

Faculty of Science » Department of mathematics and statistics

MAT 1341A Fall 2013 Final Exam

17 December, 2013.

Instructor - Barry Jessup

Family Name:

First Name:_____

Seat number:

Student number:_____

Some Advice

Take a few minutes to read the entire paper before you begin to write, and read each question carefully. The multiple choice questions are only worth 1 point and questions 11-15 are worth 6 points each. Make a note of the questions you feel confident you can do, and try those first: you do not have to do the questions in the order they are presented.

Instructions

1. You have 3 hours to complete this exam.

- 2. This is a closed book exam, and no notes of any kind are allowed. **The use of calculators**, cell phones or any text storage or communication device **is not permitted**.
- 3. Questions 1 to 10 are multiple choice. These questions have just one correct answer, are worth <u>1 point</u> each and no part marks will be given. Please record your answers in the spaces opposite.

4. Questions 11 – 15 require a complete solution, and are worth <u>6 points</u> each. Question 16 is a bonus question and should only be attempted after all other questions have been completed and checked.

Spend your time accordingly.

Answer questions 11 - 16 in the space provided, and use the backs of pages if necessary.

- 5. The correct answer requires justification written legibly and logically: you must convince me that you know why your solution is correct.
- 6. Where it is possible to check your work, do so.

Good luck! Bonne chance!

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
sub-total	
11	
12	
13	
14	
15	
16 [Bonus]	
Total	

- 1. The subset $\{(x, y, z) \in \mathbf{R}^3 \mid 5x 6y = -1\}$
 - A. a line in \mathbf{R}^2 with direction vector (5, -6).
 - B. a line in \mathbf{R}^2 with direction vector (-6, 5).
 - C. a plane in \mathbb{R}^3 through (1, 1, 1) with normal vector (5, -6, 0).

is

- D. a plane in \mathbb{R}^3 through (1, 1, 1) with normal vector (-6, 5, 0).
- E. a line in \mathbf{R}^3 with direction vector (5, -6).
- F. a line in \mathbf{R}^3 with direction vector (-6, 5).

- **2.** Which two of the following are subspaces of $\mathbf{F}(\mathbf{R}) = \{f \mid f : \mathbf{R} \to \mathbf{R}\}$?
 - $S = \{ f \in \mathbf{F}(\mathbf{R}) \mid f(-1)f(1) = 0 \}$ $T = \{ f \in \mathbf{F}(\mathbf{R}) \mid f(-1) = f(1) \}$ $U = \{ f \in \mathbf{F}(\mathbf{R}) \mid f(1) = 1 \}$ $V = \{ f \in \mathbf{F}(\mathbf{R}) \mid f(0) = 0 \}$
 - A. S and T. B. S and U. C. S and V. D. T and U. E. T and V. F. U and V.

3. Suppose $\{u, v, w\}$ is a set of vectors in a vector space V. Which of the following statements is equivalent to

" $\{u, v, w\}$ is linearly independent."

- I. None of the vectors u, v or w is a multiple of any other single vector in $\{u, v, w\}$.
- II. None of the vectors u, v or w is a linear combination of the other vectors in $\{u, v, w\}$.
- III. If a = b = c = 0, then au + bv + cw = 0.
- IV. If a, b, c are scalars, then au + bv + cw = 0 implies a = b = c = 0.
- V. Both $\{u, v\}$ and $\{v, w\}$ are linearly independent.
 - A. I & II B. I & III C. II & III D. II & V E. II & IV F. III & IV

4. The dimension of $\{A \in \mathbf{M}_{22}(\mathbf{R}) \mid A = A^t\}$ is:

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4
- F. 5

5. For a non-homogeneous system of 2013 equations in 1012 variables, answer the following three questions:

- \circ Can the system be inconsistent?
- Can the system have infinitely many solutions?
- Can the system have exactly one solution?
- A. No, Yes, No.
- B. Yes, Yes, Yes.
- C. Yes, Yes, No.
- D. No, No, No.
- E. Yes, No, Yes.
- F. No, No, Yes.

6. If the coefficient matrix A in a homogeneous system of 14 equations in 18 variables is known to have rank 8, how many parameters are there in the general solution?

A. 4 B. 6 C. 8 D. 10 E. 18 F. 0 7. Let A be a fixed 4×4 matrix and let $B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.

Then, BA can always be obtained from A by :

- A. Adding twice the second row of A to the fourth row of A
- B. Adding twice the fourth row of A to the second row of A
- C. Adding the second row of A to the fourth row of A
- D. Adding the fourth row of A to the second row of A
- E. Adding twice the second column of A to the fourth column of A
- F. Adding twice the fourth column of A to the second column of A

8. If
$$M = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 2 \end{bmatrix}$$
, which one of the following statements is true ?

B. The 3rd row vector of M^{-1} is (1, -1, 1). A. M is not invertible.

C. The 1st row vector of M^{-1} is (1, 2, 1). D. The 2nd row vector of M^{-1} is (1, 0, -1).

E. The 2nd column vector of M^{-1} is $\begin{vmatrix} 1 \\ 2 \\ -1 \end{vmatrix}$. F. M^{-1} is invertible, but none of B, C, D, or E is true.

9. Let A be an $n \times n$ matrix. Among the following statements, one is <u>not</u> equivalent to the other five. Which one is it?

- A. A is invertible.
- B. For any vector $b \in \mathbf{R}^n$, the system Ax = b has a unique solution $x \in \mathbf{R}^n$.
- C. The rows of A are linearly dependent.
- D. A can be row-reduced to the identity matrix I_n .
- E. The rank of A is n.
- F. The columns of A span \mathbb{R}^n .

10. If $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 3$, find $\begin{vmatrix} a & 4g & d - 2a \\ b & 4h & e - 2b \\ c & 4i & f - 2c \end{vmatrix}$. A. 24 B. -24 C. 12 D. -12 E. 6

11. a) Let $k \in \mathbf{R}$ and consider the linear system in the unknowns x, y and z:

Find all values of k for which this system has

- (i) a unique solution,
- (ii) infinitely many solutions, and
- (iii) no solutions.

11. b) Find all solutions of

2x	+	y	+	z	=	14
3x	+	3y			=	15
5x	+	4y	+	z	=	29

such that x, y and z are integers with $x \ge 3, y \ge 0$ and $z \ge 2$.

- **12.** $W = \text{span}\{(1,0,1,0), (0,1,0,1), (0,0,0,1), (1,1,1,0)\} \subset \mathbb{R}^4.$
- a) Find a basis of W which is a subset of the given spanning set.
- b) Find an orthogonal basis of W.
- c) Find the best approximation to (0, 1, -1, 1) in W.
- d) Extend your basis of W in (b) to a basis of \mathbb{R}^4 .

13.
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
.

- a) Show that the eigenvalues of A are 5 and -1.
- b) Find a basis of $E_5 = \{v \in \mathbf{R}^3 \mid Av = 5v\}.$
- c) Find a basis of $E_{-1} = \{v \in \mathbf{R}^3 \mid Av = -v\}.$
- d) Find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$. Explain why your choice of P is invertible.

14. Let $u = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ and define a linear transformation $S : \mathbf{R}^3 \to \mathbf{R}^3$ by

$$S(v) = (u \cdot v) u, \qquad v \in \mathbf{R}^3$$

where " $u \cdot v$ " denotes dot product of u and v. (You do <u>not</u> have to prove that S is linear.)

a) If
$$v = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbf{R}^3$$
, show that $S(v) = \begin{bmatrix} x - y + z \\ -x + y - z \\ x - y + z \end{bmatrix}$

b) Find a 3×3 matrix A such that S(v) = Av, where Av denotes the matrix product of A and v.

- c) Find a basis for ker $S = \{v \mid S(v) = 0\}$, and give a complete geometric description of ker S.
- d) Find a basis for im $S = \{S(v) \mid v \in \mathbf{R}^3\}$, and give a complete geometric description of im S.

16

15. State whether each of the following is (always) true, or is (possibly) false, in the box after the statement.

- If you say the statement may be false, you must give an explicit example with numbers!
- If you say the statement is true, you must give a clear explanation by quoting a theorem presented in class, or by giving a *proof valid for every case*.
- a) If U and V are subspaces of \mathbf{R}^2 , then their union

 $U \cup V = \{ w \in \mathbf{R}^3 \mid w \in U \text{ or } w \in V \}$

is also a subspace of \mathbf{R}^2 .

ANSWER

b) $\begin{bmatrix} 2 & 0\\ 1 & 3 \end{bmatrix}$ is diagonalizable.

ANSWER

- **15** (cont.)
 - c) If 0 is an eigenvalue of 7×7 matrix A, then A is invertible.

ANSWER

- R
- d) If A is an $m \times n$ matrix with n > 1 and m > 1, and if the reduced row echelon form of A has a row of zeros, then rank A < n.

16. (4 bonus marks) Make sure you finish and check the rest of the paper before trying this. Bonus marks are much harder to earn.

Prove carefully that if A is an 11×11 anti-symmetric matrix (i.e. $A^t = -A$), then 0 is an eigenvalue of A. (Your proof must be valid for all possible 11×11 anti-symmetric matrices.)