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Abstract
Based on mirror symmetry, we discuss geometric engineering of N = 1
ADE quiver models from F-theory compactifications on elliptic K3 surfaces
fibred over certain four-dimensional base spaces. The latter are constructed as
intersecting 4-cycles according to ADE Dynkin diagrams, thereby mimicking
the construction of Calabi–Yau threefolds used in geometric engineering in
type II superstring theory. Matter is incorporated by considering D7-branes
wrapping these 4-cycles. Using a geometric procedure referred to as folding,
we discuss how the corresponding physics can be converted into a scenario
with D5-branes wrapping 2-cycles of ALE spaces.

PACS numbers: 11.25.Mj, 02.40.Dr

1. Introduction

The construction of four-dimensional supersymmetric gauge theories has attracted
much attention and has been investigated from various points of view in superstring
compactifications, for example. The approach of interest here is the construction of gauge
theories from geometric data of superstring backgrounds. Thus, the gauge group and matter
content of the resulting models are obtained from the singularities of the K3 fibres and the
non-trivial geometry describing the base space of the internal manifolds. In this way, the
complete set of physical parameters of the gauge theory is related to the moduli space of
the associated manifolds. This programme is called geometric engineering [1–6]. It enables
one to represent supersymmetric gauge models by quiver diagrams similar to Dynkin graphs
of ordinary, affine or indefinite Lie algebras [2, 4, 5]. One considers the base space to be
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composed of a collection of intersecting compact cycles, each of which is giving rise to an SU

gauge-group factor. To each of these is associated a Dynkin node, and for each pair of groups
with matter in bi-fundamental representations, the two corresponding nodes are connected by
a line.

Four-dimensional quiver gauge models have been constructed also in M-theory on seven-
dimensional manifolds with G2 holonomy. The compactification manifolds are K3 fibrations
over three-dimensional base spaces with ADE geometries. The resulting gauge theories have
been discussed in the realm of (p, q) brane webs [7].

The aim of the present paper is to contribute to the programme of geometric engineering
by constructing four-dimensional N = 1 ADE quiver models from F-theory compactifications.
For an earlier work on geometric engineering in F-theory, we refer to [8]. The manifolds of
our interest are elliptic K3 surfaces fibred over ADE 4-cycles, where the base is obtained by
resolving the ADE hyper-Kähler singularities [9], and are similar to the Calabi–Yau threefolds
used in type II geometric engineering [1]. An objective here is to construct explicit models of
such geometries leading to gauge theories with bi-fundamental matter in four dimensions. As
an illustration, we consider Ar quiver gauge models by introducing 4-cycles in the base which
are intersecting according to an Ar Dynkin graph. In particular, we consider in some details the
cases of A1 and A2, and we find that they are linked to ordinary A1 and A2 singularities of the
asymptotically locally Euclidean (ALE) spaces. The dual type IIB models involve D7-branes
wrapping ADE 4-cycles. Using a geometric procedure referred to as folding, we show that
the corresponding physics can be converted into a scenario with D5-branes wrapping 2-cycles
of ALE spaces.

The present paper is organized as follows. Section 2 provides a brief review on how
geometric engineering may be used to obtain four-dimensional gauge models from superstring
theory or M-theory. The basic extension to F-theory is discussed in section 3 where focus
is on the construction of ADE fourfolds. Mirror symmetry is employed in section 4 when
studying the resulting physics in the presence of D7-branes. The folding procedure linking
this to a similar study of D5-branes in superstring theory is also discussed in section 4.
Section 5 contains some concluding remarks.

2. Geometric engineering

In this section, we briefly review the main steps in obtaining four-dimensional supersymmetric
gauge models either from compactification of type II superstrings on Calabi–Yau threefolds
CY3 [1, 3] or from compactification of M-theory on G2 manifolds [7]. In either case, the
manifold is a K3 fibration over a base space B. The basic tasks are to specify the singularity of
the K3 fibration manifolds and to take the limit in which the volume V (B) of the base space is
very large so that gravitational effects may be ignored. In particular, one considers the K3 fibres
locally as non-compact ALE spaces with ADE singularities. One subsequently examines the
compactification in the presence of D2-branes or M2-branes wrapping the vanishing 2-cycles
in the ALE spaces. This enables one to make conclusions about the gauge group G and matter
content in the four-dimensional model. This analysis can be carried out in two steps as one
may perform an initial but partial compactification on the K3 surfaces followed by a further
compactification down to four dimensions.

To illustrate this, we consider type IIA superstring theory. Let us study the simplest case
of SU(2) gauge theory obtained from an A1 singularity of the ALE fibre space at the origin.
Mathematically, this is described by

xy + z2 = 0 (1)
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where x, y and z are the complex coordinates. As usual, the singularity can be removed
either by deforming the complex structure or by a blow-up procedure. Geometrically, this
corresponds to replacing the singular point (x = y = z = 0) by a CP1 ∼ S2.

In the case where the A1 singularity has been resolved, a D2-brane can wrap around the
blown-up CP1 giving rise to a pair of vector particles, W±. These particles correspond to
the two possible orientations of the wrappings. The particles have masses proportional to
the volume of the blown-up 2-spheres. W± are charged under the U(1) field Z obtained by
decomposing the type IIA superstring 3-form Cµνλ in terms of the harmonic 2-form on the
2-sphere and a 1-form not in the K3 fibre. In the singular limit where CP1 shrinks to a point,
the three-vector particles become massless and they form an adjoint SU(2) representation.
We thus obtain an N = 2 SU(2) gauge symmetry in six dimensions.

A further compactification on the base space B2 gives pure SU(2) Yang–Mills theory in
four dimensions. N = 2 models are obtained by taking B2 as a real 2-sphere. If we instead
compactify on Riemann surfaces with 1-cycles, we obtain N = 4 gauge models. The extra
scalar fields that one can get in such an N = 4 system can be identified with the expectation
values of Wilson lines on such a surface.

Before turning to geometric engineering in F-theory, we list a couple of comments on
extensions of the superstring compactification indicated above:

• The geometric analysis of the SU(2) model can be extended straightforwardly to general
simply laced ADE gauge groups. This extension is based on the classification of ADE
singularities of ALE spaces.

• Matter is incorporated by considering intersecting 2-cycles with ADE singularities in the
base space B2. In this case, the base is obtained by resolving ADE singularities of ALE
spaces [2].

• There are three kinds of models and they are related to the classification of generalized
Cartan matrices of Kac–Moody algebras [4, 5].

• Similar comments apply to the case of M-theory on manifolds with G2 holonomy in
which case the D2-branes are replaced by M2-branes [7].

In what follows, we study geometric engineering in F-theory by introducing intersecting
geometries in the accompanying compactifications on Calabi–Yau fourfolds. These manifolds
are constructed as elliptic K3 surfaces fibred over intersecting 4-cycles according to ADE
Dynkin graphs. This geometric engineering may result in N = 1 ADE quiver models with
bi-fundamental matter in four dimensions, thus extending the result of [10].

3. Geometric engineering in F-theory compactification

In this section, we study geometric engineering of quiver gauge models in F-theory
compactification. It is recalled that F-theory defines a non-perturbative vacuum of type
IIB superstring theory in which the dilaton and axion fields of the superstring theory are
considered dynamical. This introduces an extra complex modulus which is interpreted as
the complex parameter of an elliptic curve thereby introducing a non-perturbative vacuum of
the type IIB superstring in a 12-dimensional spacetime [11]. F-theory may also be defined
in the context of string dualities, and as we will discuss, F-theory on elliptically fibred Calabi–
Yau manifolds may be understood in terms of dual superstring models.

It is also recalled that type IIB superstring theory is a ten-dimensional model of closed
strings with chiral N = 2 supersymmetry. The bosonic fields of the corresponding low-energy
field theory are the graviton gµν , the anti-symmetric tensor Bµν and the dilaton φ coming from
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the NS–NS sector and the axion ξ , and the anti-symmetric tensor fields B̃µν and the self-
dual (in the physical 8 dimensions) 4-form Dµνρσ stemming from the R–R sector. There is
no non-Abelian gauge field in the massless spectrum of type IIB superstring theory which
instead contains Dp-branes with p = −1, 1, 3, 5, 7 and 9 on which the gauge fields Aµ live.
These extended objects are non-perturbative solutions playing a crucial role in the study of
gauge theories in superstring models. It is also noted that type IIB superstring theory has
a non-perturbative PSL(2, Z) symmetry with respect to which the fields gµν and Dµνρσ are
invariant. The complex string coupling τIIB = ξ + ie−φ and the doublet (Bµν, B̃µν) of 2-forms,
on the other hand, are believed to transform as

τIIB → aτIIB + b

cτIIB + d
, a, b, c, d ∈ Z, (2)

and (
Bµν

B̃µν

)
→

(
a b

c d

) (
Bµν

B̃µν

)
, (3)

where the integers a, b, c and d satisfy ab − cd = 1.
Following Vafa [11], one may interpret the complex field τIIB as the complex structure

of an extra torus T 2 resulting in the aforementioned 12-dimensional model. From this point
of view, type IIB superstring theory may be seen as the compactification of F-theory on T 2.
Starting from F-theory, one can similarly look for new superstring models in lower dimensions
obtained by compactifications on elliptically fibred Calabi–Yau manifolds. For example, the
eight-dimensional F-theory on elliptically fibred K3 is obtained by taking a two-dimensional
complex compact manifold given by

y2 = x3 + f (z)x + g(z), (4)

where f and g are polynomials of degree 8 and 12, respectively. One varies the τ torus over
the points of a compact space which is taken to be a Riemann sphere CP1 parametrized by
the local coordinate z. In other words, the two-torus complex structure τ(z) is now a function
of z as it varies over the CP1 base of K3. The above compact manifold generically has 24
singular points corresponding to τ(z) → ∞. These singularities have a remarkable physical
interpretation as each one of the 24 points is associated with the location of a D7-brane in
non-perturbative type IIB superstring theory. We assume that the number of D7-branes is
arbitrary for non-compact two-dimensional complex space.

We now turn to the study of geometric engineering of quiver gauge models in F-theory.
The method we will be using here is similar to the one employed in the engineering of four-
dimensional QFT4 from type II superstring theory or M-theory on G2 manifolds. Thus, we first
build the local fourfolds enabling us to construct four-dimensional quiver gauge models with
bi-fundamental matter from compactification of F-theory. The manifolds we will consider are
quite simple and involve K3 fibrations specifying the gauge groups in four dimensions. As in
the study of string theory, matter may be incorporated by introducing a non-trivial geometry
in the base space, and we are naturally led to consider a base space involving a collection of
intersecting 4-cycles. Each 4-cycle gives rise to a gauge-group factor while matter is described
in terms of bi-fundamental representations of these gauge groups.

3.1. Construction of fourfolds

The manifolds that we propose to use can be described as hyper-Kähler quotients as they are
of the form

X8 : C2 fibered over V 2. (5)
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Here, V 2 is a two-dimensional toric variety specified below, while C2 is the fibre which can
be converted into a local elliptic K3 surface by an orbifold action [12]. Let us briefly discuss
this construction. We consider the limit

C2 → H × C (6)

where H is the complex upper half-plane,

H = {z ∈ C| Im(z) > 0}. (7)

We also introduce �M as the principal subgroup of SL(2, Z):(
a b

c d

)
∈ �M ⊂ SL(2, Z), a = d = 1 mod M, b = c = 1 mod M. (8)

� acts freely on the upper half-plane H. In this way, the semi-direct product � ×Z
2 acts freely

on H × C as

(γ ;m, n) · (τ, z) =
(
γ τ,

z + mτ + n

cτ + d

)
(9)

where

γ =
(

a b

c d

)
∈ �M, (m, n) ∈ Z

2, τ ∈ H, z ∈ C. (10)

It follows that the quotient surface (H × C)/(� × Z
2) is an elliptic fibration over the curve

H/�.
An advantage of working with an (real) eight-dimensional geometry like (5) is that one

may study an intersecting structure in the base V 2 using physical arguments. This is done in
part by mimicking the similar analysis of ADE singularities in terms of N = 2 toric sigma
models. First, we let the manifold appear in the construction of a two-dimensional field theory
with N = 4 supersymmetry. This model has r + 2 hypermultiplets which are charged under r
Abelian vector multiplets U(1)r with charges Qa

i . The geometry given by (5) solves the D-flat
constraint equations of this N = 4 field theory:

r+2∑
i=1

Qa
i φ

i
αφ̄

β

i = �ξa · �σβ
α , a = 1, . . . , r. (11)

Here, the fields φα denote (r + 2)-component complex doublets of hypermultiplets, �ξa are
the three-vector coupling parameters, while �σ are the traceless 2 × 2 Pauli matrices. In a
description that makes manifest only half the supersymmetry of the gauge theory, that is
N = 2, the D-flatness conditions read

r+2∑
i=1

Qa
i

(∣∣φi
1

∣∣2 − ∣∣φi
2

∣∣2) = ξa
R
, (12)

r+2∑
i=1

Qa
i φ

i
1φ̄

i
2 = ξa

C
. (13)

By a set of rotations, we may set the complex components ξa
C

of �ξa equal to zero. Likewise, we
may set the real components ξa

R
to positive or negative values. It is noted that, in the resulting

description, one may locally view any set
{
φi

αi
, i = 1, . . . , r + 2

}
as the toric coordinates of

the two-dimensional base V 2. The remaining fields thus describe the fibre C2.
In this way, the intersection matrix of the 4-cycles defining the base can be identified with

the charge matrix of an N = 4 gauge theory in two dimensions. As we will see, this matrix
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can be related to a Cartan matrix of an ADE Lie algebra. Geometric engineering in F-theory
compactification thereby enables us to describe four-dimensional ADE quiver gauge models
with bi-fundamental matter.

3.2. ADE fourfolds

As already indicated, we will consider fourfolds whose base spaces are constructed as
4-cycles intersecting according to ADE Dynkin diagrams. We refer to these manifolds as
ADE fourfolds. They constitute a very natural class of manifolds in this context. It is pointed
out, though, that we in principle could consider more complicated geometries. We will restrict
ourselves to the ADE fourfolds as they allow us to extract the corresponding physics in a
straightforward manner.

For simplicity, we will here focus on the case of Ar . In two-dimensional N = 4 field
theory, the matrix Qa

i can then be identified with a simple extension of minus the Cartan matrix
of the Ar Lie algebras. The charge matrix thus reads

Qa
i = δa

i − 2δa+1
i + δa+2

i , a = 1, . . . , r, i = 1, . . . , r + 2. (14)

Inserting this matrix into the D-flatness conditions (12)–(13) with ξa
C

= 0 yields the conditions

(∣∣φa
1

∣∣2 − 2
∣∣φa+1

1

∣∣2
+

∣∣φa+2
1

∣∣2) − (∣∣φa
2

∣∣2 − 2
∣∣φa+1

2

∣∣2
+

∣∣φa+2
2

∣∣2) = ξa
R
, (15)

φa
1 φ̄

a

2 − 2φa+1
1 φ̄

a+1
2 + φa+2

1 φ̄
a+2
2 = 0. (16)

With ξa
R

= µa > 0 for a odd while ξa
R

= −µa < 0 for a even (that is, µa > 0 for all a) and
with the field redefinitions

(ϕa, ψa) =
{(

φa
1 , φa

2

)
if a odd(

φ̄
a

2,−φ̄
a

1

)
if a even,

(17)

the D-flatness conditions reduce to

(|ϕa|2 + 2|ϕa+1|2 + |ϕa+2|2) − (|ψa|2 + 2|ψa+1|2 + |ψa+2|2) = µa, (18)

ϕaψ̄
a + 2ϕa+1ψ̄

a+1 + ϕa+2ψ̄
a+2 = 0. (19)

A simple examination of these equations reveals that the base, being described by ϕa , consists
of r intersecting WP2

1,2,1 according to the Ar Dynkin diagram

� � �. . . . . . � �Ar : (20)

As an illustration, let us consider the A1 geometry. Its description involves three
hypermultiplets and one charge vector Q = (1,−2, 1). The base V 2 is extracted by setting
ψ1 = ψ2 = ψ3 = 0 in (18) which then reduces to |ϕ1|2 + 2|ϕ2|2 + |ϕ3|2 = µ describing
WP2

1,2,1 with area proportional to µ. Thus, the total geometry is a C2 fibration over WP2
1,2,1.

As already indicated, for generic values of r, V 2 can be identified with a system of intersecting
WP2

1,2,1. It follows that WP2
1,2,1 plays the role of CP1 in the standard description of an A-series

ALE space whose base can be identified with a system of intersecting CP1 according to the
Ar Dynkin diagram (20).
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4. ADE quiver gauge models in F-theory compactification

Having constructed a class of ADE fourfolds, we now discuss the physics resulting from
compactifying F-theory on these manifolds. Our analysis here is based on a dual type IIB
superstring description where the compactification on Calabi–Yau threefolds is considered
in the presence of D7-branes wrapping 4-cycles and filling the four-dimensional Minkowski
spacetime. As in the string theory, we initially compactify on the K3 fibre. This results in an
eight-dimensional supersymmetric gauge theory which can be identified with a gauge model
living in the worldvolume of the D7-branes. A subsequent compactification of F-theory to four
dimensions is then equivalent to wrapping the D7-branes on V 2 in the type IIB superstring
compactification. In this scenario, V 2 is taken to be embedded in the three-dimensional
Calabi–Yau compactification space.

The present task is therefore to look for the type IIB geometries dual to the F-theory on
ADE fourfolds. Since V 2 is a compact toric manifold, it is natural to expect that the type
IIB geometry may be a toric variety as well. At first sight, such a manifold appears quite
complicated. As we will see, however, if we restrict ourselves to the physics coming from the
D7-branes, the dual type IIB geometry may be described as a toric Calabi–Yau manifold with
V 2 as base space. We will assume that it corresponds to a line bundle over V 2. It is also noted
that the toric property allows us to describe the corresponding D7-brane physics in terms of
the toric data of the Calabi–Yau threefold.

We are interested in fourfolds with ADE intersecting 4-cycles in the base, and we
will discuss how F-theory on these ADE fourfolds can be interpreted in terms of type IIB
superstrings on Calabi–Yau threefolds in the presence of D5-branes wrapping ADE intersecting
2-cycles of ALE spaces. This connection is based on a geometric procedure called folding. For
type IIB toric geometry, this procedure has been used to geometrically engineer non-simply
laced quiver gauge theories [3]. In brief, one identifies the toric vertices of the Calabi–Yau
threefold which are permuted under the folding action � (which is an outer automorphism of
the associated toric graph not to be confused with the group � appearing in (8)). This imposes
certain constraints on the toric data depending on the precise action of �. It turns out that
such actions become very simple using local mirror transformations and that there are two
possible representations [3]. The one we are interested in here has the property of resulting
in geometries with one dimension less than the ‘natural’ one. This dimensional reduction
follows straightforwardly from the toric data of the resulting geometry. From the string theory
point of view, however, this missing complex direction will resurface. This will be addressed
below.

4.1. A1 quiver model

F-theory on an A1 fourfold is expected to be equivalent to type IIB superstring theory on
OWP2

1,1,2
(−4) in the presence of D7-branes having a worldvolume R

4 × WP2
1,1,2. This would

give N = 1 pure Yang–Mills theory in four dimensions, and the Yang–Mills coupling constant
gYM is related to the volume of WP2

1,1,2 as

Vol
(
WP2

1,1,2

) = 1
/
g2

YM. (21)

4.2. Models with bi-fundamental matter

Here, we discuss how to incorporate bi-fundamental matter in geometric engineering of F-
theory. Such matter can be introduced by replacing the single WP2

1,1,2 considered above
by an intersecting geometry according to ADE toric Dynkin graphs. As we will see, these
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complicated gauge theories can be reduced to well-known models based on ordinary ADE
singularities of ALE spaces involving CP1 complex curves. In this analogy, the D7-branes
wrapping the intersecting WP2

1,1,2 constituents are replaced by D5-branes wrapping the
intersecting CP1 constituents of the deformed ALE spaces. This connection is based on
the geometric procedure of folding which we alluded to above. To illustrate the mechanism,
we initially consider the model A1.

We consider OWP2
1,1,2

(−4) which is a toric manifold. It can be described by an N = 2
gauged linear sigma model with four chiral superfields and U(1) gauge symmetry with respect
to which the superfields have charges

q = (1, 1, 2,−4) (22)

satisfying the constraint

4∑
i=1

qi = 0. (23)

This condition implies that the space is a local Calabi–Yau manifold. In toric geometry, it can
be represented by

4∑
i=1

qivi = 0, (24)

and a particular toric vertex realization of this manifold is given by

v1 = (−2, 1, 1), v2 = (2, 1, 1), v3 = (0,−1, 1), v4 = (0, 0, 1). (25)

4.2.1. Mirrors of OWP2
1,1,2

(−4). As usual, the mirror of OWP2
1,1,2

(−4) is obtained by solving
the following constraint equations [13–15]:

4∑
i=1

aiyi = 0,

4∏
i=1

y
qi

i = 1, (26)

where {ai} are the complex parameters defining the complex structure of the mirror geometry.
However, only one of these parameters is physical and it describes the mirror of the size of
WP2

1,1,2. For simplicity, one can also fix this parameter to 1.
It follows from the Calabi–Yau condition (23) that the mirror manifold (26) is invariant

under the projective transformation yi → λyi . The projectively invariant solution to the
constraint equations (23) thus defines a 4 − 1 − 1 − 1 = 1 dimensional toric manifold given
by a holomorphic hypersurface in C

2,

F(x, y) = 0. (27)

To recover the dimension of the original manifold, that is, a complex three-dimensional local
Calabi–Yau manifold, we may use the ad hoc trick of introducing by hand the two extra
holomorphic variables u and v combined in the quadratic form uv, thereby modifying the
previous equation to

F(x, y) = uv. (28)

In what follows, though, we will ignore this quadratic term in the mirror geometry.
We return now to the examination of (26). It turns out that there are many ways

of solving the mirror system (26). A nice way is to introduce two complex variables
Ui = (U1, U2), specified later on, and a system of two-dimensional vectors of integer entries:
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{ni, i = 1, . . . , 4}. A simple examination reveals that (26) can be solved using the following
parametrization:

yi =
2∏

j=1

U
n

j

i

j , i = 1, 2, 3, 4 (29)

subject to

4∑
i=1

qin
1
i = 0,

4∑
i=1

qin
2
i = 0. (30)

In this way, the corresponding mirror geometry reads

4∑
i=1

2∏
j=1

U
n

j

i

j = 0. (31)

Setting vi = (ni, 1), we get the following mirror geometry:

1 + U−2
1 U2 + U 2

1 U2 + U−1
2 = 0. (32)

This can be described by a homogeneous polynomial in a weighted projective space. Indeed,
we consider WP2

λ1,λ2,λ3
(x1, x2, x3) and introduce the following general gauge invariants:

U1 = x
λ3/g1
1

x
λ1/g1
3

, U2 = x
λ3/g2
2

x
λ2/g2
3

(33)

where

g1 = gcd(λ1, λ3), g2 = gcd(λ2, λ3). (34)

The division by these common divisors is in order to keep the ratios in (33) minimal. The
geometry (32) may then be written as

0 = x
2λ3/g1
1 x

λ3/g2
2 x

2λ1/g1+λ2/g2
3 + x

2λ3/g2
2 x

4λ1/g1
3 + x

4λ3/g1
1 x

2λ3/g2
2 + x

2λ3/g1
1 x

2λ1/g1+2λ2/g2
3 (35)

where we have multiplied by x
2λ3/g1
1 x

λ3/g2
2 x

2λ1/g1+λ2/g2
3 . Multiplying by an additional factor of

x
2λ3/g2
2 leads to

0 = x
2λ3/g1
1 x

3λ3/g2
2 x

2λ1/g1+λ2/g2
3 + x

4λ3/g2
2 x

4λ1/g1
3 + x

4λ3/g1
1 x

4λ3/g2
2

+ x
2λ3/g1
1 x

2λ3/g2
2 x

2λ1/g1+2λ2/g2
3 . (36)

Elliptic solution

Now we introduce the parameters (or coordinates)

z1 = x
λ3/g2
2 x

λ1/g1
3 , z2 = x

λ3/g1
1 x

λ3/g2
2 , z3 = x

λ3/g1
1 x

λ3/g2
2 x

λ1/g1+λ2/g2
3 (37)

with weights

(µ1, µ2, µ3) = ((λ1/g1 + λ2/g2)λ3, (λ1/g1 + λ2/g2)λ3, 2(λ1/g1 + λ2/g2)λ3)

= (λ1/g1 + λ2/g2)λ3 × (1, 1, 2). (38)

In terms of these parameters, (36) reads

0 = z1z2z3 + z4
1 + z4

2 + z2
3. (39)

This corresponds to a homogeneous polynomial of degree 4 in

WP2
(λ1/g2+λ2/g2)λ3,(λ1/g2+λ2/g2)λ3,2(λ1/g2+λ2/g2)λ3

= WP2
1,1,2. (40)
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The mirror geometry given by (39) is seen to describe an elliptic curve (since the degree
satisfies d = µ1 + µ2 + µ3 in WP2

µ1,µ2,µ3
).

Non-elliptic solution

A simple example is given by the following parametrization:

U1 = x1

x2
, U2 = x1x2

x2
3

, (41)

differing in form from (33). This results in a polynomial constraint of the form

x1x2x
2
3 + x4

2 + x4
1 + x4

3 = 0 (42)

which corresponds to a homogeneous polynomial in WP2
1,1,1 = CP2. It is ensured by

construction that this satisfies the mirror constraint which here reads(
x1x2x

2
3

)4 = x4
2 × x4

1 × (
x4

3

)2
. (43)

The algebraic curve (42) is not elliptic.
Another non-elliptic curve follows from (33) when based on WP2

1,2,3, for example, as the
mirror is described by

x3
1x3

2x3 + x12
1 + x6

2 + x4
3 = 0 (44)

with associated mirror constraint given by(
x3

1x3
2x3

)4 = x12
1 × (

x6
2

)2 × x4
3 . (45)

4.2.2. Folding procedure. Having described the toric geometry of type IIB superstring theory
in the presence of D7-branes and its mirror version, the next step is to show how to convert
the corresponding model into the well-known gauge theories living on the worldvolume of
wrapped D5-brane. This can be done with the help of an outer automorphism group action
� of the toric graphs of the Calabi–Yau threefolds in the dual type IIB geometry. In this
approach, ADE toric graphs of ALE spaces may be obtained, from type IIB geometries dual
to F-theory on ADE fourfolds, by identifying vertices which are permuted by �. Once this
action has been specified, one should solve the corresponding toric constraint equations. It
turns out that these can be derived easily from the equation of the algebraic curve appearing
in the mirror of toric Calabi–Yau threefolds.

To understand how this a priori surprising connection can exist, we first consider the A1

fourfolds in F-theory compactification corresponding to OWP2
1,1,2

(−4). Indeed, let us consider
the Z2 subgroup of PSL(2, Z) acting as

v1 ←→ v2, (46)

that is, the vertices v1 and v2 are in the same orbit of this action as they transform as a doublet.
Note that (24) is invariant under this transformation. The folding procedure now amounts
to identifying these two vertices. In the mirror version, this folding action is equivalent to
identifying the corresponding monomials as

U
n1

1
1 U

n2
1

2 = U
n1

2
1 U

n2
2

2 . (47)

Using (25) and (33), this merely reduces to the following simple constraint

x
λ3
1 = x

λ1
3 (48)

in the weighted space. Implementing (48) into (36), we get

0 = x
2λ3/g2
2

(
x

λ3/g2
2 x

λ2/g2
3 + 2x

2λ3/g2
2 + x

2λ2/g2
3

)
. (49)
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In terms of the new coordinates z1 = x
λ3/g2
2 and z2 = x

λ2/g2
3 , this corresponds to

0 = z1z2 + z2
1 + z2

2. (50)

This describes the deformation of an A1 singularity of K3 and is easily seen to result as the
mirror of OCP1(−2) following from

y1 + y2 + y3 = 0, (51)

3∏
i=1

y
qi

i = 1, (52)

where

q = (1, 1,−2), (53)

cf (26).
We note that the Mori vector (53) can be obtained from the Mori vector given in (22). The

above vertex identification leads to the following reduction in the toric data of the Calabi–Yau
threefolds:

(1, 1, 2,−4) → 2(1, 1,−2) ≡ (1, 1,−2). (54)

The appearance of this vector is not surprising. It comes originally from the A1 geometry on
which the F-theory is compactified. The key observation here is that our procedure may be
regarded as the following topological change:

OWP2
1,1,2

(−4) → OCP1(−2) × C. (55)

This topological change admits an interpretation in terms of D-branes. On the left-hand side
geometry, F-theory on an A1 fourfold can be interpreted as type IIB superstring theory with
D7-branes having worldvolume R

4 ×WP2
1,1,2 where the factor WP2

1,1,2 is the compact space of
OWP2

1,1,2
(−4). After the folding procedure, this can be re-interpreted in terms of D5-branes with

worldvolume R
4 × CP1, where the factor CP1 is the compact part of OCP1(−2). Moreover,

we believe that the type IIB geometry becomes a trivial fibration of A1 ALE spaces over the
complex plane. In this way, the D7-branes reduce to D5-branes wrapping the complex curve
CP1 in the blown-up A1 singularity given by (1).

It has been seen that this quiver gauge theory has N = 2 supersymmetry, whereas the
original gauge model living in the D7-brane worldvolume has N = 1 supersymmetry. This
requires that the above N = 2 supersymmetry should be broken down to N = 1. This
reduction may be administered by the addition of a tree-level superpotential of the form

Wtree = 1

i

∑
j

gj trjφ
j . (56)

A similar mechanism has been studied in the context of large-N duality in [16], see also
[17]. The introduction of this superpotential modifies the geometry and leads to a non-trivial
fibration of A1 ALE spaces over the complex plane. This modified fibration may be described
by

xy + z2 + W ′(t)2 = 0 (57)

where t is the coordinate in the base, that is, in the complex plane. It is noted that this new
geometry may undergo a geometric transition where the vanishing S2 is replaced by an S3

while the D5-branes are replaced by 3-form fluxes.
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4.2.3. On mirror geometry. Here, we would like to extend the above results to higher order
Dynkin geometries. To start, it is recalled that a general complex p-dimensional toric variety
can be described by

V p = C
p+n \ S

C
�n (58)

where the nC
� actions are given by

C
�n : zi 
→ λqa

i zi, i = 1, . . . , p + n; a = 1, . . . , n. (59)

Requiring this to correspond to a Calabi–Yau manifold imposes the conditions

p+n∑
i=1

qa
i = 0, a = 1, . . . , n. (60)

A toric vertex realization reads
p+n∑
i=1

qa
i vi = 0, a = 1, . . . , n (61)

where the vertices vi are of dimension p. In the case of a toric Calabi–Yau manifold, we may
choose the vertices as

vi = (mi, 1) (62)

as they implement the Calabi–Yau conditions in the sense that

0 =
p+n∑
i=1

qa
i vi =

(
p+n∑
i=1

qa
i mi,

p+n∑
i=1

qa
i

)
=

(
p+n∑
i=1

qa
i mi, 0

)
. (63)

The j th coordinate of mi is written as mij where j = 1, . . . , p − 1. The mirror manifold is
given as a solution to

p+n∑
i=1

biyi = 0

(64)
p+n∏
i=1

y
qa

i

i = 1, a = 1, . . . , n.

To solve these constraints, one may introduce p − 1 gauge invariants Uj and write

yi =
p−1∏
j=1

U
mij

j . (65)

This automatically solves the constraint equation in (64) since

p+n∏
i=1


p−1∏

j=1

U
mij

j




qa
i

=
p−1∏
j=1

U
∑p+n

i=1 mij q
a
i

j = 1 (66)

due to (63). The mirror manifold is then given by

0 =
p+n∑
i=1

biyi =
p+n∑
i=1

bi

p−1∏
j=1

U
mij

j . (67)
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Assuming that this may be described by a homogeneous polynomial in a weighted projective
space, we introduce WPp−1

λ1,...,λp
(x1, . . . , xp) and write

U1 = x
λp/g1

1

x
λ1/g1
p

, U2 = x
λp/g2

2

x
λ2/g2
p

, · · · , Up−1 = x
λp/gp−1

p−1

x
λp−1/gp−1
p

(68)

where

gj = gcd(λj , λp), j = 1, . . . , p − 1. (69)

The mirror manifold may then be described by

0 =
p+n∑
i=1

bi

(
x

λp/g1

1

x
λ1/g1
p

)mi1

× · · · ×
(

x
λp/gp−1

p−1

x
λp−1/gp−1
p

)mip−1

. (70)

In what follows, we will initially be interested in the case p = 3.

4.2.4. A2 quiver model. Here, we specialize to the case of A2 quiver models in F-theory
compactification. The dual type IIB geometry is given by a U(1)2 linear sigma model with
five chiral fields with charges

q =
(

1 2 1 0 −4
0 1 2 1 −4

)
(71)

as Mori matrix. A simple vertex realization is given by vi = (mi, 1) where

m1 = (2, 1), m2 = (−1, 0), m3 = (0,−1), m4 = (1, 2), m5 = (0, 0).

(72)

We will see that this geometry reduces to an ALE space with A2 singularity. As before, we
will base our analysis on mirror symmetry. Indeed, the associated mirror manifold (70) is thus
defined by

0 = b1

(
x

λ3/g1
1

x
λ1/g1
3

)2 (
x

λ3/g2
2

x
λ2/g2
3

)
+ b2

(
x

λ3/g1
1

x
λ1/g1
3

)−1

+ b3

(
x

λ3/g2
2

x
λ2/g2
3

)−1

+ b4

(
x

λ3/g1
1

x
λ1/g1
3

) (
x

λ3/g2
2

x
λ2/g2
3

)2

+ b5. (73)

For simplicity, we set b1 = b2 = b3 = b4 = b5 = 1 in the following. Multiplying (73) by
x

λ3/g1
1 x

λ3/g2
2 x

4λ1/g1+4λ2/g2
3 leads to

0 = x
3λ3/g1
1 x

2λ3/g2
2 x

2λ1/g1+3λ2/g2
3 + x

λ3/g2
2 x

5λ1/g1+4λ2/g2
3 + x

λ3/g1
1 x

4λ1/g1+5λ2/g2
3

+ x
2λ3/g1
1 x

3λ3/g2
2 x

3λ1/g1+2λ2/g2
3 + x

λ3/g1
1 x

λ3/g2
2 x

4λ1/g1+4λ2/g2
3 . (74)

Let us introduce the coordinates

z1 = x
λ3/g1
1 x

λ2/g2
3 , z2 = x

λ3/g2
2 x

λ1/g1
3 , z3 = x

λ1/g1+λ2/g2
3 (75)

with weights

(µ1, µ2, µ3) = (λ1/g1 + λ2/g2)λ3 × (1, 1, 1). (76)

In terms of these, (74) reads

0 = z3
1z

2
2 + z2z

4
3 + z1z

4
3 + z2

1z
3
2 + z1z2z

3
3. (77)



9352 A Belhaj et al

This corresponds to a homogeneous polynomial of degree 5 in WP2
1,1,1. The folding action of

interest here identifies the vertices v2 and v5,

v2 ←→ v5. (78)

In the mirror geometry, this action simply corresponds to

z2 = z3. (79)

Having determined the toric constraint, we can now derive the equation defining the mirror
geometry. A simple computation yields

0 = z5
2 + z1z

4
2 + z2

1z
3
2 + z3

1z
2
2 =

4∑
i=1

zi−1
1 z6−i

2 . (80)

In terms of the new coordinates

yi = zi−1
1 z6−i

2 , (81)

we have
4∑

i=1

yi = 0,

(82)
4∏

i=1

y
qa

i

i = 1, a = 1, 2

where

q1 = (1,−2, 1, 0), q2 = (0, 1,−2, 1). (83)

This coincides with the mirror constraint equations of an A2 singularity of K3. This may
alternatively be expressed through

y1y3 = y2
2 , y2y4 = y2

3 . (84)

4.2.5. More on the folding procedure. The folding procedure identifying vk and vl imposes
the identification of yk with yl in the mirror geometry. In terms of the gauge invariants (65),
this implies that

p−1∏
j=1

U
mkj

j =
p−1∏
j=1

U
mlj

j . (85)

Assuming the association of the weighted projective space WPp−1
λ1,...,λp

(x1, . . . , xp), cf (68), the
identification (85) may be expressed as

p−1∏
j=1

(
x

λp/gj

j

x
λj /gj

p

)mkj −mlj

= 1. (86)

To simplify our considerations, let us assume that the toric vertices of the original model were
chosen such that

m1 = (1, 0, . . . , 0), mn+p = (0, . . . , 0). (87)

In this case, (86) reduces to

1 = U1 = x
λp/g1

1

x
λ1/g1
p

. (88)
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The new geometry obtained by the folding action identifying v1 and vn+p now follows
from (70). It reads

0 =
p+n∑
i=1

bi

(
x

λp/g2

2

x
λ2/g2
p

)mi2

× · · · ×
(

x
λp/gp−1

p−1

x
λp−1/gp−1
p

)mip−1

(89)

and describes (up to a simple rewriting) a polynomial equation in the weighted projective
space WPp−2

λ2,...,λp
(x2, . . . , xp).

We see that x1 and mi1 no longer enter the game. This suggests that the original geometry,
whose mirror we just found by folding, is described effectively by n + p − 1 vertices. Since n
is unaltered by the folding procedure, it follows that the original toric variety is of dimension
p−1, cf (58). Thus, interpreting the new geometry (89) as the mirror of a (p−1)-dimensional
toric variety, we should require that the set

{v̂i = (mi,2, . . . , mi,p−1, 1); i = 1, . . . , n + p − 1} (90)

defines a toric vertex realization of a Calabi–Yau manifold whose charge matrix q̂ satisfies

p+n−1∑
i=1

q̂a
i = 0, a = 1, . . . , n,

p+n−1∑
i=1

q̂a
i v̂i = 0, a = 1, . . . , n.

(91)

It would be interesting to pursue this general link further.

5. Conclusion

We have studied geometric engineering of N = 1 ADE quiver models. In particular, we have
considered a class of such models obtained by the compactification of F-theory on manifolds
defined as elliptic K3 surfaces fibred over certain ADE 4-cycles. The latter are constructed
by resolving the ADE hyper-Kähler singularities. Our main focus has been on Ar quiver
models resulting when the base space of the compactification fourfold of F-theory is built
from intersecting 4-cycles according to Ar Dynkin graphs. The dual type IIB superstring
theory involves D7-branes on such cycles embedded in toric Calabi–Yau threefolds. We have
analysed in some details the cases of A1 and A2 and found that they are linked to the A1 and A2

geometries of ALE spaces. Our approach involves a particular geometric procedure referred
to as folding. Using this, we have discussed how the physics of F-theory on ADE fourfolds
in the presence of D7-branes wrapping 4-cycles can be related to a scenario with D5-branes
wrapping 2-cycles of ALE spaces.
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