
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 132, Number 8, Pages 2233–2240
S 0002-9939(04)07421-0
Article electronically published on March 25, 2004

ON THE DISCRETE GROUPS OF MOONSHINE
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(Communicated by Wen-Ching Winnie Li)

Abstract. We characterize the 171 discrete subgroups of PSL2(R) occurring
in Monstrous Moonshine in terms of their group-theoretic properties alone.

1. The main result

Let M denote the largest sporadic simple group known as the Monster. It was
predicted to exist by Fischer and Griess in the early 1970s and was constructed by
Griess a few years later [14]. In their Monstrous Moonshine paper [7], Conway and
Norton expand observations of McKay and Thompson to formulate the Moonshine
conjecture:

(1) To each cyclic group 〈m〉, m ∈ M, is associated a function:

fm(τ) =
1
q

+ a1q + a2q
2 + · · · , ak ∈ Z, q = e2πiτ , =τ > 0,

such that each q-coefficient is the value of a character (known as the head
character) of M at m.

(2) Each fm is a principal modulus for a certain genus zero congruence group
commensurable with the modular group, Γ = PSL2(Z).

In fact, for each 〈m〉, Conway and Norton proposed two discrete subgroups of
PSL2(R) attached to fm defined as follows.

The first group, Fm, is the invariance group of fm. Let N be the level of Fm,
that is, the least N for which Γ(N) ⊂ F (m). Write h = N/n where n is the
order of m. It happens that h is always an integer such that h | 24 and h2 | N .
The second group, Em, is the subgroup of PSL2(R) whose elements multiply fm
by hth roots of unity. Hence Fm is a subgroup of Em. There are 171 distinct fm
of which only 48 occur with h > 1. In [7], it is proposed that the Em coincide
with congruence subgroups Γ0(n|h) + · · · , and Fm is a subgroup of index h in Em
with a similar parametrization of the form Γ0(n||h) + · · · (see Section 2 for the
definitions). When h = 1, we have Em = Fm and it is easy to exhibit a principal
modulus for the corresponding parametrization (referred to as fundamental); these
principal moduli are given by the η-products and theta functions of Table 3 in
[7]. The fundamental elements can be modified to provide principal moduli for
the parametrizations of Fm even when h 6= 1; see Section 6 of [7]. To verify that
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these parametrizations do coincide with the proposed groups, it is enough to check
that the first few coefficients of their principal moduli coincide with the first few
coefficients of the fm. This follows from the automorphic properties of the principal
moduli and the replication properties of the fm established by Borcherds together
with Norton’s theorem that 12 of the first 23 coefficients of a replicable function
determine the function completely.

Also, for each group Γ0(n||h) + · · · , Norton has computed a set of generating
matrices which fix the corresponding fm for a wider class of functions (the rational
replicable functions).

In the Monstrous Moonshine paper, [7], the correspondence was incomplete be-
tween the conjugacy classes of cyclic subgroups of the Monster and the genus zero
groups Γ0(n||h)+ · · · . For h = 1 it was complete except for three groups referred to
as the ghosts. We now provide a simple new criterion on the groups which makes
the correspondence exact when h > 1, and another one which exorcises the ghosts;
so the correspondence is now a perfect bijection. In other words, we exhibit simple
necessary and sufficient conditions for a discrete subgroup of PSL2(R) to be the
invariance group of a Monstrous Moonshine function.

The Moonshine conjectures have been proved by Borcherds using vertex algebras
[3], and this led to the development of several new areas in mathematics as well
as applications and connections with physics. Examples of these connections are
the vertex algebras and their automorphism groups, hyperbolic Lie algebras, au-
tomorphic forms and infinite products, orbifold conformal field theory, generalized
Moonshine, elliptic genera, and mirror symmetry. For more on these connections
see [3], [4], [9], [8], [11], [15], [16], [17], [20], and [21]. All of these connections
illustrate the rich nature of the Monster and Moonshine; and while some of these
help in understanding Moonshine, many of the connections with other areas are
still conjectural or poorly understood. That is to say, the real nature of Moonshine
is still remote. Here we provide the answer to one question: What are these mod-
ular functions fm (or equivalently their invariance groups since they are principal
moduli) attached to elements of the Monster?

Theorem. A modular function occurs in Moonshine if and only if its invariance
group

(1) is genus zero,
(2) has the form Γ0(n||h) + e, f, g, . . .,
(3) its quotient by Γ0(nh) is a group of exponent 2, and
(4) each cusp can be mapped to ∞ by an element of PSL2(R) that conjugates

the group to one containing Γ0(nh).

The remaining sections are devoted to explaining notation and how the properties
of the main theorem are obtained. We also explain (see Section 6) why some ideas
of others are unsatisfactory as a contribution to our main theorem.

2. The groups Γ0(n||h) + · · ·
Let N be a positive integer, and let h be a positive integer such that h2 | N and

h | 24 with N = nh. Let Γ0(n|h) be the group of matrices of the form(
a b/h
cn d

)
, ad− bcn/h = 1.
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The group Γ0(n|h) is conjugate to Γ0(n/h) by
(
h 0
0 1

)
.

For each exact divisor e of N (we write e ||N), the Atkin-Lehner involution
We is the set of matrices

(
ae b
cN de

)
with determinant e. Each We is a single coset of

Γ0(N). Moreover, the full normalizer of Γ0(N) in PSL2(R) is obtained by adjoining
to Γ0(n|h) its Atkin-Lehner involutions we that are the conjugates by

(
h 0
0 1

)
of the

Atkin-Lehner involutions We of Γ0(n/h).
The set of the exact divisors of N , Ex(N), is a group of exponent 2, where the

group operation is given by e ∗ f = ef/ gcd(e, f)2. For each subgroup 〈e, f, g, . . .〉
of Ex(n/h), we use the notation Γ0(n|h)+e, f, g, . . . for the extension of Γ0(n|h) by
its Atkin-Lehner involutions we, wf , wg, . . . . This notation is abbreviated further
by omitting “|h” when h = 1, by writing Γ0(n|h)+ when all of Ex(n/h) is involved,
and by writing Γ0(n|h)− when no Atkin-Lehner involution is present.

The group E(m) introduced earlier in this section has the form Γ0(n|h) + e,
f, g, . . . and the group F (m) is a certain subgroup of E(m) of index h, which we
denote by Γ0(n||h) + e, f, g, . . . . More explicitly, it was observed by Conway and
Norton that Γ0(n||h) + e, f, g, . . . coincides with the kernel of the homomorphism
λ : Γ0(n|h) + e, f, g, . . .→ C× defined by:

(1) λ = 1 for elements of Γ0(N),
(2) λ = 1 for all Atkin-Lehner involutions WE of Γ0(N) for which every prime

dividing E also divides n/h,
(3) λ = exp(−2πi/h) for cosets containing

(
1 1/h
0 1

)
,

(4) λ = exp(±2πi/h) for cosets containing
(

1 0
n 1

)
, where the sign is + if

(
0 −1
N 0

)
is present and − if not.

While the cosets in (3) and (4) generate Γ0(n|h), it is not clear that the definition
of λ is consistent. In other words, for arbitrary n and h as above, it is not clear
that Γ0(n||h) + e, f, g, . . . exists.

3. Existence and structure

We now explain why the homomorphism λ is well defined. As before, we are
given a positive integer N and h such that h2 | N and h | 24 and n = N/h. From the
description of the normalizer of Γ0(N) given above, we see that Γ0(n|h)+e, f, g, . . .
normalizes Γ0(N), and since λ = 1 on Γ0(N), we may ask whether λ is well defined
on the quotient Γ0(n|h)∗ + e, f, g, . . . := Γ0(n|h) + e, f, g, . . . /Γ0(N). In his thesis
[10], Ferenbaugh investigated the structure of the quotient groups Γ0(n|h)∗, which
is as follows:

Let x =
(

1 1/h
0 1

)
and y =

(
1 0
n 1

)
. Then we have

(1) If h2 | n then Γ0(n|h)∗ ∼= Ch ×Ch where x and y are generators of the two
copies of Ch.

(2) If h2 - n and h is a prime power, then Γ0(n|h)∗ is one of the groups:
• Γ0(2|2)∗ ∼= S3

∼= 〈x, y | x2 = y2 = (xy)3 = 1〉,
• Γ0(3|3)∗ ∼= A4

∼= 〈x, y | x3 = y3 = (xy)2 = 1〉,
• Γ0(4|4)∗ ∼= C2

2 · S3
∼= 〈x, y,X, Y | x2 = X, y2 = Y,X2 = Y 2 = 1,

(xy)3 = 1, x−1Y x = y−1Y y = XY 〉,
• Γ0(8|4)∗ ∼= C2

2 · C2
2
∼= 〈x, y,X, Y | x2 = X, y2 = Y,X2 = Y 2 = 1,

xyx−1y−1 = XY, x−1Y x = Y, y−1Xy = X〉,
• Γ0(8|8)∗ ∼= C2

4 · S3
∼= 〈x, y,X, Y | x2 = X, y2 = Y,X4 = Y 4 = 1,

(xy)3 = 1, x−1Y x = XY −1, y−1Xy = X−1Y 〉,
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• Γ0(16|8)∗ ∼= C2
4 · C2

2
∼= 〈x, y,X, Y | x2 = X, y2 = Y,X4 = Y 4 = 1,

xyx−1y−1 = XY −1, x−1Y x = X2Y, y−1Xy = XY 2〉,
• Γ0(32|8)∗ ∼= C2

4 · C2
2
∼= 〈x, y,X, Y | x2 = X, y2 = Y,X4 = Y 4 = 1,

xyx−1y−1 = X2Y 2, x−1Y x = Y, y−1Xy = X〉.
Using the fact that Γ0(mn|h)∗ ∼= Γ0(n|h)∗ × Γ0(m|h)∗ if gcd(m,n) = 1,
any group Γ0(n|h)∗ where h is a prime power (that is, h = 2, 3, 4 or 8) is
isomorphic to one of these products.

(3) If h has distinct prime divisors (h = 6, 12 or 24) and h = 3j, then we have

(∗) Γ0(n|h)∗ ∼= Γ0(3n|j)∗ × Γ0(jn|3)∗

(∗∗) ∼= Γ0(n/3|j)∗ × Γ0(n/j|3)∗.

The structure of the quotient groups can be further detailed when we adjoin the
Atkin-Lehner involutions. Indeed, the structure of Γ0(n|h)∗ + e, f, g, . . . can be
derived from that of Γ0(n|h)∗ as Γ0(n|h)∗ + e, f, g, . . . = Γ0(n|h)∗ · Ck2 , where k is
the number of generating Atkin-Lehner involutions. Furthermore,

(1) if h is a prime power and with x and y as above, we have

xwe =
{
xe if gcd(e, h) = 1,
y−N/e if h | e,

ywe =
{
ye if gcd(e, h) = 1,
x−N/e if h | e.

(Since h is a prime power with e||N and h | N , it follows that either
gcd(e, h) = 1 or h|e.)

(2) If h is not a prime power, then we express the group as a product of groups
with a prime power h as in (∗) or (∗∗), and the action of any Atkin-Lehner
involution is determined by its action on each component.

At this point we are able to check that the definition of λ is compatible with the
relations defining the groups and with the action of the Atkin-Lehner involutions.
In other words, knowing the images of x and y and we, what are the various relations
and actions conserved by the homomorphism λ?

It is not difficult to derive necessary and sufficient conditions for the consistency
of the definition of λ. Some calculations for this are made in [10]. More precisely,
for N , h, n as above, the subgroup Γ0(n||h)∗ + e, f, g, . . . of index h in Γ0(n|h)∗ +
e, f, g, . . . exists if and only if the following conditions are satisfied:

(1) if h = 3, then either 9 | n or n/h ≡ ±1 mod h, where the sign + is taken
if τ → 1/(Nτ + 1) is present and − otherwise;

(2) if h = 4, then 8 | n;
(3) if h = 8, then 32 | n;
(4) if h is a prime power and +e is present, then either e ≡ 1 mod h or

n/eh ≡ ±1 mod h. The sign + is taken if τ → 1/(Nτ + 1) is present and
− otherwise;

(5) if h = 6, 12, 24, then both subgroups in the direct product (∗) or (∗∗) satisfy
all the above four conditions.

4. The genus zero property

The above existence properties provide infinitely many groups of the form
Γ0(n||h) + e, f, g, . . . . In this section we determine when these groups have genus
zero.
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Table 1. The 123 genus zero groups of the form Γ0(N) + e, f, g, . . .

1+ 17+ 36 + 36
2− 18− 36+
2+ 18 + 2 38+
3− 18 + 9 39 + 39
3+ 18 + 18 39+
4− 18+ 41+
4+ 19+ 42 + 3, 14, 42
5− 20 + 4 42 + 6, 14, 21
5+ 20 + 20 42+
6− 20+ 44+
6 + 2 21 + 3 45+
6 + 3 21 + 21 46 + 23
6 + 6 21+ 46+
6+ 22 + 11 47+
7− 22+ 49+
7+ 23+ 50 + 50
8− 24 + 8 50+
8+ 24 + 24 51+
9− 24+ 54+
9+ 25− 55+

10− 25+ 56+
10 + 2 26 + 26 59+
10 + 5 26+ 60 + 4, 15, 60
10 + 10 27+ 60 + 12, 15, 20
10+ 28 + 7 60+
11+ 28+ 62+
12− 29+ 66 + 6, 11, 66
12 + 3 30 + 15 66+
12 + 4 30 + 2, 15, 30 69+
12 + 12 30 + 3, 5, 15 70 + 10, 14, 35
12+ 30 + 5, 6, 30 70+
13− 30 + 6, 10, 15 71+
13+ 30+ 78 + 6, 26, 39
14 + 7 31+ 78+
14 + 14 32+ 87+
14+ 33 + 11 92+
15 + 5 33+ 94+
15 + 15 34+ 95+
15+ 35 + 35 105+
16− 35+ 110+
16+ 36 + 4 119+

A necessary condition for a group Γ0(n||h) + e, f, g, . . . to be of genus zero is
that the supergroup Γ0(n|h) + e, f, g, . . . is of genus zero. Moreover, Γ0(n|h) +
e, f, g, . . . is conjugate to Γ0(n/h) + e, f, g, . . . . Thus, we need to list the groups
Γ0(n/h) + e, f, g, . . . of genus zero, which in fact correspond to h = 1, and then,
when h is introduced, find out which subgroups Γ0(n||h) + e, f, g, . . . are of genus
zero. Fricke [13] gives a partial list of Γ0(N) +N which are of genus zero, and Ogg
[19] showed that Fricke’s list is complete when N is prime, by connecting them to
supersingular elliptic curves. It turns out that those primes are exactly the prime
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divisors of the order of the Monster M; this connection is yet to be explained. In
[18], Kluit gives the full list of the groups Γ0(N) +e, f, g, . . . that are of genus zero.
In fact, by connecting the genus of these groups to dimensions of spaces of modular
forms, he showed that these groups are the same ones that appear in Table 5 of
[2]. There are 123 such groups which we list in Table 1. In this table we use the
notation N+e, f, g, . . . for the group Γ0(N)+e, f, g, . . . , together with the notation
of Section 3.

As for the groups of the form Γ0(N ||h)+e, f, g, . . . , the genus can be determined
from their fundamental regions using the Riemann-Hurwitz formula. Since most
of the groups are not subgroups of the modular group, the calculations of the
genus, which cannot be produced here because of their length, are carried out by
finding the elliptic fixed points and the cone points in the orbifolds attached to the
fundamental regions. The Euler characteristic of the orbifold determines the genus
of the group. See [6] for more details on orbifold techniques. We note that the
genus zero groups of the form Γ0(n||h) + e, f, g, . . . are exactly those of the same
form in [12], thus confirming a part of Norton’s conjecture on replicable functions.

5. The exponent two property

The number of the groups Γ0(n||h) + e, f, g, . . . of genus zero is 213, which
includes the 171 groups of Moonshine. Here we find properties that distinguish
these 171 Moonshine groups from the others. A first remark in this regard is
that when h = 1, the quotient of each group by the underlying Γ0(N) is a group
of exponent 2 since we adjoin only Atkin-Lehner involutions. Also in our list of
genus zero groups we have both Γ0(2||2) and Γ0(3||3); however, the former is not
in the Moonshine list, while the latter is. From the index formula we see that
Γ0(3||3)/Γ0(9) has order 4, and in fact it is C2×C2, while Γ0(2||2)/Γ0(4) has order
3. This leads us to ask whether the right property to look for is that the quotient of
Γ0(n||h) + e, f, g, . . . /Γ0(nh) is an elementary abelian 2-group, that is, a group of
exponent 2. In fact, simple criteria can be developed to remove at once many groups
whose quotient by the underlying Γ0(N) is not of exponent 2. Recall that N = nh

and h | n. Let x =
(

1 1/h
0 1

)
and y =

(
1 0
n 1

)
. As we saw earlier, the cosets containing

these two elements generate Γ0(n|h). From the definition of the homomorphism λ

in Section 3, we see that xy ∈ Γ0(n|h) if the Fricke element
(

0 −1
N 0

)
is present and

xy−1 ∈ Γ0(n|h) if not. It follows that

(xy±)2 =

 (
1± n

h

)2 ± n
h

1
h

(
2± n

h

)
±n
(
2± n

h

)
±nh + 1

 ,

and therefore, a necessary and sufficient condition for (xy±)2 to be in Γ0(N) is that
h | (2 ± n/h). Furthermore, this should be the case if the quotient Γ0(n||h)∗ =
Γ0(n||h)/Γ0(N) is a group of exponent 2. Notice that we do not need to deal
with the Atkin-Lehner involutions since they do not affect this property. The
condition h | (2±n/h) allows us to determine many groups for which the exponent
2 property is not satisfied. We can improve this criterion by looking at (xky±k)2

instead. However, the remaining cases are dealt with by investigating whether the
quotients Γ0(n|h)/Γ0(N) described in Section 4 have normal subgroups of index h
and exponent 2.
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6. The ghosts

We are now left with 174 genus zero groups of the form Γ0(n||h) + e, f, g, . . .
of exponent 2. These are the 171 of Monstrous Moonshine and the three groups
Γ0(25)−, Γ0(49)+ and Γ0(50)+50 known as the ghosts. Conway and Norton noted
that these three ghosts are distinguished by not having product formulas; it was
also suggested by Akbas and Singerman [1] that the reason for these ghosts not
being in Moonshine is that the normalizers of the underlying Γ0(N) in PSL2(R)
are not transitive on cusps. While true, this property holds also for Γ0(25)+ and
Γ0(50)+, which are in Moonshine. Even the question whether the normalizers of
the groups themselves, rather than the underlying Γ0(N), are transitive on cusps
adds more problems with two other groups of different levels, namely Γ0(12) + 12
and Γ0(27)+, which have normalizers not transitive on the cusps, and yet they are
in the Moonshine list. Hence, the transitivity on the cusps is not an explanation
for the ghosts not being in the Moonshine list.

Nonetheless, the properties of the cusps seem to be the key to dealing with the
ghosts. The Moonshine groups all share the common property of having cusp width
1 at ∞, as exhibited by the q-expansion of their principal moduli about ∞; and
the natural width at ∞ for the Moonshine groups seems to be 1.

What is the natural width for the other cusps?
Each cusp for one of the groups in question can be conjugated to ∞ by an

element of PSL2(R). In order for the group to have a principal modulus with a cusp
at ∞ after conjugation, it should contain a certain Γ0(N ′) and have translations
generated by τ 7→ τ+1. Examining a few examples reveals that it is always possible
to find a conjugation where N ′ is equal to N , the level of the underlying Γ0(N) of
the original group. Surprisingly, the only groups that do not satisfy this property
are the ghosts. Indeed, those that have a normalizer transitive on the cusps satisfy
this property automatically, and the few other groups in the Moonshine list whose
normalizers are not transitive on cusps can be shown to have the same property.
Thus, a cusp will have the natural width if it can be conjugated to∞ by an element
of PSL2(R) for which the conjugated group still contains Γ0(N). Of course, the
fact that the normalizers are transitive on the cusps implies that this property is
true for any cusp.
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