

H(Λx ⊗ ΛY ⊗ Λu, d) ∼= H(Λx ⊗ ΛY, d) ⊗ H(Λv, 0),

implying that H(Λx ⊗ ΛY, d) < ∞ which is a contradiction. This establishes the
theorem in the case dim X = 1. We note that for any non-trivial morphism ϕ: (Λx⊗
ΛY, d) → (Λa, 0) we must have ϕ(x) �= 0, since otherwise, we could define a non-zero
ϕ̃ : (ΛY, d̄) → (Λa, 0), which would contradict dimH(ΛY, d̄) < ∞.

Now assume the result is true for dimX < k, and suppose {x1, . . . , xk} is a
KS-basis for (ΛX, d). Write ΛX ⊗ΛY as the extension Λx1 ⊗Λ(x2, . . . , xk)⊗ΛY .

If H(Λ(x2, . . . , xk) ⊗ ΛY, d) = ∞, then by the induction hypothesis, there is a
non-trivial homomorphism φ : Λ(x2, . . . , xk) ⊗ ΛY → C[a2], which is necessarily
non-zero on Λ(x2, . . . , xk). We then define ϕ : Λx1 ⊗ Λ(x2, . . . , xk) ⊗ ΛY → C[a2]
using the projection Λx1 ⊗ Λ(x2, . . . , xk) ⊗ ΛY → Λ(x2, . . . , xk) ⊗ ΛY .

On the other hand, if H(Λ(x2, . . . , xk) ⊗ ΛY, d) < ∞, use the dimX = 1 case
to define the desired non-trivial homomorphism. This closes the induction and
completes the proof. �
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