MAT 1341A Diagnostic test 2011

September 17, 2011. Duration: 80 minutes

Instructor: Barry Jessup

θ	$\sin \theta$	$\cos \theta$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Total	

Family Name:

First Name:

Student number:

PLEASE READ THESE INSTRUCTIONS CAREFULLY.

- 1. You have 80 minutes to complete this exam.
- 2. This is a closed book exam, and no notes of any kind are allowed. The use of any text storage or communication device is not permitted.
- 3. Read each question carefully you will save yourself time and unnecessary grief later on.
- 4. All questions are multiple choice, are worth 1 point each and no part marks will be given. Please record your answers in the space provided above.
- 5. Where it is possible to check your work, do so.
- 6. Good luck! Bonne chance!

1. An equation of the plane parallel to the vector (1, 1, -2) and which passes through the points (1, 0, 3) and (0, 1, 11) is:

A.
$$5x - 11y + 2z = 11$$

B.
$$7x - 9y + 2z = 13$$

C.
$$5x - 7y - z = 2$$

D.
$$5x - 3y + z = 8$$

E.
$$x + 18y + 9z = 8$$

F.
$$9x - 6y + 5z = 8$$

2. Parametric equations of the line containing (2, 0, 1) and which is parallel to the two planes x - y + 3z = 0 and 3x - 5y + 4z = 1 are:

A.
$$x = 2 + 11t$$
, $y = 5t$, $z = 1 + 2t$, $t \in \mathbf{R}$

B.
$$x = -2 + 5t$$
, $y = -5t$, $z = 1 - 10t$, $t \in \mathbf{R}$

C.
$$x = -2t, y = 0, z = t, t \in \mathbf{R}$$

D.
$$x = -2 + 11t$$
, $y = -3t$, $z = 1 + 2t$, $t \in \mathbf{R}$

E.
$$x = 2t, y = 0, z = t, t \in \mathbf{R}$$

F.
$$x = 2 + 11t$$
, $y = 5t$, $z = 1 - 2t$, $t \in \mathbf{R}$

- **3.** If u = (1, 3, -2), v = (0, 2, -1), w = (1, -1, 2) then the cosine of the angle between $(v \times w)$ and $(u \times v)$ is:
 - A. $\frac{2}{21}$
 - B. $-\frac{1}{21}$
 - C. $\frac{\sqrt{2}}{\sqrt{21}}$
 - $D. -\frac{1}{\sqrt{7}}$
 - E. $-\frac{1}{\sqrt{21}}$
 - $F. \frac{2}{\sqrt{7}}$

- **4.** If $\mathbf{u} = (1, 0, 1)$ and $\mathbf{v} = (-3, 4, 10)$, the orthogonal projection of \mathbf{v} along \mathbf{u} is:
 - A. (7,0,7)
 - B. (-7,0,-7)
 - C. $\left(-\frac{7}{2}, \ 0, \ -\frac{7}{2}\right)$
 - D. $(\frac{7}{2}, 0, \frac{7}{2})$
 - E. $(\frac{11}{2}, 0, \frac{11}{2})$
 - F. $\left(-\frac{11}{2}, \ 0, \ -\frac{11}{2}\right)$

- **5.** The volume of the parallelepiped with edges given by the vectors $u=(1,\ 1,\ 1),\ v=(1,\ 3,\ 2)$ and $w=(1,\ 1,\ 3)$ is:
 - A. 2
 - B. $\frac{\sqrt{2}}{2}$
 - C. $1/\sqrt{2}$
 - D. $1\sqrt{2}$
 - E. 4
 - F. $4\sqrt{2}$

- **6.** Find the area of the triangle with vertices $A=(0,\ 6,\ 1),\ B=(2,\ 1,\ 5)$ and $C=(2,\ 5,\ 1).$
 - A. 1
 - B. 2
 - C. 3
 - D. 4
 - E. 5
 - F. 6

- 7. Let L be the line passing through (1, 1, 0) and (3, 5, 2). The point of intersection of L with the plane x + y z = 1 is:
 - A. $(\frac{1}{2}, \frac{1}{2}, 0)$
 - B. $(\frac{1}{2}, 0, -\frac{1}{2})$
 - C. (1, 0, 0)
 - D. $(0, \frac{1}{2}, -\frac{1}{2})$
 - E. (0, 1, 0)
 - F. (-1, 0, -1)

- 8. Find the intersection of the lines $x=2+2s,\ y=2-s,\ z=2-2s$ and $x=4+5t,\ y=3-t,\ z=4-2t.$
 - A. (6, 7, -4)
 - B. (-4, 8, 3)
 - C. (4, 4, 4)
 - D. (2, 0, -2)
 - E. $\frac{1}{3}(14, -23, 13)$
 - F. $\frac{1}{3}(-8, 13, 20)$

9. Find a scalar equation for the plane with vector parametric equation

$$v = (0, 2, -2) + s(1, -1, 2) + t(4, -6, 3); s, t \in \mathbf{R}.$$

- A. 4x 9y + 36z = 18
- B. 9x + 5y 2z = 14
- C. 7x 8y + 5z = 6
- D. 9x 11y + 18z = -40
- E. 9x 2y + 2z = 0
- F. 3x + 2y z = 0

- 10. The distance from the point (5, 0, 0) to the plane 2x y + 8z = -3 is:
 - A. $\frac{13}{\sqrt{69}}$
 - B. $\frac{19}{\sqrt{69}}$
 - C. $\frac{15}{\sqrt{69}}$
 - D. 0
 - E. $\frac{13}{69}$
 - F. $\frac{19}{69}$

11. Evaluate Im(z) if

$$z = \frac{1}{(-1+i)(2-2i)}.$$

- A. $\frac{1}{2}$
- B. $-\frac{1}{2}$
- C. $-\frac{1}{5}$
- D. $\frac{1}{4}$
- E. $-\frac{1}{4}$
- F. 1

12. Find the polar form of:

$$\frac{1+i\sqrt{3}}{-\sqrt{2}+i\sqrt{2}}$$

- A. $2(\cos(-\frac{\pi}{12}) + i\sin(-\frac{\pi}{12}))$
- B. $\cos(-\frac{\pi}{12}) + i\sin(-\frac{\pi}{12})$
- C. $\cos(\frac{5\pi}{12}) + i\sin(\frac{5\pi}{12})$
- D. $\cos(-\frac{5\pi}{12}) + i\sin(-\frac{5\pi}{12})$
- E. $2(\cos(-\frac{5\pi}{12}) + i\sin(-\frac{5\pi}{12})$
- F. $2(\cos(\frac{\pi}{12}) + i\sin(\frac{\pi}{12}))$