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Modular Subgroups, Forms, Curves
and Surfaces
Abdellah Sebbar

Abstract. We study a class of subgroups of PSL2(Z) which can be characterized in different ways, such
as congruence groups, modular forms, modular curves, elliptic surfaces, lattices and graphs.

1 Introduction

In this note we study the properties of a family of subgroups of the modular group
PSL2(Z) which can be characterized by algebraic, number-theoretic and geometric
properties, in connection with modular forms, modular curves, elliptic surfaces as
well as lattices and graphs. The objects in question are the subgroups of index 12
in PSL2(Z) which are genus zero and have no elliptic elements. It turns out that all
these subgroups are congruence. We study the modular curves obtained from them,
the elliptic surfaces having these modular curves as base curves, their graded rings of
modular forms, some lattices that appear by applying the Schwarz derivative to their
Hauptmoduln and their coset graphs. All these aspects are connected and most of
the ideas can be generalized to subgroups of higher index.

2 The Groups

Let PSL2(Z) be the modular group which consists of the transformations

z →
az + b

cz + d
with a, b, c, d ∈ Z, ad− bc = 1.

For convenience, the modular group and its subgroups will be represented by ma-
trices with the understanding that a matrix and its negative will be identified. The
principal congruence subgroup of level m, m being a positive integer, is defined by

Γ(m) = {A ∈ SL2(Z),A ≡ ±I mod m}/{±I}.

A congruence subgroup of level m of the modular group is a subgroup which contains
Γ(m) for some positive integer m and does not contain anyΓ(n) for n < m. Examples
of such groups are the groups of unipotent and upper triangular matrices mod m:

Γ1(m) =

{
A ∈ SL2(Z),A ≡ ±

(
1 b
0 1

)
mod m

} /
{±I},

Γ0(m) =

{(
a b
c d

)
∈ PSL2(Z), c ≡ 0 mod m

} /
{±I}.
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It is shown in [15] that there are 33 conjugacy classes of genus zero and torsion-free
congruence subgroups of the modular groups PSL2(Z), see also [10] for the complete
list. The indices which occur are 6, 12, 24, 36, 48 and 60. These groups share many
arithmetic and geometric properties. However, the index 12 subgroups seem to be
very special, and they are the subject of this note. In this regard, we have

Proposition 2.1 Up to modular conjugacies, there are six genus zero and torsion-free
congruence subgroups of index 12 in PSL2(Z). Namely, Γ(3), Γ0(4) ∩ Γ(2), Γ1(5),
Γ0(6), Γ0(8) and Γ0(9).

Each of them has four classes of parabolic subgroups, and each of them is canon-
ically generated by a set of four parabolic elements. The Riemann-Hurwitz formula
shows that a fundamental domain for the action of each of these groups has a hyper-
bolic area equal to 4π. The group Γ(3) is conjugate to Γ0(9) by τ → 3τ , and the
group Γ0(4) ∩ Γ(2) is conjugate to Γ0(8) by τ → 2τ . Both conjugations are non-
modular. The Proof of the above proposition follows from the the above mentioned
classification of the torsion-free genus zero congruence subgroups, which is based on
simple number-theoretic arguments and on the study of cusp widths in the congru-
ence case. It is interesting to know whether there are other subgroups with the same
properties but without the congruence condition.

For a subgroup Γ of finite index in the modular group PSL2(Z), the stabilizer of a
cusp in Γ is a subgroup of finite index in the stabilizer of this cusp in PSL2(Z). This
index is referred to as the cusp width in Γ. It is also the smallest positive integer n
such that a modular conjugate of the transformation τ → τ + n is in Γ and fixes the
cusp. If we let ni , 1 ≤ i ≤ h, be the cusp widths for the h inequivalent cusps, then the
index µ of Γ in PSL2(Z) satisfies

µ =
h∑

i=1

ni.(1)

For the groups in Proposition 2.1, the cusp widths are given in Table 1. It remains to
show whether any other partition of 12 into 4 positive integers provides cusp widths
of some subgroup (which must then be noncongruence). Let us go back to a more
general subgroup of PSL2(Z) not necessarily torsion-free and not necessarily of genus
zero. Let µ be the index, h the number of inequivalent cusps, e2 the number of in-
equivalent elliptic fixed point of order 2, and e3 the number of inequivalent elliptic
fixed point of order 3. The Riemann-Hurwitz formula gives the genus as

g = 1 +
1

2

( µ
6
− h−

e2

2
−

2e3

3

)
.(2)

The quadruple (g, h, e2, e3) is called the signature of the subgroup. Conversely, for
any integers µ > 0, h > 0, g ≥ 0, e2 ≥ 0 and e3 ≥ 0 which satisfy (2), there is a
subgroup of PSL2(Z) with signature (g, h, e2, e3) and index µ [11]. In fact, there is a
more precise statement involving the cusp widths. Let X be a set of µ letters and t
a fixed element of X. We consider pairings (x, y) of permutations x and y acting on
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Γ(3) 3− 3− 3− 3

Γ0(4) ∩ Γ(2) 4− 4− 2− 2

Γ1(5) 5− 5− 1− 1

Γ0(6) 6− 3− 2− 1

Γ0(8) 8− 2− 1− 1

Γ0(9) 9− 1− 1− 1

Table 1

X satisfying x2 = y3 = 1 and such that the group generated by x and y is transitive
on X. We define the equivalence classes (x, y)t modulo a conjugation of x and y by
a permutation in Sµ fixing t . Then there is a one-to-one correspondence between
subgroups of finite index µ in PSL2(Z) and equivalence classes (x, y)t acting on a set
X of µ letters. Moreover, the subgroup has index µ, a signature (g, h, e2, e3) and cusp
widths n1, n2 . . . , nh if and only if x fixes e2 letters of X, y fixes e3 letters of X and xy
consists of h disjoint cycles of lengths ni (1 ≤ i ≤ h) [11]. If we ignore the point
t , then the correspondence is one to one between conjugacy classes of subgroups of
index µ in PSL2(Z) and equivalence classes (x, y) modulo any permutation in Sµ.

Going back to our situation of torsion-free genus zero subgroups of index 12 in
PSL2(Z), we are looking for x and y acting with no fixed point on a set of 4 elements
with the above properties and such that xy decomposes into 4 cycles of lengths n1, n2,
n3, n4 with

∑
ni = 12. It is not difficult (modulo some easy computer work) to check

that the only partitions of 12 into 4 positive integers which are realized are those listed
in Table 1, see also the last section for a simple check using graphs. The corresponding
subgroups are then modular conjugate to the groups in Proposition 2.1 and thus are
congruence since the principal congruence subgroups are normal in PSL2(Z). We
then have

Theorem 2.2 All the torsion-free genus zero subgroups of PSL2(Z) of index 12 are
congruence subgroups, and thus are given by Proposition 2.1

To complete the description of these groups we give the generators of the transitive
group acting on the set of cosets for each subgroups. The modular group PSL2(Z) is
generated by the transformations S and T defined by

Sτ = τ + 1, Tτ = −1/τ .

It is also the free product of the cyclic group 〈T〉 of order 2 and the cyclic group 〈TS〉
of order 3. Let x and y denotes the permutations induced by the respective actions
of T and TS on the cosets of the subgroups in Proposition 2.1, then the permutation
decompositions for x, y and xy are given in Table 2. Notice that the total number of
disjoint cycles in the permutations, x, y, and xy is µ+2, determining that the genus of
the modular subgroup is zero, while the fact that x and y have no fixed points implies
that the subgroup is torsion-free.



Modular Subgroups, Forms, Curves and Surfaces 297

x : (1, 12)(2, 4)(3, 7)(5, 11)(6, 8)(9, 10)

Γ(3) y : (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)

xy : (1, 10, 7)(2, 5, 12)(3, 8, 4)(6, 9, 11)

x : (1, 12)(2, 4)(3, 6)(5, 7)(8, 11)(9, 10)

Γ0(4) ∩ Γ(2) y : (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)

xy : (1, 10, 7, 6)(2, 5, 8, 12)(3, 4)(9, 11)

x : (1, 2)(3, 4)(5, 7)(6, 8)(9, 10)(11, 12)

Γ1(5) y : (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)

xy : (1, 3, 5, 8, 4)(6, 9, 11, 10, 7)

x : (1, 2)(3, 4)(5, 7)(6, 10)(8, 12)(9, 11)

Γ0(6) y : (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)

xy : (1, 3, 5, 8, 10, 4)(6, 11, 7)(9, 12)

x : (1, 2)(3, 4)(5, 7)(6, 9)(8, 10)(11, 12)

Γ0(8) y : (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)

xy : (1, 3, 5, 8, 11, 10, 9, 4)(6, 7)

x : (1, 2)(3, 4)(5, 7)(6, 10)(8, 9)(11, 12)

Γ0(9) y : (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)

xy : (1, 3, 5, 8, 7, 6, 11, 10, 4)

Table 2

3 The Curves

In this section we look at the quotients G\H where G is one of the groups of Proposi-
tion 2.1. These quotients when compactified (by adjoining the cusps) become com-
pact Riemann surfaces. Each of these groups has a Hauptmodul which generates the
function field of these surfaces. Since the groups are also torsion-free, these Haupt-
moduls provide (conformal) isomorphisms between G \ H and the projective line
P1 minus certain 4 points. If we fix three points to be 0, 1 and ∞ (which can be
done by applying a linear fractional transformation), we may ask for which complex
number z, the curve P1 \ {0, 1,∞, z} is a modular curve, that is a quotient of the
upper half-plane by a modular subgroup. Proposition 2.1 allows us to determine all
the arithmetic curves of this form once we know the Hauptmoduln for the groups,
and Theorem 2.2 tells us that in this way we have determined all the modular curves
of the form P1 \ {0, 1,∞, z}. In Table 3 we list Hauptmoduln for the six groups,
normalized to have the Fourier expansion 1/q + O(q) where q is a uniformizer at∞,
in terms of the Dedekind eta function

η(τ ) = q
1

24

∞∏
n=1

(1− qn), q = exp(2πiτ )
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with exception of Γ1(5). These data can be found in [7], see also [9]. Table 3 also
contains the values of the Hauptmoduln at the cusps which are the locations of the
punctures on P1. These values are explicit or are roots of given quadratic polynomi-
als; they are ordered according to decreasing cusp width as given in Table 1.

The quadratic polynomials indicate that their roots are values for the Hauptmod-
uln, and the order in which these values are listed follows the ordering of the cusp
widths given in Table 1.

Group Hauptmodul Values at the cusps

Γ(3)
( η(τ/3)
η(3τ )

) 3
3, z2 + 3z + 9,∞

Γ0(4) ∩ Γ(2) η(2τ )12

η(τ )4η(4τ )8 4,−4, 0,∞

Γ1(5) 1
q

∏∞
n=1(1− qn)−5( n

5 ) z2 − 11z − 1, 0,∞

Γ0(6) η(τ )5η(3τ )
η(2τ )η(6τ )5 5,−4,−3,∞

Γ0(8) η(4τ )12

η(2τ )4η(8τ )8 4,−4, 0,∞

Γ0(9)
(
η(τ )
η(9τ )

) 3
3, z2 + 3z + 9,∞

Table 3

In the expression of the Hauptmodul for Γ1(5), ( ·· ) denotes the Legendre symbol.
This Hauptmodul is the fifth power of the one for Γ(5), while the values at the cusps
are obtained by disymmetrizing Γ0(5). In fact if f is the normalized Hauptmodul for
Γ1(5) and g is the normalized Hauptmodul for Γ0(5), then we have

g = f −
1

f + 5
.

The group Γ0(5) has two cusps at which the values of g are 6 and∞ leading to the
values for Γ1(5) in Table 3 (For simplicity, it is f + 5 which appears in the table).

Applying a linear fractional transformation to the 4 values for each group so that
each triple is sent to 0, 1, ∞, we obtain 17 values for the fourth cusp. Denoting
exp(2πi/3) by ω and the roots of z2 − 125z + 125 by α and β, we have

Theorem 3.1 The curve P1 \ {0, 1,∞, z} is a modular curve if and only if z or 1/z is
a member of {

−8,−1,
9

8
, 2, 9,−ω, α, β,−

α

β

}
.
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So far we have considered only the quotients of the upper half-plane by subgroups
of the modular group. Let us consider a more general setting in which the groups
are general Fuchsian groups. We consider such group Γ which is genus zero, has no
elliptic elements and has 4 cusps (thus the index 12 condition above is translated into
fundamental area being 4π). Moreover, we require the group to have the same set of
cusps as the modular group, namely Q ∪ {∞}. The last condition can be assured if
we assume, as we do, that the group is commensurable with the modular group.

Let Γ be a Fuchsian group commensurable with the modular group. Using
Helling’s theorem this group is conjugate to a subgroup of Γ0( f )+ for some square-
free positive integer f . In this case, every element of Γ0( f )+ has the form [3, 4]

A =




a
√

e b/
√

e

c f /
√

e d
√

e


 , with det(A) = 1 and e| f , e > 0,

with a, b, c, d, e being integers. If an element of this form is parabolic, then its trace,
(a + d)

√
e, must be equal to ±2. It follows that e = 1, and the element is then in

PSL2(Z). If Γ is genus zero and has no elliptic elements then so is its conjugate in
Γ0( f )+ which then has a set of parabolic generators. Therefore, we have

Theorem 3.2 Every torsion-free genus zero Fuchsian group commensurable with the
modular group is conjugate to a subgroup of the modular group.

It follows that if we add the condition that the hyperbolic area is 4π, then the
conjugate inside PSL2(Z) has index 12, and thus is conjugate to one of the groups in
Proposition 2.1 which can be reduced to just 4 groups under nonmodular conjuga-
cies.

Corollary 3.3 Every torsion-free genus zero Fuchsian group commensurable with the
modular group having hyperbolic area 4π is either conjugate to Γ(3), Γ1(5), Γ0(6) or
Γ0(8).

Corollary 3.4 The only values of z for which P1\{0, 1,∞, z} is a quotient of the upper
half-plane by a Fuchsian group commensurable with the modular group are those given
by Theorem 3.1.

4 The Forms

Each of the 6 groups dealt with in the previous sections has a lifting to the inhomoge-
neous modular group SL2(Z) such that this lifting has no element of trace−2. These
groups are Γ(3), Γ1(4)∩Γ(2), Γ1(5), Γ1(6), Γ0(8)∩Γ1(4) and Γ0(9)∩Γ1(3), and they
have index 24 as subgroups of SL2(Z) since they do not contain −I. It is clear that
these are the only subgroups of index 24 in SL2(Z) which are of genus zero, torsion-
free, and not containing −I. The purpose of this section is to study the properties of
the spaces of modular forms for these groups.
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For a more general subgroup Γ of SL2(Z) of finite index, let g, h, e2, e3 be the data
corresponding to its projective image in PSL2(Z) as in Section 1. We write h = u + v
where u is the number of inequivalent cusps fixed by a parabolic element of trace 2
(cusps of the first kind), and v is the number of inequivalent cusps fixed by a parabolic
element of trace −2 (cusps of the second kind). Let Mn(Γ) be the complex vector
space of modular forms of integer weight n ≥ 0 for Γ. The graded ring of modular
forms with integer weights for Γ,

M(Γ) =
∞⊕

n=0

Mn(Γ)

is either infinitely generated or is a polynomial ring with two generators, namely
M(Γ) = C[ f1, f2], where f1 and f2 are algebraically independent modular forms for
Γ with integer weights, see [1] for a nice account on these facts. In the latter case Γ
has genus zero since the degree zero part of the fraction field of the ring (which is the
field of modular functions) has a single generator.

Proposition 4.1 ([1]) Up to conjugacy, there are only 17 subgroups Γ of SL of finite
index such that M(Γ) = C[ f1, f2].

If f1 has weight a and f2 has weight b, it is clear that the dimension of the complex
space of modular forms of weight n is equal to the coefficient of tn in the Taylor
expansion of

1

(1− ta)(1− tb)
.

Meanwhile, such dimensions are computed independently using the data from the
group signatures, see [16]. This observation makes restrictions on the weights a and
b and on the signatures, and leads to the above proposition.

We explain the particular case when a = b = 1 in the above proposition: in this
case, the dimension of the space of weight n ≥ 0 modular forms for Γ, Mn(Γ), is
n + 1. This follows from 1/(t + 1)2 =

∑
n≥0(n + 1)tn. From [16], these dimensions

are given as follows: If n = 2, then dim Mn(Γ) is equal to g if h = 0 and to g + h− 1
if h > 0. If n > 2 is even, then

dim Mn(Γ) = (n− 1)(g − 1) + e2

[ n

4

]
+ e3

[ n

3

]
+

n

2
h.

If n ≥ 3 is odd, then

dim Mn(Γ) = (n− 1)(g − 1) + e2

[ n

4

]
+ e3

[ n

3

]
+

n

2
u +

n− 1

2
v.

Although not used here, the situation is more complicated when n = 1 but simple
formulas for the case Γ = Γ(m) or Γ0(m) can be found in the literature [14, 16].
Since in each case, the expression equals n + 1 for each n, we have, for n = 2, that
g + h − 1 = 3 since h > 0 as the groups are of finite index in SL2(Z), and for n = 4
we have 3(g − 1) + e2 + e3 + 2h = 5. These relations yield g + e2 + e3 = 0. Since g, e2,
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e3 are all ≥ 0, we must have g = e2 = e3 = 0, and then h = 4. Using the case n = 3,
we find that u = h = 4 and thus v = 0. Since no parabolic element has a trace equal
to −2, then −I is not in Γ. From (2) the index of the projection Γ in PSL2(Z) is 12,
and thus the index of Γ in SL2(Z) is 24. We deduce the following result which is also
stated in [1] (without the explicit form of all the groups)

Theorem 4.2 There are exactly six subgroups of SL2(Z) whose graded ring of modular
forms M(Γ) is a polynomial ring with two generators each of degree 1. Namely, Γ(3),
Γ1(4) ∩ Γ(2), Γ1(5), Γ1(6), Γ0(8) ∩ Γ1(4) and Γ0(9) ∩ Γ1(3) whose projections in
PSL2(Z) are given by Proposition 2.1

To complete the description of the above graded rings, and for later purposes,
we provide the generators for each case. Expressions for the modular forms for Γ1(5)
were kindly provided to me by Professor Masao Koike. The others can be found using
the properties of Jacobi theta functions

θ2(τ ) =
∞∑
−∞

e(n+ 1
2 )2πiτ , θ3(τ ) =

∞∑
−∞

en2πiτ , θ4(τ ) =
∞∑
−∞

(−1)nen2πiτ ,

which satisfy the following transformations:

θ2(τ + 1) = e
πi
4 θ2(τ ), θ3(τ + 1) = θ4(τ ), θ4(τ + 1) = θ3(τ ).

θ2

( −1

τ

)
= (−iτ )

1
2 θ4(τ ), θ3

( −1

τ

)
= (−iτ )

1
2 θ3(τ ), θ4

( −1

τ

)
= (−iτ )

1
2 θ2(τ ).

Let φ be defined by

φ(τ ) = θ2(2τ )θ2(6τ ) + θ3(2τ )θ3(6τ ).

Then φ is a modular form of weight 1 for Γ1(3), in particular it is a modular form for
Γ(3) and Γ1(6). Also define

w =
∞∏

n=1

(1− qn).

and

ψ0 = w−3/5
∞∑

n=−∞

(−1)nq(5n2−n)/2, ψ1 = w−3/5q1/5
∞∑

n=−∞

(−1)nq(5n2−3n)/2.

These are forms of weight 1/5 for Γ(5) and a multiplier system, [1]. The quotient
ψ1/ψ0 is a Hauptmodul for Γ(5) and in fact we have

ψ1/ψ0 = q1/5
∞∏

n=1

(1− qn)( n
5 ),

a product that occurs to the inverse fifth power in Table 3. Table 4 gives the generators
f1, f2 for the graded rings; they are chosen so that f1/ f2 coincide exactly with the
Hauptmoduln given in the second column of Table 3. It is not difficult to see (from
the q−expansions) that f1 and f2 are, in each case, linearly independent, and since
they have the same weight, they are also algebraically independent.
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Group f1 f2

Γ(3) φ(τ ) 1
6

(
φ(τ/3)− φ(τ )

)
Γ1(4) ∩ Γ(2) 4

(
θ3(τ )2 + θ4(τ )2

)
θ3(τ )2 − θ4(τ )2

Γ1(5) ψ5
0 ψ5

1

Γ1(6) 7φ(2τ )− φ(τ ) φ(τ )− φ(2τ )

Γ0(8) ∩ Γ1(4) 4
(
θ3(2τ )2 + θ4(2τ )2

)
θ3(2τ )2 − θ4(2τ )2

Γ0(9) ∩ Γ1(3) φ(3τ ) 1
6

(
φ(τ )− φ(3τ )

)

Table 4

5 The Lattices

Let us define the Schwarz derivative for a function defined on H by

{ f , τ} := 2
f ′ ′ ′

f ′
− 3
( f ′ ′

f ′

) 2
.

If f is a Hauptmodul for a genus zero subgroup Γ of PSL2(Z), then { f , τ} is a weight
4 modular form for the normalizer ofΓ in PSL2(R) which is holomorphic everywhere
(including at the cusps) precisely when Γ is torsion-free [9]. Moreover, { f , τ} does
not depend on the choice of the Hauptmodul. Let us examine the situation for the
groups under consideration using the Hauptmoduln given in Table 3. Since Γ0(9) is
conjugate to Γ(3) by τ → 3τ and Γ0(4) ∩ Γ(2) is conjugate to Γ0(8) by τ → 2τ , we
only need to look at the case of four groups whose normalizers are given in Table 5.

The spaces of weight 4 modular forms for the normalizers all have dimension 1
except for Γ0(6)+ which has dimension 2. As it was mentioned above, the Schwarz
derivatives are holomorphic including at the cusps and a local analysis at∞ shows
that the constant coefficient of their q−expansion is always 4π2/d2 where d is the
cusp width at ∞ and the coefficient of q1/d is 0. This will allow us to completely
determine these weight 4 forms once we have bases for the above spaces of weight 4
modular forms. Also these forms are expressed in terms of f1 and f2 of Table 4 by
means of homogeneous polynomials of degree 4. The normalizer of Γ(3) is PSL2(Z),
whose space of weight 4 modular forms is 1-dimensional generated by the Eisenstein
series of weight 4

E4(τ ) = 1 + 240
∞∑

n=1

(∑
d|n

d3
)

qn.

Therefore the Schwarz derivative of a Hauptmodul f for Γ(3) is given by

{ f , τ} = π2E4(τ ).



Modular Subgroups, Forms, Curves and Surfaces 303

Group Γ(3) Γ0(4) ∩ Γ(2) Γ1(5) Γ0(6)

Normalizer PSL2(Z) Γ0(2)+ Γ0(5)+ Γ0(6)+

Table 5

This also implies that the Schwarz derivative of a Hauptmodul for Γ0(9) is given by
4π2E4(3τ ). Notice that E4 is the theta function of the root lattice E8, and in fact, for
all the other groups, the Schwarz derivative coincides with the theta function of some
rank 8 lattice as we will see.

The normalizer, Γ0(2)+, of Γ0(4) ∩ Γ(2) has a space of weight 4 modular forms
generated by

1

4

(
θ4

3(τ ) + θ4
4(τ )
) 2

which coincides with 1/π2{ f , τ} for any Hauptmodul f of Γ0(4) ∩ Γ(2), and is also
the theta function of the lattice D4 ⊕ D4 (see [5] for expressions of theta functions
for some lattices).

The normalizer of Γ1(5) is Γ0(5)+ (when n is square-free, the normalizer of Γ0(n)
and Γ1(n) are both given by Γ0(n)+) whose space of weight 4 modular forms is 1-
dimensional. We compute the Schwarz derivative using the Hauptmodul given in
Table 3. It turns out, from the q−expansion

1 + 120q2 + 240q3 + 600q4 + 1440q5 + 2400q6 + 3120q7 + 5400q8 + 7200q9 + O(q10),

that it coincides with the theta function of the 8-dimensional 5-modular lattice Q8(1)
with determinant 625 and minimal norm 4 (also known as the icosian or Maass lat-
tice) [6]. This theta function is indeed a modular form for Γ0(5)+.

The normalizer of Γ0(6) is Γ0(6)+ whose space of weight 4 modular forms has
dimension 2 and is generated by [9]

(
η(τ )η(2τ )η(3τ )η(6τ )

) 2
and h2

1(1− 4h2 − 16h3
2 + 16h4

2)

where

h1(τ ) =
(
θ3(τ )θ3(2τ )θ3(3τ )θ3(6τ )

) 2
and h2(τ ) =

η(τ/2)η(3τ/2)η(4τ )η(12τ )

η(τ )η(2τ )η(3τ )η(6τ )
.

Since the constant term of the Schwarz derivative of a Hauptmodul f for Γ0(6) is 4π2

and the coefficient of q is 0, we can see that 1/4π2{ f , τ} = h2
1(1−4h2−16h3

2 + 16h4
2)

which coincides with the theta function of A2 ⊗D4, see [13].
In Table 6 we gather these lattices which thus appeared in a natural way in connec-

tion with our groups. We also give the homogeneous polynomial P(x, y) of degree 4
which expresses their theta functions in terms of f1 and f2 as given by Table 4. We do
not know what characterizes these lattices from the other rank 8 lattices.
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Group 1
4π2 { f , τ} P(x, y)

Γ(3) θE8 (τ ) x4 + 216xy3

Γ1(4) ∩ Γ(2) θD4⊕D4 (τ ) 1/212(x2 + 16y2)2

Γ1(5) θQ8(1)(τ ) x4 − 12x3 y + 134x2 y2 + 12xy3 + y4

Γ1(6) θA2⊗D4 (τ ) 1/64(x4 + 4x3 y + 54x2 y2 + 388xy3 + 769y4)

Γ0(8) ∩ Γ1(4) θD4⊕D4 (2τ ) 1/212(x2 + 16y2)2

Γ0(9) ∩ Γ1(3) θE8 (3τ ) x4 + 216xy3

Table 6

6 The Surfaces

An elliptic surface is a complex surface X together with a holomorphic map π : X →
C , where C is a smooth curve, such that the general fiber of π is a smooth connected
curve of genus 1. We suppose that a distinguished global section S0 exists, so that
the general fibers can be seen as elliptic curves. We will always assume that there
are no exceptional curves in the fibers. Kodaira has classified all the fiber types into
two infinite families (In, I∗n , n ≥ 0) and six exceptional cases. An elliptic surface
is semistable if all the singular fibers are of type In, that is, the fiber is a cycle of n
irreducible curves. If Γ is a torsion-free subgroup of SL2(Z), following Kodaira’s
construction, we consider the quotient of H× C, where H is the upper-half plane, by
the semi-direct product of Γ and Z2 acting by automorphisms of the form (τ , z) �→(
γ · τ , (cτ + d)−1(z + mτ + n)

)
, where γ =

(a b
c d

)
∈ Γ and m, n are integers, see [8]

p. 580. This surface extends to an elliptic surface over Γ \ H∗ = Γ \ H ∪ {cusps}
such that the singular fibers are above the cusps. This construction can be made even
for Γ having elliptic elements [17]. The surface obtained (or any surface isomorphic
to it as a fibration) is called an elliptic modular surface. The Mordell-Weil group (or
the group of global sections) is finite. A cusp of the first kind gives a singular fiber
of type In where n is the cusp width, while a cusp of the second kind gives a fiber of
type I∗n . For a semistable elliptic modular surface over a curve C ∼= P1, the geometric
genus of the surface is given by pg = h/2− 2 and the arithmetic genus pa is equal to
pg since the irregularity of the surface is equal to the genus of the base curve which is
0.

The inhomogeneous subgroups of SL2(Z) of Section 4 provide 6 semistable elliptic
surfaces with four singular fibers; the type In of each singular fiber is given by the cor-
responding cusp width from Table 1. These surfaces are unique and thus determine
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uniquely the 6 groups in view of the following

Proposition 6.1 ([2]) The minimal number of singular fibers for a semistable elliptic
surface over a genus zero curve is four. Moreover, there are (up to isomorphism) only six
such surfaces with four singular fibers.

This says in particular that all semistable elliptic surfaces with four singular fibers
over a genus zero base curve are modular.

The six groups can also be determined uniquely using elliptic surfaces from an-
other point of view. An elliptic surface is extremal if it has a finite Mordell-Weil group
(MW) and a maximal Picard number, that is, the rank of the Neron-Severi group of
the surface (the group of divisors on the surface modulo algebraic equivalence) is
maximal. A surface is said to be rational if it is birational to P2.

Proposition 6.2 ([12]) There are 16 possible fiber types of extremal rational elliptic
surfaces of which only six are semistable.

When the elliptic surface is rational, there are several constraints on the numeri-
cal invariants of the surface, in particular the Picard number is 10. With these con-
straints, it is shown in [12] that the number of singular fibers is either 2, 3 or 4. In the
case of 4 singular fibers, these fibers must be all semistable of types Ini , i ∈ {1, 2, 3, 4},
such that

∑
ni = 12 and

∏
ni = |MW |2, where |MW | denotes the order of the

Mordell-Weil group MW. The only partitions of 12 into four positive integers whose
product is a square are those partitions given in Table 1 and so extremal rational el-
liptic surfaces with the maximal number (which is 4) of singular fibers determine the
six groups uniquely.

The generic fiber of an elliptic surface can be seen as an elliptic curve over the
function field of the base curve. If the base curve is the compactified quotient of one
the six torsion-free genus zero subgroups, and if t is Hauptmodul for this group, the
J−invariant of the elliptic curve will be a rational function of t satisfying

j(τ ) = J
(

t(τ )
)
, τ ∈ H,

where j is the elliptic modular function (normalized Hauptmodul for PSL2(Z)).
Since the subgroups have index 12 in PSL2(Z), a Hauptmodul for PSL2(Z) is a ratio-
nal function of degree 12 of each subgroup Hauptmodul. Knowing the cusp widths,
the values of the the normalized Hauptmoduln at the cusps and at ramification points
of j and the fact that the groups are torsion-free, we are able to write down the ex-
plicit rational function for each group which are listed in Table 7. The numerators
are cubes as expected, and each of these rational functions is the modulus of a (local)
Weierstrass equation for the corresponding elliptic surface

y2 = x3 + A(t)x + B(t)

where

J(t) = 1728
4A(t)3

4A(t)3 + 27B(t)2
.
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Γ(3) (t3(t3+216)3

(t3−27)3

Γ0(4) ∩ Γ(2) t4+224t2+256)3

t2(t−4)4(t+4)4

Γ1(5) (t4+228t3+494t2+228t+1)3

t(t2−11t−1)5

Γ0(6) (t+7)3(t3+237t2+1443t+2287)3

(t+3)2(t+4)3(t−5)6

Γ0(8) (t4+240t3+2144t2+3840t+256)3

t(t+4)2(t−4)8

Γ0(9) (t+6)3(t3+234t2+756t+2160)3

(t2+3t+9)(t−3)9

Table 7

From the global point of view, A and B are sections of L4 and L6 where L−1 is th
normal line bundle to the zero-section of the elliptic surface. In terms of the homo-
geneous coordinate [u : v] of the base curve (which we look at as P1 for the moment),
A(u, v) (resp. B(u, v) is a degree 4 (resp. 6) form.

Let Γ be one the six groups. According to Section 4, the graded ring of modu-
lar forms of integer weights for Γ is a polynomial ring C[ f1, f2] where f1 and f2 are
weight 1 modular forms. It follows that Proj(C[ f1, f2]) ∼= P1 where f1 is identified
with u and f2 is identified with v. This amounts torputting t = u/v in Table 7. Writ-
ing the numerators (which are already cubes) as 1728·4A(u, v)3, and the denominator
as ∆, we find that ∆ − 4A(u, v)3 is a square that we write as B(u, v)2. With a choice
of sign for B(u, v), and using the expressions from Table 4, the Weierstrass equation
becomes (after a standard transformation):

y2 = 4x3 − g2x − g3,

where g2 and g3 are the classical Eisenstein series of weight 4 and 6.

7 The Graphs

In Section 2, we stated that there are only six partitions of 12 into four positive inte-
gers which are the disjoint cycle length of xy where x and y are permutations acting
fixed-point freely on a set of four points such that x2 = y3 = 1 and the group gen-
erated by x and y is transitive on the four points. In this section, we describe some
coset graphs which determine uniquely the (conjugacy classes of) the pairings (x, y).

The following five graphs are the only undirected connected trivalent graphs with
four vertices.
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(c) (d)
(e)

(b)

Trivalent connected 4-vertex graphs

We treat these graphs as directed graphs in which each edge is seen as a doubly di-
rected edge and each vertex is interpreted as a positively oriented triangle:

=

yielding directed connected trivalent graphs with 12 vertices that we still call (a), . . .
(e). The doubly directed edges represent an element y of order 2 while the positively
oriented triangles represent an element x of order 3. Both x and y are acting fixed-
point freely on the vertices since we cannot have loops on the new graph. Now, since
the graph is connected, the group generated by x and y is transitive on the vertices.
It is clear that this process give more than five nonisomorphic graphs. To be more
precise, with orientations in place, the first two undirected graphs give two more
apparently different graphs, by taking the spikes outside or inside:

(a) (a')

(b) (b')

It is clear that the graphs (a) and (a ′) are isomorphic as directed graphs, whereas (b)
and (b ′) are not (they have different circuits). It is also clear that there are no other
graphs of this type beside (a), (b), (c), (d), (e) and (b ′) (this can be seen directly
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instead of shrinking the triangles to get to the trivalent graphs with four vertices).
To express the cycle decomposition of the permutation xy, we chose a vertex and
we apply x, then y, that is we take an edge (doubly oriented) followed by a side of
a triangle (always in the positive orientation) until we return back to the original
vertex. The length of this circuit gives the length of a cycle of xy. We thus obtain the
permutations of Table 2 after reordering the vertices (this corresponds to conjugating
x and y by the same permutation). We find there are only six conjugacy classes of
torsion-free genus zero subgroups of index 12 in PSL2(Z). At the graph level, the
absence of loops correspond to the absence of elliptic elements, and the genus zero
condition comes simply from the fact that we have planar connected graphs (with
Euler characteristic equal to 2 = 2− 2g).
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