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ZEROS OF THE EISENSTEIN SERIES E2

ABDELKRIM EL BASRAOUI AND ABDELLAH SEBBAR

(Communicated by Keno Ono)

Abstract. In this paper we investigate the zeros of the Eisenstein series E2.
In particular, we prove that E2 has infinitely many SL2(Z)-inequivalent zeros in
the upper half-plane H, yet none in the standard fundamental F. Furthermore,
we go on to investigate other fundamental regions in the upper half-plane H

for which there do or do not exist zeros of E2. We establish infinitely many
such regions containing a zero of E2 and infinitely many which do not.

1. Introduction

Let H = {τ ∈ C, Im(τ ) > 0} be the upper half-plane. The Eisenstein series are
defined for every even integer k ≥ 2 and τ ∈ H by

Ek(τ ) = 1− 2k
Bk

∞∑
n=1

σk−1(n)q
n(1)

= 1− 2k
Bk

∞∑
n=1

nk−1qn

1− qn
, q = e2πiτ .

Here Bk is the k-th Bernoulli number and σk(n) =
∑

d|n dk.

These series play an important role in the theory of modular forms and quasi-
modular forms. They have been the topic of extensive investigation for a long time
from various points of view. For instance, from the analytic point of view, the
study of the zeros of Ek(z), k ≥ 4, has been carried out by several authors. In
1963, K. Wohlfahrt proved in [6] that the zeros of Ek, 4 ≤ k ≤ 26, are simple
and lie in the arc of the unit circle

{
z = eiθ : π/2 ≤ θ ≤ 3π/2

}
in the fundamental

domain F = {τ ∈ H, |τ | ≥ 1 and |Re(τ )| ≤ 1/2} of the modular group SL2(Z).
He also conjectured that this holds for all k ≥ 4. In 1970, F.K.C. Rankin and
H.P.F. Swinnerton-Dyer [5] proved Wohlfahrt’s conjecture. In 1982, R.A. Rankin
[4] generalized their result to a certain class of Poincaré series. However, nothing
has been proven for the Eisenstein series E2, which is important in many fields. In
fact, even whether it has a finite or an infinite number of zeros has not been known.

In this paper, we prove that there are infinitely many non-equivalent zeros of E2

in H. In fact, since E2 is not exactly a modular form but rather a quasi-modular
form, two zeros τ0 and τ1 of E2 are SL2(Z)-equivalent, that is τ1 = γ · τ0 for
γ ∈ SL2(Z) if and only if τ1 = τ0 + n for an integer n. Thus, we restrict our
investigation to the half-strip S = {τ ∈ H, − 1

2 < Re(τ ) ≤ 1
2}, in which we prove
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that there are infinitely many zeros for E2. Moreover, these zeros present a strange
distribution in S. More precisely, the fundamental domain F and infinitely many
of its conjugates within S contain no zero of E2, while there are infinitely many
conjugates of F which contain zeros of E2.

2. Eisenstein series: Some properties

The most familiar Eisenstein series are

E2(τ ) = 1− 24

∞∑
n=1

σ1(n)q
n,(2)

E4(τ ) = 1 + 240

∞∑
n=1

σ3(n)q
n,(3)

E6(τ ) = 1− 504

∞∑
n=1

σ5(n)q
n.(4)

The series E4 and E6 are, respectively, modular forms of weight 4 and 6. How-
ever, the Eisenstein series E2 is not a modular form. In fact, it transforms under
the action of the modular group as follows (see [3]).

Proposition 2.1. For α =

(
a b
c d

)
∈ SL2(Z), we have

E2(α · τ ) = (cτ + d)2E2(τ ) +
6c

πi
(cτ + d),(5)

where

α · τ =
aτ + b

cτ + d
.

This proposition can be proved using the fact that E2 is the logarithmic deriv-
ative of the modular discriminant Δ = 1

1728 (E
3
4 − E2

6) of weight 12, the derivation

being 1
2πi

d
dτ .

These three functions were especially studied by Ramanujan [2], who proved that
they satisfy the following differential equations:

1

2πi

dE2

dτ
=

1

12
(E2

2 − E4),(6)

1

2πi

dE4

dτ
=

1

3
(E2E4 − E6),(7)

1

2πi

dE6

dτ
=

1

2
(E2E6 − E2

4).(8)

Thus the graded ring C[E2, E4, E6] is closed under the differential operator d
dτ . It

is known that the space of all modular forms is exactly the graded ring C[E4, E6].
We shall at this stage give some special values of E2 at i and at the cubic root of

unity ρ = −1+i
√
3

2 :

E2(i) =
3

π
,(9)

E2(ρ) =
2
√
3

π
.(10)

This follows from the transformation formula for E2 together with the appropriate
transformations that fix i and ρ.
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3. Zeros of the Eisenstein series E2

In this section we prove that the series E2 has infinitely many zeros, a fact that

has not been known before. Set S =

(
0 −1
1 0

)
and Sn =

(
1 0
n 1

)
for positive

integers n.

Proposition 3.1. The Eisenstein series E2 has a zero τ0, on the imaginary axis
and a zero τ1 on the axis Re(z) = 1

2 .

Proof. It is clear that for τ = iy, the series E2(τ ) is real and increasing on (0, ∞).
Meanwhile, lim

y→0
E2(iy) = −∞ and lim

y→∞
E2(iy) = 1. It follows that E2 has a unique

zero, say τ0, on the purely imaginary axis.
Similarly, E2(τ ) is real for τ = 1/2 + iy, y > 0. Furthermore, we have

lim
y �→0

E2

(
1

2
+ iy

)
= −∞.

Indeed, for α = S−1
2 =

(
1 0

−2 1

)
we have

E2

(
1

2
+ iy

)
= − 1

y2

(
1

4
E2

(
−1

2
+

i

4y

)
− 6y

π

)
.

This gives the desired limit since E2

(
− 1

2 + i
4y

)
tends to 1 as y tends to 0. Com-

bining this with the fact that E2(ρ) = E2(ρ + 1) = 2
√
3

π yields the existence of a

zero τ1 of real part 1/2 and whose imaginary part is less than
√
3/2. Here again

we used the transformation formula in Proposition 2.1 with α =

(
1 1

0 1

)
. �

As for the location of these two zeros, and taking into account the special value
of E2 at i and ρ given respectively by (9) and (10), we have

Proposition 3.2. The zeros τ0 and τ1 are contained respectively in the fundamental
domains SF, S2F.

It is worth mentioning that numerical values of these two zeros appear in [1],
where they are studied as equilibrium points of Green’s functions.

Unlike the case of modular forms, the set of zeros of E2 is not invariant under
every conjugation by elements of SL2(Z). In fact we have

Proposition 3.3. Two zeros of E2 are equivalent if and only if one is a translate
of the other by an integer.

Proof. Suppose that z1, z2 are any two zeros of E2 in the half-plane H that are

equivalent modulo SL2(Z). Say, z1 = α · z2, α =

(
a b
c d

)
. Then, by the trans-

formation formula for E2 in Proposition 2.1, we have

E2(z1) = 0 = E2(α · z2) = (cz2 + d)2E2(z2) +
6c

πi
(cz2 + d) =

6c

πi
(cz2 + d),

which is possible only when c = 0, and in this case we have a = d = ±1; that is, α is
a translation. The converse follows from the invariance of E2 under translation. �
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As a consequence we have

Corollary 3.4. No two distinct zeros of E2 in the half-strip S are equivalent
modulo the modular group SL2(Z).

We now state the main results of this section.

Theorem 3.5. The Eisenstein series E2 has infinitely many zeros in the half-strip
S = {τ ∈ H, − 1

2 < Re(τ ) ≤ 1
2}.

Proof. Let τ0 be the unique zero of E2 on the imaginary axis. Let α =

(
t u
v w

)
∈

SL2(Z), where tv �= 0. Then, by Equation (5), we have

E2(τ0) = 0 = E2(α
−1α · τ0) = (−v(α · τ0) + t)2E2(α · τ0)−

6v

πi
(−v(α · τ0) + t).

It follows that

(−v(α · τ0) + t)E2(α · τ0) =
6v

πi
,

which is equivalent to saying that

E2(α · τ0)
(α · τ0)E2(α · τ0) + 6

πi

=
v

t
.

This means that the map f(z) defined by

f(z) =
E2(z)(

zE2(z) +
6
πi

)
carries α · τ0 onto r0 = v/t, and thus it maps any open neighborhood D0 of α · τ0,
which we choose in the interior of the fundamental domain αSF and on which it
is holomorphic, onto an open neighborhood U0 of r0. Let r1 = a1/b1 be a reduced
fraction in Q∩U0\{r0}. Then there exists z1 ∈ D0\{α·τ0} such that f(z1) = a1/b1.
Therefore,

(11) (−a1z1 + b1)E2(z1) =
6a1
πi

.

Choose c1, d1 ∈ Z such that b1d1 − a1c1 = 1. Then

γ1 :=

(
d1 −c1
−a1 b1

)
∈ SL2(Z).

If we set τ1 = γ1 · z1, then, using (5) and (11), we have E2(τ1) = 0. Moreover,
τ1 is not equivalent to τ0 modulo SL2(Z); otherwise we would have, according to

Proposition 3.3, that τ0 := Tnγ1 · z1 for some n ∈ Z with T =

(
1 1

0 1

)
. Since

z1 ∈ αSF, write z1 = α · z′1 for some z′1 ∈ SF. We have τ0 = Tnγ1α · z′1 with τ0 and
z′1 being in the fundamental domain SF. Therefore, Tnγ1α = 1, and hence τ0 = z′1
and α · τ0 = z1, a contradiction since we have chosen z1 ∈ D0 \ {ατ0}. Thus τ1 is a
zero of E2 that is not equivalent to τ0.

It remains to show that two distinct rational numbers lead to two distinct zeros
of E2. Let r2 = a2/b2 be a rational number in U0 \ {r0, r1}. In the same way we
construct a zero of E2, τ2 = γ2 ·z2, that is not equivalent to τ0 modulo SL2(Z), with
z2 ∈ αSF. Then τ2 is not equivalent to τ1 modulo SL2(Z). Indeed if τ1 = Tm · τ2
for some m ∈ Z, then γ1α · z′1 = Tmγ2α · z′2 with z′1 and z′2 being in the same
fundamental domain SF. It follows that γ1α = Tmγ2α, and consequently r1 = r2.
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This contradicts our choice of r2. Hence, τ2 is another zero of E2 that is not
equivalent to either τ0 or τ1. Finally, since the open set U0 contains infinitely many
rational numbers, we deduce that E2 has infinitely many zeros in the half-strip
S. �

Since E2 is the logarithmic derivative of the discriminant Δ, from the above
theorem we deduce

Corollary 3.6. The discriminant Δ has infinitely many critical points.

We now look at the multiplicity of the zeros of E2.

Theorem 3.7. The zeros of the Eisenstein series E2 are all simple.

Proof. Let z0 be a zero of E2. By (6), we have

1

2πi

dE2(z0)

dτ
=

1

12
(E2(z0)

2 − E4(z0)) =
−1

12
E4(z0).

Therefore, to prove that this zero is simple, it suffices to show that E4(z0) �= 0.

It is known that E4 has all its zeros at ρ = −1+i
√
3

2 and its conjugates modulo
SL2(Z) (see for instance [3]). Thus, it is enough to show that E2(α · ρ) �= 0 for all

α ∈ SL2(Z). Using (5) and (10), we have for α =
(
a b
c d

)
∈ SL2(Z):

E2(α · ρ) = (cρ+ d)2
2
√
3

π
+

6c

πi
(cρ+ d) =

2
√
3

π
(c2 − cd+ d2) ,

which does not vanish unless c = d = 0, which is not the case since ad − bc = 1.
This shows that E2 does not vanish on the orbit of ρ and that consequently E4 and
E2 have no common zeros. �

4. Distribution of the zeros of E2

In this section, we will show that there are infinitely many fundamental regions
within the half-strip S that contain zeros of E2, and we will also show that there
are infinitely many such regions that do not contain any zero of E2.
Theorem 4.1. There is a positive integer c0 such that for all integers c ≥ c0,
there is a fundamental domain with a vertex at 1/c containing a zero of E2.

Proof. Let τ0 again denote the unique zero of E2 on the imaginary axis, and let
α =

(
t u
v w

)
∈ SL2(Z), so that tv �= 0. As in the proof of Theorem 3.5 the map

f(z) =
E2(z)(

zE2(z) +
6
πi

)
maps any neighborhood of α·τ0 onto a neighborhood of v/t. In particular, f maps a
neighborhood D0 of S1τ0, chosen to be in the interior of S1SF, onto a neighborhood
U0 of 1 (recall that S1 =

(
1 0
1 1

)
). There exists a positive integer c0 such that for all

c ≥ c0, 1 + 1/c ∈ U0. For each c ≥ c0, let zc ∈ D0 be such that f(zc) = 1 + 1/c.
Therefore, if γc =

( −1 1
−1−c c

)
, then, as in the proof of Theorem 3.5, γc

−1 · zc is a zero

E2 belonging to γc
−1S1SF. If we set Sc = γc

−1S1S =
(
1 0
c 1

)
for c ≥ c0, then we

have constructed a zero of E2 in the fundamental domain ScF which has a vertex
at the cusp 1/c. �
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Remark 4.1.

• Thanks to Proposition 3.3, the above theorem can be extended to include
the cusps 0 and 1/2.

• An immediate consequence of this theorem is again the infiniteness of the
number of zeros of the Eisenstein series E2. Furthermore, it follows from
Corollary 3.4 that all these zeros are inequivalent modulo SL2(Z), as all
these fundamental domains are contained in the half-strip S.

We now focus on the fundamental domains that contain no zeros of E2.
Proposition 4.2. The Eisenstein series E2 has no zeros in the fundamental do-
main F of SL2(Z).

Proof. Let τ0 = iy0 be the unique zero of E2 on the imaginary axis. Using the
transformation formula for E2, we have

0 < E2(−1/τ0) =
6

π
y0 < 1.

This follows from the fact that Im(τ0) < 1 (since τ0 ∈ SF) and thus Im(−1/τ0) >
Im(τ0), and the fact that E2 is strictly increasing on the imaginary axis with the
value 0 at τ0 and the value 1 at i∞. Therefore

(12) y0 <
π

6
.

If τ = x+ iy ∈ F is a zero of E2, then Im(τ ) >
√
3/2 > π/6 > y0 and therefore

1

24
|1− E2(τ )| =

∣∣∣∣∣
∞∑

n=1

σ1(n)e
2πinτ

∣∣∣∣∣ ≤
∞∑

n=1

σ1(n)e
−2πny <

∞∑
n=1

σ1(n)e
−2πny0 .

The latter sum is simply 1/24(1− E2(τ0)) = 1/24. Therefore

1

24
|1− E2(τ )| <

1

24
.

Hence E2(τ ) cannot be 0 if τ ∈ F. �

In the above proof we have used the inequality
√
3/2 > π/6, which is obvious

numerically but is a consequence of a simpler inequality such as π < 4. In what
follows we will rely on another inequality which is also numerically obvious:

(13) e−π
√
3 <

1

200
.

It simply says that 0.00433 < 0.005.
We will now investigate more fundamental domains that do not contain any

zeros of E2. For a fixed integer c ≥ 2 we again set Sc =

(
1 0
c 1

)
and Sb,d(c) =(

1 b
c d

)
∈ SL2(Z), b, d ∈ Z, and δb =

(
0 −1
1 b

)
∈ SL2(Z), b ∈ Z. The

fundamental domain Sb,d(c)F has a vertex at the cusp 1/c, as does ScF. Also δbF
has a vertex at the cusp 0, as does SF.

Let us examine more closely the fundamental domain ScF. Its vertices are

1

c
, Sc · ρ =

c− 1
2 + i

√
3
2

c2 − c+ 1
, Sc · (ρ+ 1) =

c+ 1
2 + i

√
3
2

c2 + c+ 1
.

It is clear that Im(Sc ·ρ) > ImSc · (ρ+1) and ReSc ·ρ > 1/c > ReSc · (ρ+1). Thus
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1/c

Sc
. ρ

Sc
. ρ+1(      )

r (c)

c (c)

2

2 1

1

c (c)

r (c)

Figure 1

we have the following situation for the fundamental region ScF (see Figure 1).
The edge joining 1/c and Sc · ρ is an arc of the circle C1(c) centered at c1(c) =

(c − 1)/c(c − 2) and having radius r1(c) = 1/c(c − 2), while the edge joining 1/c
and Sc · (ρ+1) is an arc of the circle C2(c) centered at c2(c) = (c+1)/c(c+2) with
radius r2(c) = 1/c(c+ 2). In particular, any other fundamental domain having the
cusp 1/c as a vertex is either within the circle C1(c) or within the circle C2(c).

The case c = 2 needs to be clarified, as the radius r1(2) is infinite and in this

case the arc joining 1/2 and S2 · ρ is the vertical segment
[
1/2, 1/2 + i

√
3/6

]
(see

Figure 2). Moreover, as we are restricting the study to the half-strip S, we only
consider those fundamental domains with vertex at the cusp 1/2 that lie under the
arc of the circle C2(2). It has center at c2(2) = 3/10 and radius r2(2) = 1/10.

Lemma 4.3. If we set

M =
1

24

(
1− E2

(
i
√
3

2

))
,

then we have

(14) 242
(
M2 +

M

π

)
< 1.

Proof. Set q = exp(−π
√
3). We have

0 < M =
∑
n≥1

σ1(n) q
n =

∑
n≥1

nqn

1− qn
≤ 1

1− q

∑
n≥1

nqn =
q

(1− q)3
.

Hence, using (13), we have

M ≤ 40000

7880599
.

Therefore,

242
(
M2 +

M

π

)
< 242

(
M2 +

M

3

)
≤ 61444600320000

62103840598801
< 1.

�
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0 1/2−1/2

ρ

i

ρ+1

S2
ρ.

         
(       )ρ+1.S

2

F

Figure 2

In the following, we will prove that the only fundamental domains having a
vertex at the cusp 1/c that might contain a zero of E2 are the βcF, and the only
fundamental domain having a vertex at the cusp 0 that might contain a zero is SF.

Theorem 4.4. If b �= 0, then E2 has no zeros in Sb,d(c)F or in δbF.

Proof. Suppose first that c ≥ 3, and suppose there is a zero z0 of E2 in the fun-

damental domain Sb,d(c)F where Sb,d(c) =

(
1 b
c d

)
∈ SL2(Z). If b �= 0, then,

according to the discussion preceding the above lemma, the fundamental domain
Sb,d(c)F is either within the circle C1(c) or C2(c). We will show that in fact z0 is
outside the circles C1(c) and C2(c), which is a contradiction.

We have

E2(Sb,d(c)
−1 · z0) =

−6c

πi
(−cz0 + 1),

so that

∞∑
n=1

σ1(n)e
2πniSb,d(c)

−1·z0 =
1

24
+

c

4πi
(−cz0 + 1)

= − c2

4πi

(
z0 −

(
1

c
+

πi

6c2

))
.(15)
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Since Sb,d(c)
−1 · z0 ∈ F, we have

Im (Sb,d(c)
−1 · z0) ≥

√
3

2
.(16)

Hence ∣∣∣∣∣
∞∑

n=1

σ1(n)e
2πniS−1

b,d·z0

∣∣∣∣∣ ≤
∞∑

n=1

σ1(n)e
−nπ

√
3 = M.(17)

Therefore ∣∣∣∣z0 −
(
1

c
+

πi

6c2

)∣∣∣∣ ≤ M
4π

c2
;(18)

that is, z0 belongs to the disk D0(c) of center c0(c) =
1
c + πi

6c2 and radius r0(c) =

M 4π
c2 . We will now show that the disk D0(c) lies outside the circles C1(c) and C2(c)

by showing respectively that |c0(c)−c1(c)| > r1(c)+r0(c) and that |c0(c)−c2(c)| >
r2(c)+ r0(c). Because the cusp 1/c and c0(c) are on the same vertical axis, we have

|c1(c)− c0(c)|2 = r1(c)
2 +

( π

6c2

)2

.

Thus in order to prove that |c0(c)− c1(c)| > r0(c) + r1(c) we only need to prove
that

r0(c)
2 + 2r0(c)r1(c) <

( π

6c2

)2

.

In other words,

2πM2 +
Mc

c− 2
<

π

288
.

In the meantime, for c ≥ 4, we have c/(c−2) = 1+2/(c−2) ≤ 2. Thus it is enough
to prove that 2πM2 + 2M < π/288, which is a consequence of Lemma 4.3.

Similarly, we prove that |c2 − c0| > r2 + r0. Indeed, as above, it is enough to
show that

2πM2 +
Mc

c+ 2
<

π

288
,

which is a consequence of Lemma 4.3 since c/(c + 2) < 1. Notice that |c2 − c0| >
r2+r0 is also valid for the cases c = 2 and c = 3. This proves the theorem for c ≥ 4
and also for c = 2 since the circle C1(c) is the vertical line Re z = 1/2, and thus we
only need to estimate the distance |c2 − c0|.

The case c = 3 involves different estimates since we cannot apply Lemma 4.3
for the above choice of M . As we noticed above z0 is outside the circle C2(3), and
we only need to show that it is outside C1(3). On the other hand, the fundamental
domain S−1,−2(3)F is adjacent (on the right) to S3F (see Figure 3), and the disc
D0(3) is outside the circle C3 which joins the vertices 1/3 and S−1,−2(3) ·ρ. Indeed,
this circle is centered at 8/21 and has radius 1/21. Moreover

|c0(3)− 8/21| =
√
324 + 49π2

378
≈ 0.07518,

and

r0(3) +
1

21
=

4πM

9
+

1

21
<

4π

9 · 200 +
1

21
≈ 0.0546.

It follows that the only possible values of (b, d) for which Sb,dF might contain a zero
are (b, d) = (−1,−2) leading to S−1,−2(3)F and (b, d) = (0, 1) leading to S(3)F. We
now show that z0 /∈ S−1,−2(3)F by exhibiting a smaller disc D(3) containing z0
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0 1/2−1/2

ρ

i

ρ+1

F

1/3

S

S
2
. ρ

ρ.
3S

3
. S

−1,−2
(3) . ρ(     )ρ+1

Figure 3

and lying outside the circle C1(3) as the disc D0(3) does not necessarily meet this
condition. The transformation S−1,−2 maps D0(3) onto a disc D′

0(3) centered at

c′0(3) = S−1,−2(3)
−1 · c0(3) =

6i

π
+

2

3

and with radius r′0(3) that can easily be shown to satisfy r′0(3) < 0.26. Therefore,
we obtain a more precise lower bound to ImS−1,−2(3) · z0 as compared to (16):

ImS−1,−2(3) · z0 >
6

π
− 0.26.

We now replace M in Lemma 4.3 by

M ′ =
1

24
(1− E2 (i(6/π − 0.26)))

and obtain

2πM ′2 + 3M ′ < π/288.

Hence, as in the general case, we conclude that∣∣∣∣z0 −
(
1

3
+

iπ

54

)∣∣∣∣ ≤ M ′ 4π

9
,

and therefore, the disc D(3) = D(1/3+ iπ/54, 4πM ′/9) is outside the circle C1(3).
It follows that there is no zero of E2 in S−1,−2(3)F and thus in any Sb,d(3)F for
b �= 0.
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Finally, for the case of the cusp at 0, if z0 is a zero of E2 in δbF, then z0 is
contained inside the circle centered at πi

6 and having radius 4Mπ which is clearly
contained in SF. Therefore b = 0, since, otherwise, δbF and SF are disjoint. �
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