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Abstract. In this paper, a close connection is established between the geometry of certain genus
zero Fuchsian groups and the analytic properties of the automorphic forms obtained by applying
a certain differential operator to the Hauptmoduls of the groups.

1. Introduction

LetG be a Fuchsian group of the first kind acting on the upper half-planeH such
that the compactificationX of the open Riemann surfaceG\H has genus zero;
we then say thatG is of genus zero. If a functionf defined onX generates the
function field overC ofX, thenf is called a Hauptmodul for the genus zero group
G, and is defined up to linear fractional transformations. Each Hauptmodul can
be extended to a meromorphic function defined onH to become an automorphic
function with respect toG. A prototype is the elliptic modular functionj which
is a Hauptmodul for the modular group PSL2(Z). WhenG contains the trans-
formationτ → τ + 1 which generates its translation subgroup (the stabilizer of
∞), then each Hauptmodul has a Fourier expansion inq = exp(2πiτ), and one
of them has the form

f (τ) = 1

q
+
∑
n≥1

an q
n, an ∈ C. (1.1)

To such anf and for each positive integern, there exists a unique monic polyno-
mial of degreen, Pn = Pn,f whose coefficients depend on the coefficients{ak}
of f . It is characterized by the property thatPn(f ) − 1/qn is a power series in
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q with no constant term, see Sect. 4. For example, iff is the elliptic modular
functionj normalized to have the form (1.1), then

Pn(j) = nTn(j),

whereTn is the classicaln-th Hecke operator.
For a meromorphic functionf defined on some complex domain, there is a

differential operator known as the Schwarzian (or the Schwarz derivative) defined
by

{f, z} = 2

(
f ′′

f ′

)′
−
(
f ′′

f ′

)2

.

which is invariant under linear fractional transformations off . For f given
formally by (1.1), the Schwarzian off is completely described in terms of the
q-coefficients of the Faber polynomialPn(f ), see Proposition 4.1..

For an automorphic functionf and for a Fuchsian groupG, we find{f, τ }
to be an automorphic form of weight 4 forG. Whenf is a Hauptmodul, then
{f, τ } is generically invariant under a larger group, namely the normalizer ofG

in PSL2(R), and for the inverse functionτ(f ), {τ, f } is a rational function off .
The analytic behaviour of{f, τ } is that it is holomorphic inH except at elliptic
fixed points where it has poles of order 2, and it is holomorphic at the cusps, see
Proposition 6.2.

This leads us to restrict our attention to genus zero Fuchsian groups with
no elliptic elements. For finiteness reasons [11] we consider only those groups
which contain someΓ0(n) with finite index and such that the stabilizer of∞
is generated byτ → τ + 1. In other words, these are torsion-free genus zero
groups with the cusp at∞ having width 1. We determine all then such thatΓ0(n),
or a conjugate, satisfies these conditions. There are 14 such groups which have
Hauptmoduls given by eta-products, and there are only 3 more groups which are
notΓ0(n) or a conjugate with the same property.

The Schwarzian of a Hauptmodul for such a group, being holomorphic on
H and at the cusps, is completely determined in terms of a canonical weight 4
automorphic form. For 14 groups, these forms are theta functions of variously
normed rank 8 lattices (Sect. 7), and for the 3 remaining cases they are simple
linear combinations of Eisenstein series and known cusp forms (Sect. 8). The
theta functions arise only when the groups are, up to conjugacy,Γ0(n). The
significance of the lattices of the theta functions involved is as yet unknown.
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2. The Schwarzian

Let f be a meromorphic function over some region of the complex plane. We
define the Schwarzian off to be:

{f, z} = 2

(
f ′′

f ′

)′
−
(
f ′′

f ′

)2

= 1

f ′2 (2f
′f ′′′ − 3f ′′2). (2.1)

This function is the main subject of this note. It is an essential ingredient for
solving the problem of mapping a circular disc or a half-plane onto a hyper-
bolic polygon, and was studied by Schwarz [8] in connection with differential
equations and quadratic differentials.

By direct computation we have:

– If f andg are two meromorphic functions such that each function is a linear
fractional transform of the other, then{f, z} = {g, z}.

– if w is a function ofz, then

{f, z} = {f,w}(dw/dz)2 + {w, z}. (2.2)

– If f is a linear fractional transform ofz, then{f, z} = 0.

It follows that if w′(z0) 
= 0 for somez0, then in a neighbourhood of this point,
the inverse functionz(w) satisfies:

{z,w} = −{w, z}(dz/dw)2. (2.3)

If alsow = az+b
cz+d

for some constantsa, b, c, andd, then

{f, z} = {f,w} (ad − bc)2

(cz + d)4
. (2.4)

There is an important connection with second order linear differential equations.
Let y1 andy2 be two linearly independent solutions to

y ′′ + 1

4
R(z)y = 0, (2.5)

whereR(z) is a meromorphic function on a domain. If we setf = y1/y2, then
f is a solution to{f, z} = R(z), and conversely, iff is a locally univalent
function which satisfies{f, z} = R(z), theny1 = f/

√
f ′ andy2 = 1/

√
f ′

are two linearly independent solutions to (2.5). As an immediate consequence,
{f, z} = 0 if and only iff is a linear fractional transform ofz, and{f, z} = {g, z}
if and only if each function is a linear fractional transform of the other.
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3. Genus zero Fuchsian groups

Henceforth we usez for a variable in any domain of the complex plane, andτ if
this domain is the upper half-planeH, and we setq = exp(2πiτ).

LetG be a Fuchsian group for the upper half-planeH andf an automorphic
form forG of weightk (k ≥ 0), that is, a meromorphic function onH satisfying

f

(
aτ + b

cτ + d

)
= (cτ + d)k f (τ ), τ ∈ H ,

(
a b

c d

)
∈ G,

with some growth condition at the cusps. We say that the elements ofG leavef
invariant even ifk 
= 0.

In general the derivative off is not an automorphic form for any weight.
If k = 0, thenf ′ is automorphic of weight 2. We can, however, show that the
expressionkff ′′ − (k + 1)f ′2 is an automorphic form of weight 2k + 4. In
particular, iff is an automorphic function (of weight 0), thenf ′ has weight 2
and therefore 2f ′f ′′′ − 3f ′′2 has weight 8. Dividing byf ′2, we obtain{f, τ }.
And dividing byf ′4 we obtain−{τ, f } according to (2.3). Hence we have

Proposition 3.1. If f (τ) is an automorphic function for a Fuchsian groupG,
then {τ, f } is an automorphic function and{f, τ } is an automorphic form of
weight 4 forG. ✷

Assume thatG is of genus zero, in the sense that the compactification of the
Riemann surfaceG\H is of genus zero. Iff is a complex analytic embedding
from this surface into the extended complex plane, thenf induces an automor-
phic function forG defined onH. In the language of Fricke and Klein,f is a
Hauptmodul; it generates the function field of the Riemann surface. The function
f is determined up to a linear fractional transform. According to (2.3),{τ, f } is
an automorphic function forG, hence it must be a rational function off , say
R(f ). Properties ofR(f ) will be discussed in a later section. Now we give a
more precise statement about the invariance group of{f, τ }.
Proposition 3.2. LetG be a genus zero Fuchsian group andf a Hauptmodul
for G. Then{f, τ } is a weight 4 automorphic form for the normalizer ofG
in PSL2(R). Conversely, any element of PSL2(R) which leaves{f, τ } invariant
normalizesG.

Proof. Letg be an element of PSL2(R)which normalizesG.The functionf (g·τ)
defines an automorphic function forG, where

g · τ = aτ + b

cτ + d
for g =

(
a b

c d

)
.

Now f (g · τ) takes its values only once on the Riemann surfaceG\H, therefore

f (g · τ) = αf (τ) + β

γf (τ) + δ
,

(
α β

γ δ

)
∈ PGL2(C) , τ ∈ H. (3.1)
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It follows that

{f (g · τ), g · τ } ={f (τ), g · τ }
=(cτ + d)4 {f, τ },

using (2.4), and so{f, τ } is an automorphic form of weight 4 for the normalizer
of G in PSL2(R). For the converse, letg be an element of PSL2(R) which
leaves{f, τ } invariant. It is clear that{f (g · τ), τ } = {f, τ }, hencef (g · τ) =
γg · f (τ) whereγg is an element of PGL2(C) and the mapg → γg is a group
homomorphism. Forx ∈ G

f (gxg−1 · τ) = γg · f (xg−1 · τ) = γg · f (g−1 · τ) = γgγg−1 · f (τ) = f (τ),

which implies thatgxg−1 leavesf invariant. We need to show that any element
g of PSL2(R) which leaves the Hauptmodulf invariant is actually inG. Let τ0

be any interior point in a fundamental regionD, thenτ0 andg · τ0 are necessarily
in the sameG-orbit, otherwise we can bringg · τ0 toD by applying an element
of G, and this new point inD is notτ0, but both have the same image byf which
contradictsf being a Hauptmodul, hence we may assume thatxg · τ0 = τ0 for
somex ∈ G, and can choose a neighbourhoodU of τ0 such thatxg mapsU inside
D. Let τ 
= τ0 be an element ofU , then necessarilyxg · τ = τ since otherwise
we would have two distinct points inside a fundamental domain having the same
image byf . Now xg has two distinct fixed points inH, which is possible only
if xg = 1. This implies thatg ∈ G. ✷

Remark 3.1.The invariance group for the function{τ, f } is, in general, not larger
thanG.

4. Expansion at∞

In this section we restrict ourselves to the class of functions of the form

f (q) = 1

q
+
∑
n≥1

anq
n , an ∈ C. (4.1)

We assume that these functions are meromorphic in the unit disc with a simple
pole at 0. We will also consider them as functions ofτ with q = exp(2πiτ) and
τ ∈ H. Any genus zero Fuchsian group in which the translations are generated
by τ → τ + 1 has a Hauptmodul of the form (4.1).

Forw ∈ C andp in the unit disc, set

Fw(p) = f ′(p)
w − f (p)

− 1

p
, (4.2)
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thenFw(p) is analytic in a neighbourhood of zero and has a Taylor expansion

Fw(p) =
∑
n≥1

Pn(w)pn−1. (4.3)

Substituting (4.1) and (4.3) into (4.2) we obtain(∑
n≥1

Pn(w)pn

)(
−1

p
+ w −

∑
n≥1

anp
n

)
= −w +

∑
n≥1

(n + 1)anp
n.

Identifying the coefficients of powers ofp, we getP1(w) = w and forn ≥ 2:

Pn+1(w) = wPn(w) −
n−1∑
k=1

an−kPk(w) − (n + 1)an. (4.4)

It follows thatPn is a monic polynomial of degreen. For example:

P1(w) = w , P2(w) = w2 − 2a1 , P3(w) = w3 − 3a1w − 3a2 . . .

We callPn then-th Faber polynomial associated withf . It follows from (4.4)
that

Pn(f (q)) = 1

qn
+ gn(q), (4.5)

with gn(q) a power series inq andgn(0) = 0. For each positive integern,Pn(w)

is the unique polynomial such thatPn(f (q)) has the form (4.5). As an example,
we may take the elliptic modular functionJ normalized to the following form

J = 1

q
+ 0 + 196884q + · · · .

For eachn ≥ 1, the action of then-th Hecke operatorTn onJ is given by

Tn(J )(τ ) = 1

n

∑
ad=n

0≤b<d

J

(
aτ + b

d

)
.

This expression is invariant under the action of the modular group SL2(Z) since
multiplication by an element of this group permutes the matrices in the sum. It
follows thatTn(J ) is a rational function ofJ , moreoverTn(J ) has no poles on
H, and so is a polynomial inJ . Writing its q-expansion yields

Tn(J ) = 1

n
Pn(J ),

which says that, for alln ≥ 1, then-th Hecke operator applied toJ yields the
unique polynomial satisfying (4.5). For Hauptmoduls for proper subgroups of
the modular group this is no longer true for alln ≥ 1.



Fuchsian groups, automorphic functions and Schwarzians 261

Let us write

gn(q) = n
∑
m≥1

hm,n q
m. (4.6)

SinceP1(w) = w, we havehm,1 = am for all m ≥ 1. Also from (4.2) and (4.3)
we have

f ′(p)
f (q) − f (p)

− 1

p
=
∑
n≥1

(
1

qn
+ n

∑
m≥1

hm,n q
m

)
pn−1

= 1

q − p
+
∑
m,n≥1

nhm,n q
mpn−1.

Differentiating this identity with respect toq, we get

− f ′(p)f ′(q)
(f (p) − f (q))2

+ 1

(q − p)2
=
∑
m,n≥1

mnhm,n q
n−1pm−1. (4.7)

The left side is symmetric inp andq. It follows that

hm,n = hn,m for m, n ≥ 1.

A functionf with rational coefficientan is called replicable if the corresponding
coefficients satisfyhm,n = hr,s whenever gcd(m, n) = gcd(r, s)and lcm(m, n) =
lcm(r, s).

Proposition 4.1. For f given by(4.1)and {hm,n} given by(4.5)and (4.6), we
have

1

4π2
{f, τ } = 1 + 12

∑
m,n≥1

mnhm,n q
m+n. (4.8)

Proof. As p → q, let us write

f (p) = f (q) + (p − q)f ′(q) + 1

2
(p − q)2f ′′(q)

+1

6
(p − q)3f ′′′(q) + o

(
(p − q)3

)
,

and

f ′(p) = f ′(q) + (p − q)f ′′(q) + 1

2
(p − q)2f ′′′(q) + o

(
(p − q)2

)
.

It follows that

f ′(p)f ′(q)
(f (p) − f (q))2

− 1

(q − p)2
= 1

12
{f, q} + O(p − q).
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Substituting into (4.7), we obtain

1

12
{f, q} = −

∑
m,n≥1

mnhm,n q
n−1pm−1 + O(p − q).

Since{q, τ } = (2π)2, we deduce by using (2.2) that

{f, τ } = −(2π)2q2{f, q} + (2π)2.

The proposition follows. ✷

Remark 4.1.The identity (4.8) establishes a close connection between the Schwarzian
and the replicability off and it may also have an interpretation in terms of vertex
algebras. In later sections we will see some illustrations of this identity.

5. Triangle groups and theta functions

Let τ be the mapping function which sendsH onto a hyperbolic triangle inH
with prescribed anglesα1π at τ(0), α2π at τ(1) andα3π at τ(∞). Let f be the
inverse function ofτ . If α1 
= 0, we may apply a linear fractional transform to
τ so that the sides of the triangle which meet atτ(0) are two straight lines with
internal angleα1π .A similar transformation will bringτ(0) to 0 with one side on
the real axis and the other side insideH. Since these two transformations do not
affect{τ, f }, we will still denote the resulting function byτ . The mapw = τ

1
α

maps the angular sector ontoH. By the Schwarz reflection principle,w is regular
atf = 0 and can be continued analytically throughout a neighbourhood of 0. It
follows thatw is a power series inf , and so is{w, f }. Moreover,w′(0) 
= 0 and
{τ,w} = (1 − α2

1)/w
2. It follows that in a neighbourhood off = 0 we have

{τ, f } = 1 − α2
1

f 2
+ c1

f
+ · · · , (5.1)

where the dots represent a regular expression atf = 0. Similarly atf = 1 we
have

{τ, f } = 1 − α2
2

(f − 1)2
+ c2

f − 1
+ · · · . (5.2)

It is not difficult to see that the same formula holds if the angle is zero. At∞,
we have

{τ, f } = 1 − α2
3

f 2
+ higher powers in

1

f
. (5.3)
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This means that{τ, f } has a zero of multiplicity at least 2 at∞. It follows that
the expression

R(f ) := {τ, f } − 1 − α2
1

f 2
− 1 − α2

2

(f − 1)2
− c1

f
− c2

f − 1

has no poles in the upper half-plane. By the Schwarz reflection principle, we can
extendτ to the lower half-plane through the segment between 0 and 1. The image
of the lower half-plane is an triangle adjacent to the previous one. By Liouville’s
theorem,R(f ) is a constant, and this constant is 0 because of the vanishing at∞.
Moreover, since{τ, f } has a zero of at least second degree at∞, this imposes
relations amongc1 andc2, and we obtain

Proposition 5.1.We have

{τ, f } = 1 − α2
1

f 2
+ 1 − α2

2

(f − 1)2
+ α2

1 + α2
2 − α2

3 − 1

f (f − 1)
. �� (5.4)

Let us assume thatαi = 1/mi for i = 1,2,3 with mi a positive integer, and
if αi = 0,mi = ∞. Let ri be the reflection in the side opposite to the angleαiπ .
Now r1, r2 andr3 generate a groupG∗ of isometries ofH and the images of the
initial triangle tessellateH. The products of an even number of reflectionsri form
an orientation-preserving subgroupG of index 2 inG∗. The groupG is Fuchsian
since it is discrete, and is generated by the elementsx1 = r2r3, x2 = r1r3 and
x3 = r1r2 which are rotations around the vertices through angles 2α1π , 2α2π

and 2α3π and satisfying

x
m1
1 = x

m2
2 = x

m3
3 = x1x2x3 = 1.

By the reflection principle, the functionf can be continued through one side to
a reflected triangle which is mapped to the lower half-plane. Another reflection
will give a triangle which is mapped again to the upper half-plane. Thusf is an
automorphic function for the groupG, and any triangle together with an adjacent
one will form a fundamental domain forG. The elementxi is an elliptic element
whenmi is finite. Whenmi = ∞,xi is a parabolic element and the corresponding
vertex (fixed point) is called a cusp and lies on the boundary ofH with internal
angle zero. Notice thatG is of genus zero andf is a Hauptmodul forG.

Examples.Let α1 = 1/2,α2 = 1/3 andα3 = 0. The groupG is Γ := PSL2(Z)

andf is a normalized form of the elliptic modular functionj that we denoted
by J . The equation (5.4) gives

{τ, J } = 36J 2 − 41J + 32

36J 2(J − 1)2
.

Another important case is when all the angles are zero. In this case all the vertices
are cusps and they lie on the boundary ofH. The associated group isG = Γ (2),
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the principal congruence subgroup of level 2 which is defined in general for any
positive integern by

Γ (n) =
{(

a b

c d

)
∈ SL2(Z) , b ≡ c ≡ 0 modn , a ≡ d ≡ 1 modn

}
.

The elliptic modular functionλ is a Hauptmodul forΓ (2) which sends∞, 0 and
1 respectively to 0, 1, and∞. From (5.4) we have

{τ, λ} = λ2 − λ + 1

λ2(λ − 1)2
.

It is clear thatλ does not take the values 0 and 1 onH since they are taken on
the boundary, so that{τ, λ} is holomorphic onH. This may also be seen from
the fact that, with the above choice of triangle, there are no ramification points
(elliptic fixed points) onH as{τ, λ} has singularities only at these points.

Now we turn our attention to the function

{λ, τ } = −λ′2 λ
2 − λ + 1

λ2(λ − 1)2
, (5.5)

which is an automorphic form of weight 4 for the normalizer ofΓ (2) which is
Γ . It would be interesting to know the behaviour of this form at the cusps. One
way to do this is to write theq-expansion at the cusps explicitly , but sinceλ has
various connections with elliptic curves and elliptic function theory, we take a
different approach using theta functions.

Let ω andω′ be two primitive periods of a Weierstrassp function. We set
τ = ω′/ω and assume that Im(τ ) > 0. We also sett = exp(πiτ ) so thatt2 = q.
The elliptic curveC/(ωZ + ω′

Z) has the following Weierstrass equation

y2 = 4x3 − g2x − g3 = 4(x − e1)(x − e2)(x − e3),

whereg2 andg3 are the classical elliptic functions (Eisenstein series):

g2 =
(

2π

ω

)4( 1

12
+ 20q + · · ·

)
, g3 =

(
2π

ω

)6( 1

216
− 7

3
q + · · ·

)
.

And

e1 = p
(ω

2

)
, e2 = p

(
ω + ω′

2

)
, e3 = p

(
ω′

2

)
.

The modular discriminant∆ is given by

∆ = g3
2 − 27g2

3 = 16(e1 − e2)
2(e2 − e3)

2(e3 − e1)
2.

The functionλ is given by

λ = e2 − e3

e1 − e3
.
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Since∆ does not vanish onH, we see again thatλ does not take the values 0 or
1 onH.

All the above can be expressed in terms of the Jacobi null theta functions
defined by

ϑ2 =
∞∑

−∞
t (n+ 1

2 )
2
, ϑ3 =

∞∑
−∞

tn
2
, ϑ4 =

∞∑
−∞

(−1)ntn
2
,

with the following transformations:

ϑ2(τ + 1) = e
πi
4 ϑ2(τ ) ϑ3(τ + 1) = ϑ4(τ ) , ϑ4(τ + 1) = ϑ3(ϑ).

ϑ2

(−1

τ

)
= (−iτ )

1
2ϑ4(τ ), ϑ3

(−1

τ

)
= (−iτ )

1
2ϑ3(τ ),

ϑ4

(−1

τ

)
= (−iτ )

1
2ϑ2(τ ), (5.6)

and the fundamental relation

ϑ4
2 + ϑ4

4 = ϑ4
3 . (5.7)

In term of these functions, the elliptic functions introduced above are given by:

e1 = π2

3ω2
(ϑ4

3 + ϑ4
4) , e2 = π2

3ω2
(ϑ4

2 − ϑ4
4) , e3 = −π2

3ω2
(ϑ4

2 + ϑ4
3) ,

∆ = 16
(π
ω

)12
ϑ8

2ϑ
8
3ϑ

8
4 ,

g2 = 2

3

(
2π

ω

)4

(ϑ8
2 + ϑ8

3 + ϑ8
4) ,

J + 744= 32
(ϑ8

2 + ϑ8
3 + ϑ8

4)
3

ϑ8
2ϑ

8
3ϑ

8
4

,

λ = ϑ4
2

ϑ4
3

= 1 − ϑ4
4

ϑ4
3

.

Recall that the normalized Eisenstein series of weight 4 is given by

E4(τ ) = 12

(2π)4
g2(τ ) = 1 + 240

∑
n≥1

σ3(n)q
n,

whereσ3(n) is sum of the cubes of the positive divisors ofn. Then

Proposition 5.2.We have the formula

1

π2
{λ, τ } = E4(τ ). (5.8)
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Proof. Since the expression for{λ, τ } involvesλ′, we need to evaluate the latter
in terms of theta functions. From (5.6) we deduce thatλ(τ+1) = λ(τ)/(λ(τ)−1)
andλ(−1/τ) = 1 − λ(τ). This allows us to determine thet-expansion at any
cusp. In fact we can show that the weight 2 modular formλ′/λ is holomorphic
at the cusps 0, 1 and∞ for Γ (2). The space of such forms has dimension
two, and a basis is given by any two of the formsϑ4

2, ϑ4
3 andϑ4

4. Let us write
λ′/λ = αϑ4

2 + βϑ4
4, taking this atτ + 1, we obtainλ′/(λ − 1) = αϑ4

4 + βϑ4
2.

Sinceλ, λ′ andϑ2 vanish at∞, we findα = 0. Evaluatingλ′/λ = βϑ4
4 at∞ we

getβ = πi. Therefore we obtain simultaneously

λ′

λ
= πiϑ4

4 ,
λ′

1 − λ
= πiϑ4

2 . (5.9)

Using these identities and the relation (5.7) in (5.4) we obtain

{λ, τ } = π2

2
(ϑ8

2 + ϑ8
3 + ϑ8

4). (5.10)

This is a weight 4 modular formΓ holomorphic at∞. The space of such forms
is 1-dimensional generated by the Eisenstein seriesE4. Since the value of{λ, τ }
at∞ is π2 the proposition follows. ✷

6. Expansion at the vertices

LetG be a genus zero Fuchsian group andf a Hauptmodul forG, we assume that
G is finitely generated, or equivalently, that a Dirichlet region forG has a finite
number of sides. Each vertex belongs to a cycle of vertices that are conjugate
under the action ofG. If a vertexτ0 corresponds to an elliptic fixed point which
is not a pole forf and iff (τ0) = a0, then

f (τ) = a0 + a1(τ − τ0)
n + · · · ,

wherea1 
= 0 andn is the order of the elliptic transformation fixingτ0. Using the
auxiliary functiont = (τ − τ0)

n, one can show easily that, in a neighbourhood
of τ0,

{τ, f } =
(

1 − 1

n2

)
1

(f − a0)2
+ c0

f − a0
.

If τ0 is a pole, one can show that

{τ, f } =
(

1 − 1

n2

)
1

f 2
+ c

f 3
+ · · · ,

which means that{τ, f } has a zero of order 2 at∞.
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If τ0 is a finite cusp fixed by the transformationA in G, then in a neighbour-
hood ofτ0, A acts as [4,6]:

1

Aτ − τ0
= 1

τ − τ0
+ c,

andf becomes a power series in the variablew where

1

τ − τ0
= c

2πi
logw.

This transformation essentially sends the parabolic sector atτ0 onto an infinite
strip. It follows that

{τ, f } = 1

(f − a)2
+ c

f − a
+ · · · , a = f (τ0).

If f has a pole at a cusp, or if the pole is inside a fundamental region, it is not
difficult to see that{τ, f } has a zero of order 2 or 4 respectively. In the same way
as in the triangular case in Sect. 5, we can show that

{τ, f } =
n∑

k=1

(
1 − 1

nk2

)
1

(f − ak)2
+

n∑
k=1

ck

f − ak
, (6.1)

where the sum is taken over a set of vertices, one from each cycle, andak are
the values off at these cycles. If one of the vertices is a pole, thenn must be
replaced byn − 1. Each integernk is the order of the transformation fixing the
corresponding vertex with the convention thatnk = ∞ at a cusp. Also,nk can be
taken such that 2π/nk is the sum of the internal angles of the given cycle, which
is in accord with the triangular case of the previous section.

In the following we focus on the behaviour of the form{f, τ } at the cusps.
This will be based on the identity{f, τ } = −(f ′)2 {τ, f } and on what we have
learnt about{τ, f }. Near a cusp,τ0, for G, we have a local uniformizer of the
form

w = exp
2πi

c(τ − τ0)

if τ0 is a finite vertex, and

w = exp
2πi

c
τ

if the cusp is at∞. In either case, the Hauptmodulf is holomorphic or has a
pole atw = 0. If we assume thatf is holomorphic atτ0, then near 0, we have
the expansion

f (τ) = f (τ0) + a1w + a2w
2 + · · · ,

whereas

f ′(τ ) = dw

dτ
(a1 + 2a2w + · · · ) = −2πi

c(τ − τ0)2

(
a1w + 2a2w

2 + · · · ) .
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It follows that (τ − τ0)
4 {f, τ } is a power series inw. This is just the growth

condition for the holomorphy of the weight 4 automorphic form at the cuspτ0

[6]. If the cusp is at∞, then the local parameter is

w = exp
2πi

c
τ

at which the holomorphy of{f, τ } is easily seen (and can be seen also from
(4.8)).

At elliptic points the form{f, τ } has a pole of order 2 which comes from
f ′2/(f − a)2. Summing up, we have

Proposition 6.1. At elliptic points the weight 4 form{f, τ } has a pole of order
two and is holomorphic elsewhere including at parabolic points. ��

7. Congruence subgroups with no elliptic elements and lattices

The congruence groupsΓ0(n) (n ≥ 1) are defined by

Γ0(n) =
{(

a b

c d

)
∈ SL2(Z) , c ≡ 0 modn

}
.

Only their images in PSL2(R) are used in this note; we use the same notation to
designate the corresponding group of M¨obius transformations.

We will restrict this section to the family of Fuchsian groupsG which satisfy
the following conditions

(1) G is a genus zero group.
(2) G contains someΓ0(n) with finite index.
(3) The stabilizer of the cusp at∞ is generated byτ → τ + 1.

According to [11], there are only finitely many Fuchsian groups satisfying (1),
(2) and (3). From the previous section, the Schwarzian of a Hauptmodul for such
a groupG is a holomorphic weight 4 form if and only if

(4) G contains no elliptic elements.

Our aim is to first identify the groups satisfying the four conditions. Next we
identify these holomorphic weight 4 forms as classical theta functions for some
rank 8 lattices.

In this section we deal with the groups of the formΓ0(n).

Proposition 7.1. The integersn for whichΓ0(n) has genus zero and does not
contain any elliptic elements aren = 4,6,8,9,12,16and18.

Proof. According to [5], there are only 15 positive integersn for which the groups
Γ0(n) have genus zero, namely forn = 1, . . . ,10,12,13,16,18,25. We now
look at condition (4). Let



Fuchsian groups, automorphic functions and Schwarzians 269

(
a b

nc d

)
∈ Γ0(n) , ad − nbc = 1 ,

be an elliptic element. If the order of this element is 2 then the trace is 0, thus
a + d = 0 anda2 ≡ −1 modn. If the order is 3 then the trace is±1, and
from (a + d)2 = 1 andad ≡ 1 modn we deduce that(a − d)2 ≡ −3 modn.
It follows that if −1 and−3 are not squares modn, then there are no elliptic
elements inΓ0(n). Conversely, if−1 or−3 is a square it is clear how to construct
elliptic elements; for example, ifa2 = −1, takec = 1, d = −a andb = 0, and
the matrix obtained is an elliptic element of order 2. It is easy to see from the genus
zero list thatΓ0(n) has no elliptic elements if and only ifn = 4,6,8,9,12,16
and 18. ✷

For n = 2,3,4, the transformationτ → τ/n conjugates the groupΓ0(n
2) to

Γ (n), the principal congruence subgroup, and in fact, by examining the indices
of these groups inside the full modular groupΓ , these values are the only one
for which Γ0(n

2) is conjugate toΓ (n), except forn = 6 in which caseΓ (6)
(or Γ0(36)) is no longer of genus zero. Iffn(τ ) is a Hauptmodul forΓ0(n

2) for
n = 2,3,4, thenf̃n(τ ) = fn(τ/n) is a Hauptmodul forΓ (n). The Schwarzian
{f̃n, τ } is a weight 4 holomorphic modular form for the normalizer,Γ , of Γ (n).
The space of such forms is 1-dimensional, generated by the Eisenstein seriesE4.
Using (4.8) with the appropriate width at∞, we have

Proposition 7.2. For n = 2,3,4, we have

n2

4π2
{f̃n, τ } = E4(τ ). (7.1)

1

4π2
{fn, τ } = E4(nτ). �� (7.2)

These formulas are presented as illustrations of (4.8) and as a generalization of
(5.8). Notice that explicit knowledge of the Hauptmoduls is not necessary. In the
normalized form (4.1), we have the Hauptmoduls:

f2(τ ) =
(

η(τ)

η(4τ)

)8

+ 8 = 16

λ(2τ)
− 8

= q−1 + 20q − 62q3 + 216q5 − 641q7 + · · · ,

f3(τ ) =
(

η(τ)

η(9τ)

)3

+ 3

= q−1 + 5q − 7q2 + 3q5 + 15q8 + · · · ,
f4(τ ) = η(8τ)6

η(4τ)2η(16τ)4

= q−1 + 2q3 − q7 − 2q11 + 3q15 + 2q19 − 4q23 + · · · ,
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whereη is the Dedekind eta-function:

η(τ) = q
1
24

∏
n≥1

(1 − qn).

The Schwarzian of each of these functions is invariant for a conjugate ofΓ , and
it is given in terms ofE4 which is nothing but the theta function of the root lattice
E8. We will see next that all the other groups involve different root lattices. We
need the following

Lemma 7.3. Let Γ0(n)
+ denotes the groupΓ0(n) extended by all its Atkin-

Lehner involutions. LetMk(n) denote the space of weightk holomorphic auto-
morphic forms forΓ0(n)

+. Then

dimMk(n) = 1

12
n(k − 1) − 1

3
χ3(n(k − 1)) − 1

4
χ4(n(k − 1)) + 1

2
a, (7.3)

wheren = a2b with b square-free, andχ3 andχ4 are the primitive Dirichlet
characters modulo3 and4.

Proof. See formula (5) in [10]. ✷

To obtain the normalizer ofΓ0(n) we leth be the largest divisor of 24 for which
h2 dividesn, then the normalizer is the conjugate ofΓ0(n/h)+ by τ → hτ . The
groupΓ0(n/h)+ is referred to as the Helling group corresponding toΓ0(n).

Proposition 7.4. Letf12 be a Hauptmodul forΓ0(12), then

1

4π2
{f12, τ } = θ4A2(2τ), (7.4)

whereθ4A2(τ ) is the theta function of four copies of the hexagonal latticeA2.

Proof. The theta function of theA2 lattice is [3]:ϑ3(τ )ϑ3(3τ) + ϑ2(τ )ϑ2(3τ),
therefore

θ4A2(2τ) = (ϑ3(2τ)ϑ3(6τ) + ϑ2(2τ)ϑ2(6τ))
4. (7.5)

On the other hand, the normalizer ofΓ0(12) is Γ0(3)+. Using Lemma 7.3., we
have dimMk(3) = 1. Using (5.6), we can see easily thatθ4A2(2τ) given by (7.5),
belongs toM4(3) and has in theq-expansion a constant term (value at∞) equal
to 1. If f12 is a Hauptmodul forΓ0(12) then, by (4.8),{f12, τ } has constant term
4π2. The proposition follows. ✷

The normalized Hauptmodul (in the form (4.1)) forΓ0(12) is given by

f12(τ ) = η(4τ)4η(6τ)2

η(2τ)2η(12τ)4

= q−1 + 2q + q3 − 2q7 − 2q9

+ 2q11 + 4q13 + 3q15 − 4q17 + · · · ,
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and

1

4π2
{f12, τ } = (ϑ3(4τ)ϑ3(12τ) + ϑ2(4τ)ϑ2(12τ))4

= 1 + 24q2 + 216q4 + 888q6 + 1752q8

+ 3024q10 + 7992q12 + · · · .
Proposition 7.5. Letf8 andf18 be Hauptmoduls forΓ0(8) andΓ0(18) respec-
tively, and letθ2D4 be the theta function of two copies of the (Hurwitz quater-
nionic) root latticeD4, then

1

4π2
{f8, τ } = θ2D4(2τ), (7.6)

and

1

4π2
{f18, τ } = θ2D4(3τ), (7.7)

Proof. The groupsΓ0(8) andΓ0(18) both correspond to the same Helling group
Γ0(2)+ and are both normal in it, in fact their normalizers are both conjugate to
Γ0(2)+ via the mapsτ → 2τ andτ → 3τ respectively. The theta function of
the root latticeD4 is 1

2(ϑ
4
3(τ ) + ϑ4

4(τ )), hence the theta function ofD4⊕D4 is

θ2D4(τ ) = 1

4
(ϑ4

3(τ ) + ϑ4
4(τ ))

2,

which belongsM4(2). This space is 1-dimensional by Lemma 7.3.. Taking into
account the conjugating maps betweenΓ0(2)+ and the normalizers ofΓ0(8) and
Γ0(18), we deduce the relations (7.6) and (7.7). ✷

The normalized Hauptmodul forΓ0(8) is

f8(τ ) = η(4τ)12

η(2τ)4η(8τ)8

= q−1 + 4q + 2q3 − 8q5 − q7 + 20q9 − 2q11 + 9q14 + · · · ,
and

1

4π2
{f8, τ } = 1

4
(ϑ4

3(2τ) + ϑ4
4(2τ))

2

= 1 + 48q2 + 624q4 + 1344q6 + 5232q8 + · · · .
The normalized Hauptmodul forΓ0(18) is

f18(τ ) = η(6τ)η(9τ)3

η(3τ)η(18τ)3

= q−1 + q2 + q5 − q8 − q11 + q17 + 2q20 + · · · ,
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and

1

4π2
{f18, τ } = 1

4
(ϑ4

3(3τ) + ϑ4
4(3τ))

2

= 1 + 48q3 + 624q6 + 1344q9 + 5232q12 + · · · .
Proposition 7.6. Letf6 be a Hauptmodul forΓ0(6), and letθA2⊗D4 be the theta
function of the latticeA2⊗D4, then

1

4π2
{f6, τ } = θA2⊗D4 (τ ). (7.8)

Proof. According to [7], the theta function ofA2⊗D4 is given by

θA2⊗D4 (τ ) = h2
1(1 − 4h2 − 16h3

2 + 16h4
2) = θG2⊗F4 (τ ), (7.9)

where

h1(τ ) = (ϑ3(τ )ϑ3(2τ)ϑ3(3τ)ϑ3(6τ))
2, and

h2(τ ) = η(τ/2)η(3τ/2)η(4τ)η(12τ)

η(τ )η(2τ)η(3τ)η(6τ)
.

Neitherh1 nor h2 is invariant underΓ0(6)+ but the product in (7.9) is. Using
Lemma 7.3., we see that the spaceM4(6) is 2-dimensional and a basis of this
space is obtained fromθA2⊗D4 and the cusp form(η(τ )η(2τ)η(3τ)η(6τ))2 which
has the followingq-expansionq − 2q2 − 3q3 + 4q4 + 6q5 + · · · . On the other
hand, theq-expansions of 1

4π2 {f6, τ } andθA2⊗D4 do not contain any term inq,
see (4.8), and both of them have constant term 1, the proposition follows.✷

The normalized Hauptmodul forΓ0(6) is

f6(τ ) = 5 + η(τ)5η(3τ)

η(2τ)η(6τ)5

= q−1 + 6q + 4q2 + −3q3 − 12q4 − 8q5 + 12q6 + · · · ,
and

1

4π2
{f6, τ } = 1 + 72q2 + 192q3 + 504q4 + 576q5 + 2280q6 + · · ·

Remark 7.1.We have exhausted the list of all the groupsΓ0(n) which are of
genus zero and contain no elliptic elements, in other words, those which can be
generated by parabolic elements.The Schwarzians of their Hauptmoduls are theta
functions of rank 8 root lattices with various minimal norms. In the next section,
we will see that this property holds only for these groups as we will exhibit
what we believe to be a complete list of all the Fuchsian groups satisfying the
conditions (1)–(4).
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8. Some more groups

For eachn in the list given in Proposition 7.1., the groupΓ0(n) has a single con-
jugate which also satisfies the conditions (1)–(4) of the previous section. These
groups have Hauptmoduls whose Schwarzian is given by a theta function with a
shifted argument. We use the notationΓ ′

0(n) for the conjugate ofΓ0(n). The con-
jugation maps, the resulting groups, their Hauptmoduls, and their Schwarzians
are given in the following table:

Conjugation Group Hauptmodulf 1
4π2 {f, τ }

τ → τ + 1
4 Γ ′

0(4)
(
η(τ+ 1

4 )

η(4τ)

)8
+ 8i E4

(
2τ + 1

2

)
τ → τ + 1

2 Γ ′
0(6)

η(τ)4η(4τ)4η(6τ)4

η(2τ)4η(3τ)4η(12τ)4 + 4 θA2⊗D4

(
τ + 1

2

)
τ → τ + 1

4 Γ ′
0(8)

η(2τ)4

η(8τ)4 θ2D4

(
2τ + 1

2

)
τ → τ + 1

2 Γ ′
0(9)

η(2τ)9η(9τ)3η(36τ)3

η(τ)3η(4τ)3η(18τ)9 − 3 E4
(
3τ + 1

2

)
τ → τ + 1

4 Γ ′
0(12) η(2τ)2η(8τ)2η(12τ)2

η(4τ)2η(6τ)2η(24τ)2 θ4A2

(
2τ + 1

2

)
τ → τ + 1

8 Γ ′
0(16) η(4τ)2

η(16τ)2 E4
(
4τ + 1

2

)
τ → τ + 1

2 Γ ′
0(18) η(3τ)η(12τ)η(18τ)6

η(6τ)2η(9τ)3η(36τ)3 θ2D4

(
3τ + 1

2

)

There are three groups which are not conjugate to anyΓ0(n) but still satisfy
the conditions (1)–(4). Namely, the group that we denote byG27|3 which is the
invariance group of the Hauptmodulf27|3(τ ) = η(3τ)/η(27τ); it is conjugate to
a subgroup of index 3 inΓ0(9) (containingΓ0(81) ). The second group isG32|8
which is the invariance group off32|8(τ ) = η(8τ)/η(32τ); it is conjugate to a
subgroup of index 8 inΓ0(4). The third group isG′

27|3, a conjugate toG27|3 via
the mapτ → τ + 1/2 which also satisfies the conditions (1)–(4); its normalized
Hauptmodul is given by:

f
27|3′ (τ ) = η(6τ)3η(27τ)η(108τ)

η(3τ)η(12τ)η(54τ)3
.
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Proposition 8.1.We have

1

4π2
{f32|8, τ } = 21

5
E4

(
8τ + 1

2

)
− 16

5
E4(16τ). (8.1)

Proof. The normalizer of the groupG32|8 isΓ0(4)+, which is conjugate toΓ0(2)
via the mapτ → 8τ+1/2. On the other hand, the space of weight 4 holomorphic
modular forms forΓ0(2) is 2-dimensional generated byE4(τ ) andE4(2τ). The
proposition follows from the knowledge of the first twoq-coefficients of the
series in (8.1). ✷

Proposition 8.2.We have

1

4π2
{f27|3, τ } = E4(3τ) − 48η(3τ)8 − 216

η(τ)6η(9τ)6

η(3τ)4
. (8.2)

Proof. The normalizer ofG27|3 isΓ0(9)+ in whichΓ (3) has index 2. The space of
weight 4 holomorphic modular forms forΓ0(9)+ is 3-dimensional by Lemma 7.3.,
and a basis is given by the three forms in the right side of (8.2). The proposition
follows from the knowledge of the few firstq-coefficients. ✷

We have the followingq-expansions:

f27|3(τ ) = η(3τ)

η(27τ)

= q−1 − q2 − q5 + q14 + q20 + · · · ,
f

27|3′ (τ ) = η(6τ)3η(27τ)η(108τ)

η(3τ)η(12τ)η(54τ)3

= q−1 + q2 − q5 − q14 − q20 + · · · ,
f32|8(τ ) = η(8τ)

η(32τ)

= q−1 − q7 − q15 + · · · ,
and

1

4π2
{f27|3, τ } = 1 − 48q3 − 216q6 + 1536q9

− 1560q12 − 3024q15 + · · · ,
1

4π2
{f

27|3′ , τ } = 1 + 48q3 − 216q6 − 1536q9

− 1560q12 + 3024q15 + · · · ,
1

4π2
{f32|8, τ } = 1 − 1008q8 + 8304q16 − 28224q24 + · · · .
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We mention that these Schwarzians are not lattice theta functions since some
coefficients are negative and there is no other group which is conjugate to one
of the above three groups giving a theta function (or at least making all the
coefficients nonnegative). This means that the property that the Schwarzian is
given by a theta function of a rank 8 lattice holds only for those groups satisfying
(1)–(4) that areΓ0(n) up to conjugacy. This completes our description of the
Schwarzian of Hauptmoduls of Fuchsian groups satisfying the conditions (1)–(4),
namely Fuchsian groups of genus zero and with noelliptic elements, containing
someΓ0(n) with finite index and such that the width of the cusp at∞ is 1.
The above 17 groups are characterized by the fact that they are the only ones,
among those satisfying the conditions (1)-(4), with normalized Hauptmoduls
having rational Fourier coefficients. Indeed, as we have seen, they are all given
by eta-products.A complete classification of the groups satisfying the conditions
(1)-(4) will appear elsewhere.

Acknowledgements.We thank Simon Norton, OliverAtkin and the members of CICMA for helpful
discussions.

References

1. Atkin, A.O.L., Lehner, J.: Hecke operators onΓ0(m). Math. Ann.185(1970) 134–160
2. Conway, J.H., Norton, S.P.: Monstrous moonshine. Bull. London Math. Soc.11 (1979), no.

3, 308–339
3. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Grundlehren der Math-

ematischen Wissenschaften Springer, New York, 1993
4. Ford, L.R.: Automorphic functions. McGraw-Hill 1929
5. Ogg,Andrew P.: Hyperelliptic modular curves. Bull. Soc. Math. France102(1974), 449–462
6. Rankin, Robert A.: Modular forms and functions. Cambridge University Press, 1977
7. Rains, E., Sloane, N.J.A.; Shadow theory of modular and unimodular lattices (1998)

(preprint)
8. Schwarz, H.A.: Gesammelte Mathematische Abhandlungen, vol. 2, Berlin, 1880
9. Sansone, G., Gerretsen, J.: Lectures on the theory of functions of a complex variable. II:

Geometric theory. Wolters-Noordhoff Publishing, Groningen 1969
10. Skoruppa, N.-P., Zagier, D.: Jacobi forms and a certain space of modular forms. Invent. Math.

94 (1988), no. 1, 113–146
11. Thompson, J.G.:A finiteness theorem for subgroups of PSL(2, R)which are commensurable

with PSL(2, Z). The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz,
Calif., 1979), pp. 533–555, Proc. Symp. Pure Math.37, Amer. Math. Soc., Providence, R.I.,
1980


