
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 136, Number 6, June 2008, Pages 1919–1923
S 0002-9939(08)09250-2
Article electronically published on February 7, 2008

FREE SUBMODULES FOR THE CENTRAL REPRESENTATION
IN THE COHOMOLOGY OF LIE ALGEBRAS

GRANT CAIRNS AND BARRY JESSUP

(Communicated by Paul Goerss)

Abstract. If Z is the centre of the Lie algebra L, its cohomology H∗(L) is
naturally a module over the exterior algebra ΛZ. Under suitable hypotheses on
L, motivated by recent work by Pouseele and Tirao, we find free summands in

H∗(L) for this module structure, thus establishing the Toral Rank Conjecture
for a new class of Lie algebras.

1. Introduction

We consider finite-dimensional complex Lie algebras L. Recall that for such an
algebra L, the Toral Rank Conjecture (TRC) [4] states that

dimH∗(L) ≥ 2dim Z ,

where Z is the centre of L, and H∗(L) denotes the cohomology with trivial co-
efficients. The TRC is known to hold for nilpotent Lie algebras of dimension at
most 14 [1]. It holds for two-step nilpotent Lie algebras (see [6] and [1]) and more
generally for positively graded Lie algebras where the centre is the summand of
highest grading (see [3] and [7]). Recently Hannes Pouseele and Paulo Tirao gave a
remarkably simple result, which establishes the TRC for a class of Lie algebras that
includes algebras of large nilpotency class that are not positively graded [5]. The
aim of this paper is to show that the argument in [5] can be extended to a larger
class of algebras and that the conclusion of their theorem can also be strengthened.

The key idea is to note that the cohomology H∗(L) is naturally a module over
the exterior algebra ΛZ and to look for free summands in H∗(L):

Theorem. Suppose that the Lie algebra L is a direct sum of non-trivial subalgebras
A, B, C, where C is central and A, B and L are unimodular. Then the cohomology
H∗(L), as a ΛC-module, contains a free module on two generators.

This extends [5, Theorem 1], which is the case where it is assumed that A and
B are abelian and that B ⊕ C is an ideal of L. Note that the unimodularity
hypothesis on A, B and L is satisfied when L is nilpotent, for example.
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Corollary. The cohomology H∗(L) has dimension at least 2dim(C)+1.

This strengthens [5, Corollary 2], which gives dimH∗(L) ≥ 2dim(C). We give
examples later to show that C may indeed be the centre Z of L. We also use
the theorem to indicate how one may, for example, analyse the ΛZ structure of
the cohomology of the free two-step algebras on m generators, where (except for
m = 2), there are no free submodules.

2. Preliminaries

If L is a Lie algebra, and L∗ denotes the dual, its cohomology is obtained as
follows: let d : L∗ → Λ2L∗ be the transpose of the bracket [ , ] : Λ2L → L, and
extend it to a derivation of the Koszul complex ΛL∗ of degree 1. The Jacobi identity
is equivalent to d2 = 0, and the cohomology H∗(L) = H∗(ΛL∗, d) is the graded
algebra defined as H∗(L) = ker d/ im d.

If x ∈ L, ix denotes the derivation of ΛL∗ extending the natural map x ∈ (L∗)∗

to a derivation of ΛL∗ of degree −1, and, when extended using the cap product
ΛZ⊗ΛL∗ → ΛL∗, makes ΛL∗ a module over ΛZ. The Lie derivative Lx = ixd+dix
is the extension of the transpose of ad(x) : L → L to a derivation of degree 0 of
ΛL∗, and x belongs to the centre Z(L) ⇐⇒ Lx = 0. Thus if x ∈ Z(L), ix induces
a derivation of the algebra H∗(L), and the ΛZ-module structure on ΛL∗ induces
one on H∗(L). In [2], the homomorphism ΛZ → End(H∗(L)) defining this module
structure is called the central representation.

A Lie algebra is unimodular if trace ad(x) = 0 for all x ∈ L, and it is easy to
show that this is equivalent to d : Λdim L−1L∗ → Λdim LL∗ being zero. For L as
in the statement of the theorem, we choose bases for A, B and C, and relative
to the resulting basis for L, we define the Hodge star � : ΛkL∗ → Λdim L−kL∗ in
the usual manner. It is straightforward to show that if L is unimodular, H∗(L) is
isomorphic to the space of harmonic forms (see [2], for example); recall that a form
α is harmonic if dα = 0 and d � α = 0.

The approach used in [2] (and independently in [5]) can be interpreted as follows
([5] uses homology whereas we will use cohomology in this paper): suppose there
exists a closed p-form α ∈ ΛL∗ such that the submodule ΛZ ·[α] of H∗(L) generated
by α is free. This occurs if and only if the (p − k)-form iz1 iz2 . . . izk

α is not exact,
where {z1, . . . , zk} is any basis for the centre Z. Then, if {zj1 , zj2 , . . . , zjl

} is any
subset of {z1, . . . , zk}, the classes [izj1

izj2
. . . izjl

α] are all linearly independent, and
hence dim H∗(L) ≥ 2dim Z . In this case, the central representation is faithful.

The result in [5] is obtained by taking suitable hypotheses on an ideal I of L
so that such an α is given by the pullback to L of a nonzero form in Λdim L/IL/I.
(As noted in [2], there are many examples of Lie algebras where the central rep-
resentation is not faithful; [2] shows that H∗(L) is actually a module over a much
larger algebra containing ΛZ and begins the study of that module structure with
the TRC as a goal.) The result [5] and our theorem above give examples where the
central representation is faithful.

3. Proof of the theorem

Proof. Let L∗ denote the dual of L, and define subspaces U = (B ⊕ C)⊥, V =
(A⊕C)⊥ and W = (A⊕B)⊥ of L∗. The Koszul complex of L can then be written
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as (ΛU ⊗ ΛV ⊗ ΛW ; d). The fact that A and B are subalgebras and that C is
central implies that

d : U → Λ2U ⊕ (U ⊗ V ),(1)

d : V → Λ2V ⊕ (U ⊗ V ), and(2)

d : W → U ⊗ V.(3)

Now let σ, ε, τ be nonzero elements in Λdim UU, Λdim V V and Λdim W W respectively.
Thus σετ is a nonzero element in Λdim LL.

We shall show that the unimodularity assumptions imply that dσ = 0, and
that the class [σ] ∈ Hdim U (L) is nonzero. If {z1, . . . , zk} is a basis for C and
z = z1 . . . zk ∈ ΛkC, we will then have [izστ ] = ±[σ] �= 0, and so the ΛC module
generated by [στ ] is free. An identical argument will show that the ΛC module
generated by [τε] is also free.

To show that dσ = 0, first note that the unimodularity of the Lie algebra L is
equivalent to the condition

0 = Lx(σετ ), ∀x ∈ L.

As C is central, Lxτ = 0 and so

0 = (Lxσ)τε + σ(Lxτ )ε, ∀x ∈ L.

Now let x ∈ B, write d|V = d̄V + θ, with d̄V : V → Λ2V and θ : V → U ⊗ V ,
and denote Lx = ixd̄V + d̄V ix. The unimodularity of B then gives σε(Lxτ ) =
σε(Lxτ ) = 0 as well. Hence, for x ∈ B, we have

0 = (Lxσ)τε = ((ixd + dix)σ)τε = (ixdσ)τε.

Since σ ∈ Λdim UU , (1) implies dσ = σ ⊗ v for some v ∈ V . Thus 0 = (ixdσ)τε
gives 0 = (ixdσ), and so v = 0. Hence, dσ = 0.

Hence by (3), d(στ ) = (dσ)τ = 0. Now, since the hypotheses are symmetric in
U and V , a similar argument shows that dε = 0 and d(ετ ) = 0. We also know that
σ = ±�ετ , where � denotes the Hodge star map, so σ is harmonic and thus [σ] �= 0.
By the same reasoning, [ε] �= 0. Hence, the ΛC modules generated by [στ ] and [ετ ]
are free. �

4. Example

Let fn denote the (m + 1)-dimensional standard filiform algebra with basis {x0,
. . . , xn} and relations [x0, xi−1] = xi, 2 ≤ i ≤ n, and let hm denote the (2m + 1)-
dimensional Heisenberg algebra with basis {y1, . . . , ym, z1, . . . , zm, w} and relations
[yi, zi] = w, 1 ≤ i ≤ m. Consider the extension of fn ⊕ hm defined by introducing
the symbols

a1, . . . , am, b1, . . . , bn−1, c0, . . . , cm,
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and defining relations as follows:

[x0, zi] = ai, 1 ≤ i ≤ m,

[x0, y1] = −b1,

[x0, bi−1] = −bi, 2 ≤ i ≤ n − 1,

[xn, y1] = [xj , bn−j ] = c0, 1 ≤ j ≤ n − 1,

[x0, w] = [yi, ai] = c1, 1 ≤ i ≤ m, and

[x0, yi] = ci, 2 ≤ i ≤ m.

Now let A = fn⊕〈ai | 1 ≤ i ≤ m〉, B = hm⊕〈bi | 1 ≤ i ≤ n−1〉, C = 〈ci | 0 ≤ i ≤ m〉
and L = A ⊕ B ⊕ C, with the products above. Note that L is a nilpotent algebra
of nilpotency n, A and B are nonabelian subalgebras of L, and Z(L) = C, so
dim Z(L) = m + 1. Moreover, the derived algebra [L, L] is nonabelian, and hence
L is not of the form treated in [5], but satisfies the hypotheses of our theorem.

5. Application to free two-step algebras

Suppose Fm = Cm ⊕ C(m
2 ) is the free two-step algebra on m generators where

Z(Fm) = C(m
2 ). It is not difficult to show that for m > 2, the cohomology of

H∗(Fm) does not contain any free ΛZ summands. However, using the theorem, we
can see that H∗(Fm) does contain many free ΛC summands, for certain C ⊂ Z, as
follows. Write m = k + l for k, l positive integers, and decompose Fm as a direct
sum of subalgebras as follows:

(4) Fm = Fk ⊕ Fl ⊕ C(m
2 )−(k

2)−(l
2) =

(
C

k ⊕ C(k
2)

)
⊕

(
C

l ⊕ C(l
2)

)
⊕ C(m

2 )−(k
2)−(l

2).

Here, the last summand is the repository for brackets of elements in Ck and Cl.
The decomposition (4) allows an application of the theorem with A = Fk, B = Fl

and C = C(m
2 )−(k

2)−(l
2), and thus guarantees two free ΛC(m

2 )−(k
2)−(l

2) submodules
in H∗(Fm). Combining these for different k, l (valid when the co-generators are
independent) actually yields the TRC for the algebras Fm for m ≤ 5, and gives an
explicit method of constructing nontrivial cohomology classes in H∗(Fm).

It is interesting to note that for m ≤ 5, computer calculations show that the
theorem predicts the maximal dimension of central subspaces C for which there are
free ΛC summands in H∗(Fm). We conjecture that this will hold for all m.
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