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CLASSIFICATION OF TORSION-FREE GENUS ZERO
CONGRUENCE GROUPS

ABDELLAH SEBBAR

(Communicated by Dennis A. Hejhal)

Abstract. We study and classify all torsion-free genus zero congruence sub-
groups of the modular group.

1. Introduction

In this paper we give the explicit list of all the genus 0 congruence subgroups of
the modular group with no elliptic elements. This study was motivated by previous
work in collaboration with John McKay, [2, 3], in which we studied the properties
of Hauptmoduls originating from Moonshine under the action of the Schwarzian
derivative.

Given a genus 0 Fuchsian group of the first kind acting on the upper-half plane
H, and a Hauptmodul f for G, the Schwarzian derivative {f, τ}, τ ∈ H, is a weight
4 automorphic form. For example, if G = Γ(2) and λ is the Klein elliptic modular
function (which is a Hauptmodul for Γ(2)), then we can show easily that

1
π2
{f, τ} = E4(τ),

where E4 is the Eisenstein series of weight 4. Now E4 is a modular form for the full
modular group and it is holomorphic everywhere, including at the cusps. In fact,
for a general group G and a Hauptmodul f , one can show that {f, τ} is a weight
4 automorphic form for the normalizer of G in PSL2(R), with a pole of order 2
at each elliptic fixed point and which is holomorphic everywhere else including at
the cusps. Thus, the fact that {f, τ} is holomorphic everywhere is equivalent to
G being torsion-free. Investigating these facts for Hauptmoduls originating from
Moonshine, for instance those corresponding to Γ0(n) for n = 4, 6, 8, 9, 12, 16, 18
(these are the only ones of this form with genus 0 and no elliptic elements), it
turns out that the Schwarzian derivative of the Hauptmoduls of these groups co-
incides with theta functions of some easily described rank 8 lattices (notice that
E4 is the theta function of the root lattice E8). This phenomenon is still true for
the principal congruence groups Γ(n) which are genus 0 and torsion–free (namely
for n = 2, 3, 4, 5); each has a Schwarzian derivative equal to π2E4 because their
normalizer is the full modular group and because the space of weight 4 modular
forms for the full modular group is 1-dimensional. More interestingly, this is still
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true for those groups of the form Γ1(n), namely for n = 4, 5, 6, 7, 8, 9, 10, 12 (these
are the only ones). To better understand this phenomenon, we were interested in
determining all the congruence subgroups of the modular group which are torsion–
free and genus 0 as explicitly as possible (if we drop the congruence condition, then
there are infinitely many conjugacy classes of such subgroups).

From another point view, it is shown in [5] that a congruence subgroup of
PSL2(R) which is genus 0 and torsion–free is necessarily conjugate to a congruence
subgroup of PSL2(Z). Thus, the classification in PSL2(Z) yields the classification
in PSL2(R) and as a consequence gives a positive answer to some questions raised
in [2, 3] related to the classification of the Moonshine groups which are torsion–free
and genus 0.

The purpose of this paper is to carry out the classification inside PSL2(Z). This
is done by studying the cusp widths. The main idea is that if a genus 0 torsion–
free subgroup of the modular group shares the same cusp widths with one of its
subgroups, then it must be equal to it, as such a group can be generated by a
set of parabolic elements only. Hence if we start with a congruence group of level
m, this descent will take us close to Γ(m); the result is a set of easily described
groups which were introduced by H. Larcher in [1]. Filtering those groups which
are torsion–free and genus 0, we obtain 33 conjugacy classes inside PSL2(Z) which
are partitioned into 15 PSL2(R)−conjugacy classes.

2. Congruence groups

The content of this section is basic and can be found for instance in [6] and [4].
Let PSL2(Z) be the modular group which consists of the transformations

z → az + b

cz + d
with a, b, c, d ∈ Z, ad− bc = 1.

For convenience, the modular group and its subgroups will be represented by ma-
trices with the understanding that a matrix and its negative will be identified. The
principal congruence subgroup of level m, m being a positive integer, is defined by

Γ(m) = {A ∈ PSL2(Z) , A ≡ ±I mod m} /{±I}.

A congruence subgroup of level m of the modular group is a subgroup which con-
tains Γ(m) for some positive integer m and does not contain any Γ(n) for n < m.
Examples of such groups are

Γ1(m) =
{
A ∈ PSL2(Z) , A ≡ ±

(
1 ∗
0 1

)
mod m

}
/{±I},

Γ0(m) =
{(

a b
c d

)
∈ PSL2(Z) , c ≡ 0 mod m

}
/{±I}.

The indices of these groups in the modular group are given by

[PSL2(Z) : Γ(2)] = 6 , [PSL2(Z) : Γ1(2)] = 3 and
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µ(m) := [PSL2(Z) : Γ(m)] =
m3

2

∏
p|m

p prime

(
1− 1

p2

)
, m ≥ 3,

µ1(m) := [PSL2(Z) : Γ1(m)] =
m2

2

∏
p|m

p prime

(
1− 1

p2

)
, m ≥ 3,

µ0(m) := [PSL2(Z) : Γ0(m)] = m
∏
p|m

p prime

(
1 +

1
p

)
, m ≥ 1.

Each congruence group Γ acts on the upper-half plane H = {τ ∈ C, Im(τ) > 0}
in the usual way. If a nonidentity transformation in Γ corresponds to a matrix A,
then A has a fixed point in H if |tr(A)| is 0 (resp. 1); in this case A is of order
2 (resp. 3). Such a transformation is called elliptic, and so is the fixed point. If
|tr(A)| = 2, then A has a single fixed point on the real line, and A has infinite order;
the transformation is called parabolic and the fixed point is called a cusp. While if
|tr(A)| > 2, the transformation is called hyperbolic, and there are two fixed points
on the real line.

The set of parabolic fixed points for Γ is Q∪ {∞}. The quotient space Γ\H can
be made into a compact Riemann surface by adjoining the cusps. The genus of this
Riemann surface is also called the genus of the group Γ. The genus of a subgroup
of Γ is at least the genus of Γ. The genus of Γ(m) is zero if and only if 1 ≤ m ≤ 5.
The genus of Γ1(m) is zero if and only if m = 1, . . . , 10 or 12. The genus of Γ0(m)
is zero if and only if m = 1, . . . , 10, 12, 13, 16, 18 or 25.

Finally, if r is a cusp for Γ, the stabilizer of r in Γ is a subgroup of finite index
in the stabilizer of r in PSL2(Z), and both are infinite cyclic. The index between
the stabilizers is called the width of the cusp r in Γ. Conjugate cusps in Γ have the
same width and the sum of widths of all the inequivalent classes of cusps is equal
to the index of Γ in PSL2(Z); see Chapter 2 of [4]. Moreover, it is shown in [1] that
the least cusp width is the gcd of all the cusp widths, and that the level m is a cusp
width and is the lcm of all the cusp widths. Furthermore, the set of cusp widths is
closed under gcd and lcm.

3. Larcher congruence groups

In [1], H. Larcher introduced a large class of congruence subgroups of the modular
groups. These groups generalize the classical congruence groups Γ(n), Γ0(n) and
Γ1(n). To describe them we follow the treatment of [1].

Let m be a positive integer and d a positive divisor of m. Write m/d = h2n, with
n square-free. Let ε and χ be positive integers such that ε|h and χ| gcd(dε,m/dε2),
and let τ ∈ {1, 2, · · · , χ}. Define the following:

Γτ (m;m/d, ε, χ) =
{
±
(

1 + m
εχα dβ

m
χ γ 1 + m

εχδ

)
, γ ≡ τα mod χ

}
/± 1,

(3.1)

where α, β, γ and δ are integers, and the matrices involved have determinant 1.
Then, Γτ (m;m/d, ε, χ) is a congruence group of level m, except for Γ1(4; 2, 1, 2)
and Γ1(8; 8, 2, 2), which are respectively Γ(2) of level 2 and Γ0(4) of level 4. More-
over, d is the least cusp width and corresponds to the cusp at ∞, while m is
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the width of the cusp 0. In particular if m is square-free, then ε = χ = 1 and
Γτ (m;m/d, ε, χ) = Γ1(m) ∩ Γ(d). The cusp widths can be determined in terms of
the rational presentation of the cusps and the various data attached to these groups.
More interestingly, the Larcher groups describe the cusp widths of any congruence
group in the following way: Let Γ be a congruence group of level m, and let d be
the least cusp width in Γ. It is possible to conjugate Γ by a matrix in the modular
group such that the width of ∞ becomes d and the width of 0 becomes m. Note
that a modular conjugacy only permutes the cusp widths, however, a nonmodu-
lar conjugacy often changes the set of cusp widths. According to Section 3 in [1],
for suitable ε, χ and τ , the Larcher group Γτ (m;m/d, ε, χ) is a congruence group
having the properties:

1. Γτ (m;m/d, ε, χ) is a subgroup of Γ.
2. The widths of any cusp (rational or ∞) are the same with respect to Γ and

to Γτ (m;m/d, ε, χ).

We refer to Γτ (m;m/d, ε, χ) as the Larcher group corresponding to Γ.
The cusp widths in a Larcher congruence group Γτ (m;m/d, ε, χ) are given in the

following way according to Lemma 7 of [1]: The cusp width of∞ is d, and if a/b is
a rational number with gcd(a, b) = 1, then its width is given by

dσ

gcd(σ, εχ, b − τaε) , with σ =
m

gcd(db,m)
,(3.2)

except for Γ1(4; 2, 1, 2) = Γ(2) and Γ1(8; 8, 2, 2), which are equal to Γ(2) and Γ0(4)
respectively.

4. Torsion–free genus 0 groups

Let Γ be any subgroup of PSL2(Z) of finite index µ and genus g. Let νk (k = 2, 3)
be the number of inequivalent elliptic fixed points of order k (which are fixed by
transformations of order k), and let h be the number of the inequivalent cusps,
which we also call the parabolic class number. Then the Riemann-Hurwitz formula
yields

g = 1 +
µ

12
− ν2

4
− ν3

3
− h

2
.(4.1)

Suppose that Γ has r conjugacy classes of elliptic cyclic subgroups of orders
m1, . . . ,mr (mi ∈ {2, 3}). Then we say that Γ has signature (g;m1, . . . ,mr;h).
The structure of the group can be determined by its signature. In fact the group Γ
has a presentation:

Generators:

A1, B1, . . . , Ag, Bg, E1, . . . , Er, P1, . . . , Ph.(4.2)

Relations:

Em1
1 = . . . = Emrr = P1 . . . PhE1 . . . ErA1B1A

−1
1 B−1

1 . . . AgBgA
−1
g B−1

g = 1.
(4.3)

The generators Pi are parabolic, the Ei are elliptic and Ai and Bi are hyperbolic.
We note that what has been said so far in this section generalizes to any finitely
generated Fuchsian group.



TORSION-FREE GENUS ZERO CONGRUENCE GROUPS 2521

From the presentation of the group Γ, it is clear that if Γ is torsion–free (that is
to say, it has no elliptic elements), and if it is of genus zero, then it can be generated
by parabolic elements only. In such a case, it follows from (4.1) that

µ = 6(h− 2).(4.4)

The modular group PSL2(Z) is the free product of a cyclic group of order 2
and a cyclic group of order 3. Using Kurosh’s theorem, a torsion–free subgroup of
finite index Γ is a free group. When Γ has genus zero, its rank is h− 1, where h is
the parabolic class number of Γ. For a positive integer m, it is not difficult to see
that Γ(m) is torsion–free for m ≥ 2, Γ1(m) is torsion–free for m > 2 and a trace
argument shows that Γ0(m) is torsion–free if and only if −1 and −3 are not squares
modulo m.

Proposition 4.1. Every torsion–free genus zero congruence subgroup of PSL2(Z)
is conjugate by an element of PSL2(Z) to a Larcher congruence group.

Proof. Let Γ be a torsion–free genus 0 congruence subgroup of level m. Up to a
modular group conjugacy, we can assume that the least cusp width d corresponds
to ∞, and that m corresponds to the cusp 0. Let Γτ (m;m/d, ε, χ) be the corre-
sponding Larcher group. According to the previous section, the stabilizers of each
cusp with respect to both groups are the same. It follows that every parabolic
generator of Γ, which is a generator of the stabilizer of the corresponding cusp, is
also in Γτ (m;m/d, ε, χ). Since Γ is torsion–free and genus 0, it can be generated
by parabolic elements only. Therefore Γ = Γτ (m;m/d, ε, χ).

In the next section, we will list the congruence groups which are torsion–free and
genus zero. It will be easy to decide whether they are genus 0 simply because they
are all conjugate to one of the groups of the form Γ(n), Γ0(n) or Γ1(n) which are
mentioned in the introduction, or are Γ0(16)∩Γ1(8) and Γ1(8)∩Γ(2). We therefore
need the following result:

Proposition 4.2. The groups Γ0(16) ∩ Γ1(8) and Γ1(8) ∩ Γ(2) are of genus zero.

Proof. The two groups are conjugate by τ → 2τ ; we will deal only with Γ0(16) ∩
Γ1(8). It is not difficult to see that this group has index 48 in PSL2(Z). As a
subgroup of Γ0(16), it is torsion–free. Thus, using the formula (4.1) to prove that
the genus is 0, we only need to show that the parabolic class number h is 10. The
group Γ0(16) ∩ Γ1(8) coincides with the Larcher group Γ1(16; 16, 1, 2), for which
we can establish the widths of all cusps using (3.2). For the cusps 1 and 1/3, the
width is 16, for the cusps 1/2 and 1/6 the width is 4, for the cusps 1/4 and 1/12
the width is 2 and for the cusps 1/8, 3/8, 3/16 and 1/16, the width is 1 (1/16 is
equivalent to ∞). We will show that those having the same width are inequivalent,
and then we have the 10 inequivalent cusps we are looking for. The cusps 1 and
1/3 are inequivalent modulo Γ1(8), otherwise we will have, for some integers a, b,
c and d satisfying the determinant condition a+ d+ 8ad = bc,

1 + 8a+ b

8c+ 1 + 8d
=

1
3
.(4.5)

The numerator and denominator are relatively prime since the product(
1 + 8a b

8c 1 + 8d

)(
1 0
1 1

)
=
(

1 + 8a+ b b
8c+ 1 + 8d 1 + 8d

)
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has determinant 1; this contradicts (4.5). If the cusps 1/2 and 1/6 are equivalent
modulo Γ0(16)∩Γ1(8), then 1 and 1/3 will be equivalent modulo Γ1(8)∩Γ(2), but
we have just seen that they are not equivalent modulo Γ1(8). If the cusps 1/4 and
1/12 are equivalent modulo Γ0(16) ∩ Γ1(8), then for some a, b, c and d we have

1 + 8a+ 4b
16c+ 4 + 32d

=
1
12
.

This is equivalent to 3(1+8a+4d) = 1+4c+8d, which is impossible mod 4. Similarly,
the cusps 1/8 and 3/8 are inequivalent modulo Γ1(8) and so they are modulo
Γ0(16) ∩ Γ1(8). The cusps 3/16 and 1/16 are inequivalent modulo Γ0(16) ∩ Γ1(8)
because 3/8 and 1/8 are inequivalent modulo Γ1(8). Finally, none of the cusps 1/8
and 3/8 is equivalent to one of the cusps 1/16 and 3/16 under Γ0(16).

5. The complete list

Theorem 5.1. Up to modular conjugacy, there are exactly 33 congruence sub-
groups of the modular group which are torsion-free and genus zero, all of which
are given in Table 1.

6. The proof

According to Proposition 4.1, it is enough to determine all the Larcher congru-
ence groups which are torsion–free and genus 0. We start with the following

Proposition 6.1. If Γτ (m;m/d, ε, χ) is of genus zero, then

dε ≤ 5 ,
md

χ
≤ 25 ,

m

εχ
≤ 12.(6.1)

Proof. It is clear that Γτ (m;m/d, ε, χ) ⊆ Γ0(m/χ)∩Γ1(m/εχ)∩Γ(d) since d divides
m/εχ. Also Γ0(m/χ)∩Γ(d) is conjugate by

(
d 0
0 1

)
to Γ0(md/χ)∩Γ1(d) and Γ0(m/χ)∩

Γ1(m/εχ)∩ Γ(d) is conjugate by
(

1 0
0 ε

)
to Γ1(m/εχ)∩ Γ(dε) since dε divides m/εχ.

A necessary condition to have Γτ (m;m/d, ε, χ) of genus zero is that the groups
Γ0(md/χ), Γ1(m/εχ) and Γ(dε) are all of genus zero. This yields (6.1).

We see that d ≤ 5. The Proof of Theorem 5.1 will be detailed in five lemmas
according to the value of d.

Lemma 6.2. There is only one torsion–free genus 0 congruence group with d = 5.
Namely Γ(5) of index 60.

Proof. If d = 5, from (6.1) we get ε = 1. Since χ|dε, we have χ = 1 or 5. If χ = 5,
then since dχ|m and md/χ ≤ 25, we have m = 25. We end up with the groups
Γτ (25; 5, 1, 5) for τ ∈ {1, 2, 3, 4, 5} which consist of the transformations

A =
(

1 + 5α 5β
5γ 1 + 5δ

)
, det(A) = 1 and γ ≡ τα mod 5.

Conjugating by
(

1 −τ
0 1

)
if τ = 1, 4 or by

(
1 τ
0 1

)
if τ = 2, 3, and then by

(
1 0
0 5

)
we obtain

Γ1(25) which is not of genus 0. While if τ = 5, then the group is Γ0(25) ∩ Γ(5)
which is conjugate to Γ0(125)∩ Γ1(5) by

(
1 0
0 5

)
which is not of genus zero. If χ = 1,

then from md/χ ≤ 25 we get m = 5 and τ = 1 and so the group is simply Γ(5)
which is genus zero and has index 60 in the modular group.
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Table 1.

Index Level Group

6 2 Γ(2)
4 Γ0(4)

12 3 Γ(3)
4 Γ0(4) ∩ Γ(2)
5 Γ1(5)
6 Γ0(6)
8 Γ0(8)
9 Γ0(9)

24 4 Γ(4)
6 Γ0(3) ∩ Γ(2)
7 Γ1(7)

8 Γ1(8), Γ0(8) ∩ Γ(2),
{
±
(

1 + 4a 2b
4c 1 + 4d

)
, a ≡ c mod 2

}
12 Γ0(12)

16 Γ0(16),
{
±
(

1 + 4a b

8c 1 + 4d

)
, a ≡ c mod 2

}
36 6 Γ0(2) ∩ Γ(3)

9 Γ1(9),
{
±
(

1 + 3a 3b
3c 1 + 3d

)
, a ≡ c mod 3

}
10 Γ1(10)
18 Γ0(18)

27
{
±
(

1 + 3a b

9c 1 + 3d

)
, a ≡ c mod 3

}
48 8 Γ1(8) ∩ Γ(2),

{
±
(

1 + 4a 4b
4c 1 + 4d

)
, a ≡ c mod 2

}
12 Γ1(12),

{
±
(

1 + 6a 2b
6c 1 + 6d

)
, a ≡ c mod 2

}
16 Γ0(16) ∩ Γ1(8),

{
±
(

1 + 4a 2b
8c 1 + 4d

)
, a ≡ c mod 2

}
24

{
±
(

1 + 6a b

12c 1 + 6d

)
, a ≡ c mod 2

}
32

{
±
(

1 + 4a b

16c 1 + 4d

)
, a ≡ c mod 2

}
60 5 Γ(5)

25 Γ0(25) ∩ Γ1(5)
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Lemma 6.3. If d = 4, there are exactly 2 Larcher groups of genus 0. Namely Γ(4)
of index 24 and the group Γ1(8; 2, 1, 2) of transformations

(
1+4a 4d
4c 1+4d

)
with a ≡ c

mod 2 of index 48.

Proof. From dε ≤ 5 we have ε = 1, and χ|4 so that χ = 1, 2 or 4. If χ = 1, then
d|m and md/χ ≤ 25 yields m = 4, in which case the group is clearly Γ(4) which has
index 24 in PSL2(Z). If χ = 2, then from md/χ ≤ 25 and dχ|m we have m = 8.
The possible values for τ are 1 and 2. In the first case we have Γ1(8; 2, 1, 2) which is
conjugate by

(
1 1
0 2

)
to Γ1(8)∩Γ(2) which is genus zero by Proposition 4.2. If τ = 2,

then we have Γ2(8; 2, 1, 2) which is simply Γ0(8) ∩ Γ(4) which is conjugate by
(

1 0
0 4

)
to Γ0(32) and therefore not of genus zero. It remains to look at the case χ = 4
which, together with md/χ ≤ 25 and dχ|m, gives m = 16. For τ = 1, 2, 3, 4 one
can easily see that the corresponding Larcher groups are respectively conjugate to
Γ1(16), Γ0(32), Γ1(16) and Γ0(64), none of which is of genus zero.

Lemma 6.4. If d = 3, there are exactly three Larcher groups of genus zero. Namely
Γ(3) of index 12, Γ0(2) ∩ Γ(3) of index 36 and the group Γ1(9; 3, 1, 3) of transfor-
mations

(
1+3a 3b

3c 3d

)
with a ≡ c mod 3 of index 36.

Proof. From dε ≤ 5, we still have ε = 1, and then χ = 1 or 3. If χ = 1, md/χ ≤ 25
yields m ≤ 8, and d|m yields m = 3 or 6. In the first case, the group is simply Γ(3),
in the second case, it is Γ0(6)∩Γ(3) = Γ0(2)∩Γ(3) which is of genus zero since it is
conjugate to Γ0(18). If χ = 3, the possible values of m are 9 and 18. If m = 9, then
for τ = 1, 2 we have the group Γτ (9; 3, 1, 3) of transformations

(
1+3a 3b

3c 3d

)
with the

condition a ≡ c mod 3 if τ = 1 and a ≡ −c mod 3 if τ = 2. But these two groups
are clearly conjugate by

(
1 1
0 1

)
which is in the modular group; we keep only the case

τ = 1. The corresponding group is of genus zero since it is conjugate to Γ1(9) by(
1 −1
0 3

)
. If τ = 3, then we are dealing with the group Γ3(9; 3, 1, 3) = Γ0(9) ∩ Γ(3)

which is conjugate to Γ0(27), and therefore not of genus zero. It remains to look at
the case m = 18. If τ = 1 or 2, then the corresponding Larcher group is conjugate
to Γ1(18), and if τ = 3 it is conjugate to Γ0(54) and none of these is genus zero.

Lemma 6.5. If d = 2, there are exactly 8 Larcher groups of genus zero. Namely
Γ(2) of index 6, Γ0(4)∩Γ(2) of index 12, Γ0(3)∩Γ(2), Γ0(8)∩Γ(2) and Γ1(8; 4, 1, 2)
of index 24 and Γ1(8) ∩ Γ(2), Γ1(12; 6, 1, 2) and Γ1(16; 8, 2, 2) of index 48.

Proof. If d = 2, then from dε ≤ 5 we get ε = 1 or 2.
(i) ε = 1 : χ divides d = 2 which divides m.
If χ = 1, then from md/χ ≤ 25 we get m ≤ 12 and m is even. In all cases τ is 1,

and we can read off the following Larcher groups for each even value of m from 2 to
12: Γ(2), Γ0(4)∩Γ(2), Γ0(6)∩Γ(2) = Γ0(3)∩Γ(2), Γ1(8)∩Γ(2), Γ1(10)∩Γ(2) and
Γ1(12)∩Γ(2). The last two are not genus 0 because they are respectively conjugate
to Γ0(20) ∩ Γ1(10) and Γ0(24) ∩ Γ1(12). The groups Γ0(4) ∩ Γ(2) and Γ0(3) ∩ Γ(2)
are both genus zero because they are respectively conjugate by

(
2 0
0 1

)
to Γ0(8) and

Γ0(12).
If χ = 2, then m is multiple of 4 less than 25. If m = 4 and τ = 1, then we are

dealing with the first exceptional Larcher group (in the sense that the level is not
immediately apparent); this group is Γ1(4; 2, 1, 2) = Γ(2). While if τ = 2, then the
group is Γ2(4; 2, 1, 2) = Γ0(4)∩Γ(2).1 If m = 8, then χ = 1 gives Γ1(8; 4, 1, 2) which

1The reason we get this group twice is that Γ0(4) = Γ1(4). The same phenomenon will occur
whenever we have to deal with Γ0(4) or Γ0(6) = Γ1(6).
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is genus 0 because it is conjugate to Γ1(8) by
(

1 1
0 2

)
, while τ = 2 gives Γ0(8)∩ Γ(2),

a conjugate of Γ0(16) and hence of genus 0. If m = 12, then only τ = 1 gives a
genus 0 group which is Γ1(12; 6, 1, 2), a conjugate to Γ1(12). For m = 16, 20, 24, it
is easy to see that the groups produced are not genus zero.

(ii) ε = 2 : χ divides dε = 4 so that χ = 1, 2, 4. Since χdε2|m and md/χ ≤ 25,
the only possibilities are (χ = 1,m = 8), (χ = 2,m = 16) or (χ = 4,m = 32). The
first case corresponds to Γ0(8) ∩ Γ1(4) ∩ Γ(2) = Γ0(8) ∩ Γ(2). For the second case,
if τ = 1, then we have Γ1(16; 8, 1, 2) which is of genus 0 because it is conjugate
to Γ1(8) ∩ Γ(2) by

(
1 1/2
0 1

)
, and τ = 2 gives Γ0(16) ∩ Γ(2) which is not of genus 0

since it is conjugate to Γ0(32). For the third case, all four values of τ give nonzero
genus.

Notice that in the previous lemmas, the genus zero groups are all torsion–free
since they are contained in Γ(m) for m = 2, 3, 4 or 5. However, this is no longer
the case with d = 1.

Lemma 6.6. If d = 1, there are exactly 19 Larcher groups which are torsion–
free and genus zero. Namely, Γ0(m) for m = 4, 6, 8, 9, 12, 16, 18, Γ1(m) for m =
5, 7, 8, 9, 10, 12,Γ0(16) ∩ Γ1(8), Γ0(25) ∩ Γ1(5), Γ1(16; 16, 2, 2),Γ1(24; 24, 2, 2),
Γ1(27; 27, 3, 3) and Γ1(32, 32, 4, 2).

Proof. (i) ε = 1 : We have χ = 1, and m/χε ≤ 12 yields m ≤ 12, and the groups
are all of the form Γ1(m). We have to exclude 11 because of the genus 0 property,
and 1, 2 and 3 because of the torsion–free property.

(ii) ε = 2 : If χ = 1, then m ≤ 24 and 4|m. The groups are of the form
Γ0(m) ∩ Γ1(m/2). This produces Γ0(4), Γ0(8), Γ0(12), Γ0(16) ∩ Γ1(8) which are
all of genus zero and torsion–free, however, m = 20 or 24 does not give a genus
zero group. If χ = 2, then m ≤ 48 and m must be divisible by ε2χ = 8. It is not
difficult to exclude m = 32, 40 and 48. For m = 24, τ = 1 gives Γ1(24; 24, 2, 2)
which is conjugate to Γ1(12) by

(
1 1/2
0 1

)
, and so it is of genus 0, and τ = 2 gives

Γ0(24) ∩ Γ1(12) which is not of genus 0. If m = 16, then τ = 2 gives Γ0(16) and
τ = 1 yields Γ1(16; 16, 2, 2) which is conjugate to Γ1(8). If m = 8, then τ = 2 yields
Γ0(8) and τ = 1 corresponds to the second exceptional Larcher group, namely
Γ1(8; 8, 2, 2) which is just Γ0(4).

(iii) ε = 3 : χ = 1 or 3, and ε2χ|m gives 9χ|m. If χ = 1, then md/χ ≤ 25 yields
m ≤ 25, so that m = 9, 18; these correspond to the groups Γ0(9) ∩ Γ1(3) = Γ0(9)
and Γ0(18) ∩ Γ1(6) = Γ0(18). If χ = 3, then m ≤ 75 and 27|m, so that m = 27 or
54. For m = 54, the groups corresponding to τ = 1 or 2 are conjugate by

(
1 τ/3
0 1

)
to Γ1(18) and τ = 3 gives Γ0(54) and none of these is genus zero. For m = 27,
τ = 3 yields Γ0(27) which is not of genus 0. However, τ = 1 or 2 yield two genus
zero groups which are conjugate to Γ1(9) by

(
1 −τ/3

0 1

)
. Note that Γ1(27; 27, 3, 3) is

conjugate to Γ2(27; 27, 3, 3) by
(

2 −1
3 −1

)
which is in the modular group, and they are

also conjugate by
(

1 1/3
0 1

)
.

(iv) ε = 4 : In this case χ = 1, 2, 4 and the conditions χε2|m and m/χ ≤ 25 give
the following: If χ = 1, then m = 16 and the group is Γ0(16). If χ = 2, then m ≤ 50
and 32|m, which yields m = 32. Now, for τ = 1 we have the group Γ1(32; 32, 4, 2)
which is conjugate to Γ0(16) ∩ Γ1(8) by

(
1 −1/4

0 1

)
and hence of genus 0, and τ = 2

gives the group Γ0(32) which is not of genus zero. If χ = 4, then m ≤ 100 and 64|m
so that m = 64. In this case τ = 1, 3 give groups that are conjugate to Γ1(16),
τ = 2, 4 give groups that are subgroups of Γ0(32), and none of these is of genus 0.
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(v) ε = 5 : In this case χ = 1 or 5. We have 25χ = χε2|m and m/χ ≤ 25, yielding
m = 25χ. If χ = 1, then m = 25 and the group is Γ0(25)∩Γ1(5) which is conjugate
to Γ(5) and hence of genus 0. If χ = 5, then m = 125, and τ = 1, 2, 3 or 4 give
a group that is conjugate to Γ1(25) by

(
1 −τ/5

0 1

)
, and τ = 5 gives Γ0(125) ∩ Γ1(5),

and none of these groups is of genus 0.

This concludes the proof of the classification.

7. Cusp widths

Table 2.

index Group Cusp widths
6 Γ(2) 2− 2− 2

Γ0(4) 4− 1− 1
12 Γ(3) 3− 3− 3− 3

Γ0(4) ∩ Γ(2) 4− 4− 2− 2
Γ1(5) 5− 5− 1− 1
Γ0(6) 6− 3− 2− 1
Γ0(8) 8− 2− 1− 1
Γ0(9) 9− 1− 1− 1

24 Γ(4) 4− 4− 4− 4− 4− 4
Γ0(3) ∩ Γ(2) 6− 6− 6− 2− 2− 2
Γ1(7) 7− 7− 7− 1− 1− 1
Γ1(8) 8− 8− 4− 2− 1− 1
Γ0(8) ∩ Γ(2) 8− 8− 2− 2− 2− 2
Γ1(8; 4, 1, 2) 8− 4− 4− 4− 2− 2
Γ0(12) 12− 4− 3− 3− 1− 1
Γ0(16) 16− 4− 1− 1− 1− 1
Γ1(16; 16, 2, 2) 16− 2− 2− 2− 1− 1

36 Γ0(2) ∩ Γ(3) 6− 6− 6− 6− 3− 3− 3− 3
Γ1(9) 9− 9− 9− 3− 3− 1− 1− 1
Γ1(9; 3, 1, 3) 9− 9− 3− 3− 3− 3− 3− 3
Γ1(10) 10− 10− 5− 5− 2− 2− 1− 1
Γ0(18) 18− 9− 2− 2− 2− 1− 1− 1
Γ1(27; 27, 3, 3) 27− 3− 1− 1− 1− 1− 1− 1

48 Γ1(8) ∩ Γ(2) 8− 8− 8− 8− 4− 4− 2− 2− 2− 2
Γ1(8; 2, 1, 2) 8− 8− 4− 4− 4− 4− 4− 4− 4− 4
Γ1(12) 12− 12− 6− 4− 4− 3− 3− 2− 1− 1
Γ1(12; 6, 1, 2) 12− 6− 6− 6− 6− 4− 2− 2− 2− 2
Γ0(16) ∩ Γ1(8) 16− 16− 4− 4− 2− 2− 1− 1− 1− 1
Γ1(16; 8, 2, 2) 16− 16− 2− 2− 2− 2− 2− 2− 2− 2
Γ1(24; 24, 2, 2) 24− 8− 3− 3− 3− 3− 1− 1− 1− 1
Γ1(32; 32, 4, 2) 32− 8− 1− 1− 1− 1− 1− 1− 1− 1

60 Γ(5) 5− 5− 5− 5− 5− 5− 5− 5− 5− 5− 5− 5
Γ0(25) ∩ Γ1(5) 25− 25− 1− 1− 1− 1− 1− 1− 1− 1− 1− 1

In Table 2 we give the list of the cusp widths of all the torsion–free genus zero
congruence subgroups of the modular group. We recall that the cusp widths satisfy
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the following properties:
• The width of 0 (which is the level) is the lcm of all widths.
• The width of ∞ is the gcd of all widths.
• The sum of all widths equals the index of the group in PSL2(Z).

These widths were computed using the above properties in some cases, and in other
cases by finding a set of inequivalent cusps for the group and using (3.2).
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