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Abstract. In this paper, a close connection is established between the geometry of certain genus
zero Fuchsian groups and the analytic properties of the automorphic forms obtained by applying
a certain differential operator to the Hauptmoduls of the groups.

1. Introduction

Let G be a Fuchsian group of the first kind acting on the upper half-ptesigch

that the compactificatioX of the open Riemann surface\$) has genus zero;
we then say thar is of genus zero. If a functioff defined onX generates the
function field overC of X, theny is called a Hauptmodul for the genus zero group
G, and is defined up to linear fractional transformations. Each Hauptmodul can
be extended to a meromorphic function definedyao become an automorphic
function with respect t@. A prototype is the elliptic modular functionwhich

is a Hauptmodul for the modular group PSE). WhenG contains the trans-
formationt — t 4+ 1 which generates its translation subgroup (the stabilizer of
00), then each Hauptmodul has a Fourier expansianinexp(2rit), and one

of them has the form

fr) = 2 + > anq". a,€C. (1.1)

n>1

To such anf and for each positive integer there exists a unique monic polyno-
mial of degreer, P, = P, ; whose coefficients depend on the coefficigaig
of f. Itis characterized by the property thBt(f) — 1/¢" is a power series in
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g with no constant term, see Sect. 4. For exampl¢, i§ the elliptic modular
function j normalized to have the form (1.1), then

whereT, is the classicat-th Hecke operator.
For a meromorphic functiorf defined on some complex domain, there is a
differential operator known as the Schwarzian (or the Schwarz derivative) defined

by
f// / f// 2
=2 ) (%) .
-2l (f) (f)

which is invariant under linear fractional transformations fof For f given
formally by (1.1), the Schwarzian gf is completely described in terms of the
g-coefficients of the Faber polynomi&), (1), see Proposition 4.1..

For an automorphic functioyf and for a Fuchsian grou@, we find{ f, t}
to be an automorphic form of weight 4 faf. When f is a Hauptmodul, then
{f, t} is generically invariant under a larger group, namely the normalizér of
in PSLL(R), and for the inverse function( 1), {z, f} is a rational function off.

The analytic behaviour dff, t} is that it is holomorphic irf) except at elliptic
fixed points where it has poles of order 2, and it is holomorphic at the cusps, see
Proposition 6.2.

This leads us to restrict our attention to genus zero Fuchsian groups with
no elliptic elements. For finiteness reasons [11] we consider only those groups
which contain somdy(n) with finite index and such that the stabilizer &f
is generated by — 1 + 1. In other words, these are torsion-free genus zero
groups with the cusp ab having width 1. We determine all tesuch that p(n),
or a conjugate, satisfies these conditions. There are 14 such groups which have
Hauptmoduls given by eta-products, and there are only 3 more groups which are
not I'h(n) or a conjugate with the same property.

The Schwarzian of a Hauptmodul for such a group, being holomorphic on
$ and at the cusps, is completely determined in terms of a canonical weight 4
automorphic form. For 14 groups, these forms are theta functions of variously
normed rank 8 lattices (Sect. 7), and for the 3 remaining cases they are simple
linear combinations of Eisenstein series and known cusp forms (Sect. 8). The
theta functions arise only when the groups are, up to conjugagy,). The
significance of the lattices of the theta functions involved is as yet unknown.
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2. The Schwarzian

Let f be a meromorphic function over some region of the complex plane. We
define the Schwarzian ¢f to be:

fﬁ ' f” 2 1 1 e "2
=20 Z) (L) = =2 — . 2.1
ra=2(5) (%) =merr-arn. ey
This function is the main subject of this note. It is an essential ingredient for
solving the problem of mapping a circular disc or a half-plane onto a hyper-
bolic polygon, and was studied by Schwarz [8] in connection with differential
equations and quadratic differentials.
By direct computation we have:

— If f andg are two meromorphic functions such that each function is a linear
fractional transform of the other, théif, z} = {g, z}.
— if w is a function ofz, then

{f, 2} = {f, wi(dw/dz)? + {w, z}. (2.2)
— If fis alinear fractional transform af ther{ f, z} = 0.

It follows that if w'(zg) # 0 for somezg, then in a neighbourhood of this point,
the inverse function(w) satisfies:

{z, w} = —{w, z}(dz/dw)z. (2.3)
If alsow = % for some constantis, b, ¢, andd, then

(ad — bc)?

et (2:4)

{f.z}={f w)

There is an important connection with second order linear differential equations.
Let y; andy, be two linearly independent solutions to

1
Y+ 2R@y =0, (2.5)

whereR(z) is @ meromorphic function on a domain. If we get= y;/y», then

f is a solution to{f, z} = R(z), and conversely, iff is a locally univalent
function which satisfiegf, z} = R(z), theny, = f//f andy, = 1//f’

are two linearly independent solutions to (2.5). As an immediate consequence,
{f,z} = 0ifand onlyif f is alinear fractional transform ef and{ f, z} = {g, z}

if and only if each function is a linear fractional transform of the other.
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3. Genus zero Fuchsian groups

Henceforth we use for a variable in any domain of the complex plane, arifl
this domain is the upper half-plasg and we sefy = exp(2rit).

Let G be a Fuchsian group for the upper half-planand f an automorphic
form for G of weightk (k > 0), that is, a meromorphic function dnsatisfying

f(“”b) —(ct+d) f(r), TESH, (ZZ) e

ct+d

with some growth condition at the cusps. We say that the elemeftdezve f
invariant even ifk #£ 0.

In general the derivative of is not an automorphic form for any weight.
If & = 0, thenf’ is automorphic of weight 2. We can, however, show that the
expressiorkff” — (k + 1) /"% is an automorphic form of weightk2+ 4. In
particular, if f is an automorphic function (of weight 0), thgti has weight 2
and therefore 2’ — 3f"? has weight 8. Dividing byf’?, we obtain{ f, t}.
And dividing by f'* we obtain—{z, f} according to (2.3). Hence we have

Proposition 3.1. If f(z) is an automorphic function for a Fuchsian groap
then{z, f} is an automorphic function anff, r} is an automorphic form of
weight 4 forG. a

Assume that is of genus zero, in the sense that the compactification of the
Riemann surfac&\ ) is of genus zero. Iff is a complex analytic embedding
from this surface into the extended complex plane, tfiégnduces an automor-
phic function forG defined on$). In the language of Fricke and Kleitf, is a
Hauptmodul; it generates the function field of the Riemann surface. The function
f is determined up to a linear fractional transform. According to (2:3)f} is
an automorphic function fo6, hence it must be a rational function ¢f say
R(f). Properties ofR(f) will be discussed in a later section. Now we give a
more precise statement about the invariance groyy,af}.

Proposition 3.2. Let G be a genus zero Fuchsian group arida Hauptmodul
for G. Then{f, t} is a weight 4 automorphic form for the normalizer 6f
in PSL(R). Conversely, any element of BSR) which leaveq f, t} invariant
normalizesG.

Proof. Letg be an element of PSIR) which normalizes;. The functionf (g-7)
defines an automorphic function fat, where

r—ar+b for g = ab
T ct+d 8= \ca)

Now f(g - t) takes its values only once on the Riemann surfag®, therefore

_af(t)+B (aﬁ
_yf(r)—i-S’ yé

flg-1) ) e PGL(C), te#9n. (3.2)
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It follows that

(fg-1)g th={f(x), g 1)
=(ct +)*{f, T,

using (2.4), and séf, t} is an automorphic form of weight 4 for the normalizer
of G in PSL(R). For the converse, let be an element of PSIR) which
leaves{ f, t} invariant. It is clear thaf f (g - ), T} = {f, t}, hencef(g - t) =

Ye - f(r) wherey, is an element of PGL(C) and the mag — y, is a group
homomorphism. Far € G

1

flgxg ™ D)=y, fag D)=y, fF@1T) = Yp¥er- f(T) = f(T),

which implies thatgxg~* leavesf invariant. We need to show that any element
g of PSLy(R) which leaves the Hauptmodyl invariant is actually inG. Let 7g

be any interior pointin a fundamental regiththenty andg - 7o are necessarily
in the same5-orbit, otherwise we can bring - 7o to D by applying an element
of G, and this new point imD is notzy, but both have the same image pyvhich
contradictsf being a Hauptmodul, hence we may assume.tgatry = 1 for
somex € G, and can choose a neighbourhéodf ry such that g mapd/ inside

D. Lett # 19 be an element dff, then necessarilyg - t = t since otherwise
we would have two distinct points inside a fundamental domain having the same
image by f. Now xg has two distinct fixed points iy, which is possible only

if xg = 1. This implies thag € G. O

Remark 3.1.The invariance group for the functi¢n, f}is, ingeneral, notlarger
thanG.

4. Expansion atoo

In this section we restrict ourselves to the class of functions of the form

1
f@==+ agq", a€C, (4.1)

n>1

We assume that these functions are meromorphic in the unit disc with a simple
pole at 0. We will also consider them as functiong afith ¢ = exp(27it) and
7 € $. Any genus zero Fuchsian group in which the translations are generated
by ¢ — t 4+ 1 has a Hauptmodul of the form (4.1).

Forw € C andp in the unit disc, set

f'(p) 1
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thenF, (p) is analytic in a neighbourhood of zero and has a Taylor expansion

Fu(p) =) P(w)p"™. (4.3)

n>1

Substituting (4.1) and (4.3) into (4.2) we obtain

(Z P,,(w)p”) <_—1 4+ w— Z a,,p") =—w+ Z (n 4+ Da,p".

n>1 p n>1 n>1
Identifying the coefficients of powers g@f, we getP;(w) = w and forn > 2:

n—1

Poia(w) = wPy(w) = Y ay i Pe(w) — (n + Day. (4.4)
k=1

It follows that P, is a monic polynomial of degree For example:
Pl(w) =w, Pz(w) = w2 — 201 , P3(w) = w3 — 3a1w — 3a2 .

We call P, then-th Faber polynomial associated with It follows from (4.4)
that

1
with g, (¢) a power series ig andg, (0) = 0. For each positive integet P, (w)

is the unique polynomial such th&t (£ (¢)) has the form (4.5). As an example,
we may take the elliptic modular functiohnormalized to the following form

1
J==+40+196884 +--- .
q

For eachn > 1, the action of the-th Hecke operatof,, on J is given by

1 b
L= J(‘”; )

ad=n
O<b<d

This expression is invariant under the action of the modular groyZ3lsince
multiplication by an element of this group permutes the matrices in the sum. It
follows thatT, (J) is a rational function of/, moreoverT, (J) has no poles on

£, and so is a polynomial id. Writing its g-expansion yields

1
I,(J) = —P.(J),
n
which says that, for alk > 1, then-th Hecke operator applied tb yields the

unigue polynomial satisfying (4.5). For Hauptmoduls for proper subgroups of
the modular group this is no longer true foralt> 1.
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Let us write

m>1

SinceP;(w) = w, we haveh,, 1 = a,, for allm > 1. Also from (4.2) and (4.3)
we have

Fiy 1 1 N
< s~ = - hmn
F@—7m  p 2;<q+”mzl ’q)”

1 _
:m—i— Z nhmnq™ p" L

m,n>1

Differentiating this identity with respect ip, we get

f'(p)f(@) 1 —
- = o : 4.7
G = F@p T @ = 2 Mhmad"p @.7)

The left side is symmetric ip andg. It follows that

m,n>1

hymn = hym fOrm,n > 1

A function f with rational coefficient,, is called replicable if the corresponding
coefficients satisf¥y,, , = h, ; whenevergcdn, n) = gcdr, s) andlcmim, n) =
lcm(r, s).

Proposition 4.1. For f given by(4.1)and {A,,,} given by(4.5) and (4.6), we
have

1
aalf T =1+12 > mnhy gt (4.8)

m,n>1

Proof. As p — ¢, let us write

f)=f@+@-af @+ %(p - f"(@
+%(p — 3 f"(@) +o((p — )P,
and
o= @+p-af @+ %(p —@)*f" (@) +o((p—q)?).

It follows that

fofe 1
(f(p)— f@)? (g — p)?

1
o+ 0 —a).
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Substituting into (4.7), we obtain

1 n—-1_m-1
Lifat=— 2" mihn,g"p" 0 —g).

m,n>1

Since{q, } = (27)2, we deduce by using (2.2) that

{f. 1) = —1)%¢*(f. q} + 21)°.
The proposition follows. O

Remark 4.1.Theidentity (4.8) establishes a close connection between the Schwar:
and the replicability off and it may also have an interpretation in terms of vertex
algebras. In later sections we will see some illustrations of this identity.

5. Triangle groups and theta functions

Let ¢ be the mapping function which sengésonto a hyperbolic triangle i
with prescribed angleg,w att(0), apr att (1) andasr att(co). Let f be the
inverse function ofr. If «; # 0, we may apply a linear fractional transform to
7 S0 that the sides of the triangle which meet &) are two straight lines with
internal anglex, 7. A similar transformation will bring (0) to 0 with one side on
the real axis and the other side insfdeSince these two transformations do not
affect{z, 1}, we will still denote the resulting function by. The mapw = i
maps the angular sector orfjo By the Schwarz reflection principle; is regular
at f = 0 and can be continued analytically throughout a neighbourhood of 0. It
follows thatw is a power series iff, and so iw, f}. Moreoverw’(0) # 0 and

{r, w} = (1 — a?)/w?. It follows that in a neighbourhood of = 0 we have

1-a?2 ¢

+ S (5.1)
f? f
where the dots represent a regular expressigh&t0. Similarly atf = 1 we
have

{r. f1 =

1- oz% Co
+ R (5.2)
(f=-12 f-1
It is not difficult to see that the same formula holds if the angle is zerecAt
we have

{t. f1 =

2
1—063

f2

{r, f} = + higher powers in]%. (5.3)
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This means thafr, f} has a zero of multiplicity at least 2 ab. It follows that
the expression

—a? 1-a2 c2

f? (f=bv2 f f-1
has no poles in the upper half-plane. By the Schwarz reflection principle, we can
extendr to the lower half-plane through the segment between 0 and 1. The image
of the lower half-plane is an triangle adjacent to the previous one. By Liouville’s
theoremR( f) is a constant, and this constant is 0 because of the vanishing at
Moreover, sincdr, f} has a zero of at least second degreecathis imposes
relations among; andc,, and we obtain

1
R(f):={r,. f} =

Proposition 5.1. We have

a? 1-af oaft+as—a5—1

1_
Y 1 O |

Let us assume that = 1/m; fori = 1, 2, 3 with m; a positive integer, and
if ; = 0,m; = oo. Letr; be the reflection in the side opposite to the argte.
Now rq, r, andrs generate a groug™ of isometries of) and the images of the
initial triangle tessellat®. The products of an even number of reflectigrform
an orientation-preserving subgroGpof index 2 inG*. The groupG is Fuchsian
since it is discrete, and is generated by the elements r,r3, x, = rir3 and
x3 = r1rz Which are rotations around the vertices through anglaes 22a,
and 2v3r and satisfying

(5.4)

le = x2m2 = x§"3 = X1X2X3 = 1.
By the reflection principle, the functiofi can be continued through one side to
a reflected triangle which is mapped to the lower half-plane. Another reflection
will give a triangle which is mapped again to the upper half-plane. Thissan
automorphic function for the groug, and any triangle together with an adjacent
one will form a fundamental domain f@f. The element; is an elliptic element
whenm; is finite. Whemm; = oo, x; is a parabolic element and the corresponding
vertex (fixed point) is called a cusp and lies on the boundasy with internal
angle zero. Notice that is of genus zero and is a Hauptmodul foG.

ExamplesLeta; = 1/2, a2 = 1/3 andaz = 0. The groupG is I' := PSLy(Z)
and f is a normalized form of the elliptic modular functignthat we denoted
by J. The equation (5.4) gives

36J2 —41J + 32
{r,J} =
36J2(J — 1)2

Another important case is when all the angles are zero. In this case all the vertices
are cusps and they lie on the boundaryyofhe associated groupds = I"(2),
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the principal congruence subgroup of level 2 which is defined in general for any
positive integen by

rm = {(Z’ Z)e SLy(Z), b=c=0 modn,a=d=1 modn}.
The elliptic modular function is a Hauptmodul for™ (2) which sendso, 0 and
1 respectively to 0, 1, ansb. From (5.4) we have

AM—r+1

A= an e

It is clear thats does not take the values 0 and 1 9rsince they are taken on
the boundary, so thdt, A} is holomorphic onf). This may also be seen from
the fact that, with the above choice of triangle, there are no ramification points
(elliptic fixed points) onf) as{t, A} has singularities only at these points.

Now we turn our attention to the function

:_k/zxz—wrl

=T

(5.5)
which is an automorphic form of weight 4 for the normalizer/tf2) which is
I". It would be interesting to know the behaviour of this form at the cusps. One
way to do this is to write thg-expansion at the cusps explicitly , but sinckas
various connections with elliptic curves and elliptic function theory, we take a
different approach using theta functions.

Let w andw’ be two primitive periods of a Weierstragsdunction. We set
T = o'/w and assume that I) > 0. We also set = exp(wit) so thatt? = g.
The elliptic curveC/(wZ + »'Z) has the following Weierstrass equation

3

¥2 = 4x3 — gox — g3 = A(x — e1)(x — e2)(x — e3),

whereg, andgs are the classical elliptic functions (Eisenstein series):

_(2m\* Lo (2n\*( 1 7 N
2=y ) \pt2t ) =) \as7 397 )
And
) o+ o o'
w=r(3). a=n(257). a=r(4).

The modular discriminam is given by

A= g3 — 272 = 16(e1 — e2)*(e2 — e3)?(e3 — e1)*.

The functiona is given by
5 = €y — €3

e1—e3’
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SinceA does not vanish ofy, we see again thatdoes not take the values 0 or
1on$.

All the above can be expressed in terms of the Jacobi null theta functions
defined by

o 1 oo x
2 2 2
D= 1" w3=3 4", Wa=) (=DM,
—00 —00 —00
with the following transformations:

92(t +1) = e Dp(t) D3t + 1) = 04(t), Dalt +1) = 93().
-1 L1 -1 N
) (T) = (—i1)204(7), U3 <7) = (—it)293(7),
-1 1
U4 (T) = (—i1)202(7), (5.6)
and the fundamental relation

95 4+ 94 = 93 (5.7)

In term of these functions, the elliptic functions introduced above are given by:

2 2 72

T T
e1 = @(ﬁg—k 91, ex= @(ﬁg —93). e= g(ﬁf%— 93
12
A= 16(£> 989898 |
w

2 (2 \*
gz=—<;> W08+ 98+ 0d),

3
198 ,08 198 3
4 748=32 02T VSt DA
04 v
A= -2 =1- 2.
ﬁ3 ﬁ3

Recall that the normalized Eisenstein series of weight 4 is given by

E4(7) = g2(t) = 14240 ) o3(n)q",

n>1

(2m)4

whereos(n) is sum of the cubes of the positive divisorsofThen
Proposition 5.2. We have the formula

1
— (A, T} = Eau(7). (5.8)
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Proof. Since the expression f¢k, t} involves}’, we need to evaluate the latter
in terms of theta functions. From (5.6) we deduce iifatt 1) = A(t)/(A(t)—1)
andA(—1/t) = 1 — A(z). This allows us to determine theexpansion at any
cusp. In fact we can show that the weight 2 modular fafyi. is holomorphic

at the cusps 0, 1 ando for I"'(2). The space of such forms has dimension
two, and a basis is given by any two of the ford 95 and ;. Let us write
A/ = av] + B}, taking this atr + 1, we obtain’/(A — 1) = a¥] + BV5.
Sincex, A’ andd, vanish ato, we finda = 0. Evaluating\’ /A = 04 atoo we
getpB = mi. Therefore we obtain simultaneously

/ /

Using these identities and the relation (5.7) in (5.4) we obtain
7.[2
r 1) = ?(ﬂg—kﬁg—kﬁf). (5.10)

This is a weight 4 modular forn holomorphic abo. The space of such forms
is 1-dimensional generated by the Eisenstein séfieSince the value dfx, 7}
atoo is 72 the proposition follows. O

6. Expansion at the vertices

Let G be agenus zero Fuchsian group gnalHauptmodul folG, we assume that

G is finitely generated, or equivalently, that a Dirichlet regiondohas a finite
number of sides. Each vertex belongs to a cycle of vertices that are conjugate
under the action of;. If a vertexty corresponds to an elliptic fixed point which

is not a pole forf and if f(zg) = ao, then

f(@)=ao+ai(t —10)" + -+,

wherea; # 0 andr is the order of the elliptic transformation fixing. Using the
auxiliary functionr = (tr — 10)", one can show easily that, in a neighbourhood

of 70,
1 1 Co
., fl=11-—= + .
w7 ( n2> (f —an)?  f—ao
If 70 is a pole, one can show that

1\ 1 c
{r,f}=(1—;>ﬁ+ﬁ+---,

which means thaftr, '} has a zero of order 2 ab.
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If 7o is a finite cusp fixed by the transformatidnin G, then in a neighbour-
hood ofty, A acts as [4,6]:
1 1

= +c
At—19 T—T10

and f becomes a power series in the variablevhere
1 c
= —logw.
T—19 27

This transformation essentially sends the parabolic sectey @ito an infinite
strip. It follows that

1 n c
(f-a)? f-—a
If f has a pole at a cusp, or if the pole is inside a fundamental region, it is not

difficult to see tha{z, f} has a zero of order 2 or 4 respectively. In the same way
as in the triangular case in Sect. 5, we can show that

R 1 1 N
{T’f}_z<1_n_k2) Toar "o 64

k=1 k=1

{r. f} =

+-, a= f(wo).

where the sum is taken over a set of vertices, one from each cycley, aréd
the values off at these cycles. If one of the vertices is a pole, thenust be
replaced by: — 1. Each integen, is the order of the transformation fixing the
corresponding vertex with the convention that= oo at a cusp. Alsay, can be
taken such that2/n, is the sum of the internal angles of the given cycle, which
is in accord with the triangular case of the previous section.

In the following we focus on the behaviour of the fofmi t} at the cusps.
This will be based on the identityf, 7} = —(f")?{r, f} and on what we have
learnt aboufz, f}. Near a cuspyg, for G, we have a local uniformizer of the
form

2mi

= e -
v XpC(r — 7o)

if 79 is a finite vertex, and
2mi

w=exp—71
C
if the cusp is abo. In either case, the Hauptmodylis holomorphic or has a
pole atw = 0. If we assume thaft is holomorphic aty, then near 0, we have
the expansion
f(@) = f(r0) + aaw + agw’ + - - -,
whereas

, dw —2mi 2
f(T)=E (al+232w+"')=m (aaw + 2aw" + -+ +).
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It follows that (r — t0)*{f, t} is a power series im. This is just the growth
condition for the holomorphy of the weight 4 automorphic form at the aysp
[6]. If the cusp is abo, then the local parameter is

2mi
w = exp—r
c

at which the holomorphy of f, t} is easily seen (and can be seen also from
(4.8)).

At elliptic points the form{f, t} has a pole of order 2 which comes from
£2/(f — ). Summing up, we have

Proposition 6.1. At elliptic points the weight 4 forrif, t} has a pole of order
two and is holomorphic elsewhere including at parabolic points. |

7. Congruence subgroups with no elliptic elements and lattices

The congruence groud$(n) (n > 1) are defined by

Fo(n)::(ZZ>ESL2(Z), c=0 modn}.

Only their images in PSI(IR) are used in this note; we use the same notation to
designate the corresponding group obibilis transformations.

We will restrict this section to the family of Fuchsian groupsvhich satisfy
the following conditions

(1) G is a genus zero group.
(2) G contains soméyg(n) with finite index.
(3) The stabilizer of the cusp ab is generated by — t + 1.

According to [11], there are only finitely many Fuchsian groups satisfying (1),
(2) and (3). From the previous section, the Schwarzian of a Hauptmodul for such
a groupG is a holomorphic weight 4 form if and only if

(4) G contains no elliptic elements.

Our aim is to first identify the groups satisfying the four conditions. Next we
identify these holomorphic weight 4 forms as classical theta functions for some
rank 8 lattices.

In this section we deal with the groups of the fofig(n).

Proposition 7.1. The integers: for which I'h(n) has genus zero and does not
contain any elliptic elements are= 4, 6, 8,9, 12, 16 and 18.

Proof. Accordingto[5], there are only 15 positive integefer which the groups
I'y(n) have genus zero, namely fer= 1, ..., 10,12, 13, 16, 18, 25. We now
look at condition (4). Let
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a b
(ncd) € Io(n), ad —nbc=1,

be an elliptic element. If the order of this element is 2 then the trace is 0, thus
a+d = 0anda® = —1 modn. If the order is 3 then the trace 51, and

from (¢ +d)? = 1 andad =1 modn we deduce thalu — d)2 = —3 modn.

It follows that if —1 and—3 are not squares mod then there are no elliptic
elements inp(n). Conversely, if-1 or—3 is a square it is clear how to construct
elliptic elements; for example, if> = —1, takec = 1,d = —a andb = 0, and

the matrix obtained is an elliptic element of order 2. Itis easy to see from the genus
zero list thatIs(n) has no elliptic elements if and onlyif = 4,6, 8,9, 12 16

and 18. O

Forn = 2,3, 4, the transformation — t/n conjugates the groupyp(n?) to

I’ (n), the principal congruence subgroup, and in fact, by examining the indices
of these groups inside the full modular groiip these values are the only one
for which I'p(n?) is conjugate tal"(n), except forn = 6 in which casel"(6)

(or I'p(36)) is no longer of genus zero. If,(7) is a Hauptmodul folp(n?) for

n = 2,3,4,thenf,(t) = f,(r/n) is a Hauptmodul fod"(n). The Schwarzian

{f., T} is a weight 4 holomorphic modular form for the normalizer,of I (n).

The space of such forms is 1-dimensional, generated by the Eisensteinfseries
Using (4.8) with the appropriate width at, we have

Proposition 7.2. For n = 2, 3, 4, we have

n? .
m {fu, T} = Ea(7). (7.1)

s {fn, T} = Ea(nt). O (7.2)

These formulas are presented as illustrations of (4.8) and as a generalization of
(5.8). Notice that explicit knowledge of the Hauptmoduls is not necessary. In the
normalized form (4.1), we have the Hauptmoduls:

_ (@, . 16
f2(0) = (n(4f)) 8= e

=q ' +207 — 62¢° +216° — 64" + - -,
3
Ao = (22 ) 43

n(91)
=q¢ ' +50 79 +3¢° +15° + -,
n(87)°
~ n(41)2n(160)*
:q71+2q3_q7_2q11+3q15+2q19_4q23+”‘ ,

fa(t)



270 J. McKay, A. Sebbar

wheren is the Dedekind eta-function:
1
n@) =q2 [ [1-q".
n>1

The Schwarzian of each of these functions is invariant for a conjugdte afd

itis given in terms of£4 which is nothing but the theta function of the root lattice
Eg. We will see next that all the other groups involve different root lattices. We
need the following

Lemma 7.3. Let I'h(n)™ denotes the grougp(n) extended by all its Atkin-
Lehner involutions. Le®t, (rn) denote the space of weightiolomorphic auto-
morphic forms forlp(n)*. Then

: 1 1 1 1
dim () = etk — 1) - gxs(nlk = 1) = 2 xa(n(k = 1) + za. (7.3)

wheren = a°b with b square-free, angyz and x4 are the primitive Dirichlet
characters modul@ and4.

Proof. See formula (5) in [10]. O

To obtain the normalizer afy(n) we leth be the largest divisor of 24 for which
h? dividesn, then the normalizer is the conjugatelefn/h)+ by r — ht. The
grouplo(n/h)+ is referred to as the Helling group correspondindgé:).

Proposition 7.4. Let f1, be a Hauptmodul for(12), then

1
= {f12, T} = 044,(27), (7.4)
wherebaq, (1) is the theta function of four copies of the hexagonal latiige

Proof. The theta function of thé, lattice is [3]: 93(7)¥3(37) + ¥2(1)P2(37),
therefore
044,(27) = (93(27)P3(67) + ¥2(27)P2(67))". (7.5)

On the other hand, the normalizer B§(12) is I3(3)*. Using Lemma 7.3., we
have dint)t,(3) = 1. Using (5.6), we can see easily that, (27) given by (7.5),
belongs tdN1,(3) and has in thg-expansion a constant term (valuesaj equal
to 1. If f1ois a Hauptmodul fol 5(12) then, by (4.8){ f12, T} has constant term
472, The proposition follows. O

The normalized Hauptmodul (in the form (4.1)) fB§(12) is given by
n(47)*n(67)°

n(2r)?n(120)

=q " +29+4¢°—2¢" —2¢°
+2qll+4ql3+3q15—4ql7+--- ’

fi2(r) =
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and

1
o {f12, T} = (93(47)P3(127) + P2(47)Vo(121))*
=14 249° + 2164* + 888;° + 1752°
+ 302410 + 799212 + ... .

Proposition 7.5. Let fg and f1g be Hauptmoduls fofp(8) and I'5(18) respec-
tively, and letd,p, be the theta function of two copies of the (Hurwitz quater-
nionic) root latticeDg4, then

1
72 {fs, T} = 02p,(21), (7.6)
and

1
= {f18, T} = 62p,(31), (7.7)

Proof. The groupd(8) andl5(18) both correspond to the same Helling group
I'p(2)*" and are both normal in it, in fact their normalizers are both conjugate to
Ip(2)*" via the maps — 2t andt — 3t respectively. The theta function of
the root latticeDy is 2(95 () + 94(1)), hence the theta function 8f,@Dy is

1
O2p,(7) = Z(ﬂ;}(r) + 94(1))%,

which belong9t4(2). This space is 1-dimensional by Lemma 7.3.. Taking into
account the conjugating maps betwd@ii2)* and the normalizers dfy(8) and
I'H(18), we deduce the relations (7.6) and (7.7). O

The normalized Hauptmodul fary(8) is

_ n@n*
T = oy @0
:q71+4q+2q3_8q5_q7+20q9_2q11+9q14+__‘ ,

and
: = Lwi@n) + vd0)y?
m{f&f}—z 3T 4T
=1+ 4872 + 6249% + 1344° + 52328 + . .. .
The normalized Hauptmodul fdrp(18) is

Fro(t) = n(6t)n(97)3
18 n(3r)n(180)3
:q71+q2+q5—q8—qll+ql7+2q20+~~ ’
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and

1 1
22 s T} = Z(ﬁé(Sw) +94(310))?
= 1+ 48¢°% + 6247° + 1344° +- 523 + . . . .

Proposition 7.6. Let fs be a Hauptmodul forp(6), and letb,,sp, be the theta
function of the lattic,®D,, then

1
= {fe. T} = Oaszp, (7). (7.8)
Proof. According to [7], the theta function &,®D, is given by
Ba,00, (T) = h3(1 — 4hy — 16h3 + 16h3) = 0,05, (T), (7.9)
where

hi(t) = (93(1)03(27)93(31)¥3(67))?, and
n(t/2)n3t/2n(4t)n(12r)
n(t)n(2t)n(3r)n(6r)

Neitherhy nor h; is invariant underd (6)* but the product in (7.9) is. Using
Lemma 7.3., we see that the spatR(6) is 2-dimensional and a basis of this
space is obtained frof,s p, and the cusp forny (t)n(27)n(37)n(67))2 which
has the followingz-expansiony — 2¢? — 3¢3 + 4¢* + 64° + - - .. On the other
hand, theg-expansions 01‘471—2 {fs, T} andb4,gp, dO NOt contain any term ig,
see (4.8), and both of them have constant term 1, the proposition follows.

ha(t) =

The normalized Hauptmodul fdfy(6) is

a3
Jo® =5 68

=q ' +6q+49°+ 30" — 127" —8¢° +124° + - -,

and

1
m{fe,f} =1+ 729% + 1925° + 504¢* + 5769° + 228Q;° + - - -

Remark 7.1.We have exhausted the list of all the groufign) which are of
genus zero and contain no elliptic elements, in other words, those which can be
generated by parabolic elements. The Schwarzians of their Hauptmoduls are thete
functions of rank 8 root lattices with various minimal norms. In the next section,
we will see that this property holds only for these groups as we will exhibit
what we believe to be a complete list of all the Fuchsian groups satisfying the
conditions (1)—(4).
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8. Some more groups

For eachn in the list given in Proposition 7.1., the grotip(n) has a single con-
jugate which also satisfies the conditions (1)—(4) of the previous section. These
groups have Hauptmoduls whose Schwarzian is given by a theta function with a
shifted argument. We use the notatigf(n) for the conjugate of5(n). The con-
jugation maps, the resulting groups, their Hauptmoduls, and their Schwarzians
are given in the following table:

Conjugation Group Hauptmodulf le{f, T}
1.8

T>T+3 T34 (n;:tz;)) +8i Es (2t +13)
t> 141 6 NGO + 4 Oayen, (7 + )
R pi((:) w2y Oans (27 +3)
T —> 1+ % 49 —W"n(é?gﬂ"(if))an"((fg)s -3 Ea (3‘5 + %)
roTHd 12 EECEEE 6w (r+3)
‘L’—)'E-l—% I3(16) %6?)22 E, (4t+%)
T—>1+ % I3(18) %m 02p, (3r + %)

There are three groups which are not conjugate tolaidy) but still satisfy
the conditions (1)—(4). Namely, the group that we denoté&by which is the
invariance group of the Hauptmodg},, (v) = 1(37)/n(277); itis conjugate to
a subgroup of index 3 ihp(9) (containing/p(81) ). The second group 6,
which is the invariance group of,,.(t) = n(8t)/n(32r); it is conjugate to a
subgroup of index 8 iMp(4). The third group isG’_ , a conjugate td@r,,, via
the mapr — t + 1/2 which also satisfies the conditions (1)—(4); its normalized
Hauptmodul is given by:

_ n(61)*n(277)n(108r)
~ n(3)n(12r)n(54r)3

Fons ()
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Proposition 8.1. We have

1 21 1 16
172 {fage: T} = 3 E4 (8‘: + E) -5 E4(167). (8.1)

Proof. The normalizer of the grou@ ., is I'n(4)*, which is conjugate td(2)
viathe map — 8t +1/2. Onthe other hand, the space of weight 4 holomorphic
modular forms forl,(2) is 2-dimensional generated B4(t) and E4(2t). The
proposition follows from the knowledge of the first twecoefficients of the
series in (8.1). O

Proposition 8.2. We have

n(r)°n(97)°

1
777 Uforer T) = Ea(3r) — 48,(31)® — 216 T Bo)t

(8.2)
Proof. The normalizer o6, , is I'o(9)* inwhich I"(3) has index 2. The space of
weight 4 holomorphic modular forms fé(9) " is 3-dimensional by Lemma7.3.,
and a basis is given by the three forms in the right side of (8.2). The proposition
follows from the knowledge of the few firgt-coefficients. O

We have the following;-expansions:

_ n@37)

SO = 505
=q—1_q2_q5+q14+q20+.“ ,

fo) = n(67)%n(27r)n(108r)

218777 n(3r)n(12r)n(547)3
=q_1+q2—q5—q14—q20+---
_ n(8)

Fae(D) = 30y

—g ot

and

512 {foner T} = 1— 487 — 2167° + 1536;°
— 156Q;%% — 3024 + - - -,
512 {fyg» T} = 1+ 48¢° — 2167° — 15367°
—1560;'? +30247"° + - - - ,

1
277 oo T) = 1 1008° + 8304 — 28224 - -
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We mention that these Schwarzians are not lattice theta functions since some
coefficients are negative and there is no other group which is conjugate to one
of the above three groups giving a theta function (or at least making all the
coefficients nonnegative). This means that the property that the Schwarzian is
given by a theta function of a rank 8 lattice holds only for those groups satisfying
(1)—(4) that arels(n) up to conjugacy. This completes our description of the
Schwarzian of Hauptmoduls of Fuchsian groups satisfying the conditions (1)—(4),
namely Fuchsian groups of genus zero and with noelliptic elements, containing
somely(n) with finite index and such that the width of the cuspoatis 1.

The above 17 groups are characterized by the fact that they are the only ones,
among those satisfying the conditions (1)-(4), with normalized Hauptmoduls
having rational Fourier coefficients. Indeed, as we have seen, they are all given
by eta-products. A complete classification of the groups satisfying the conditions
(1)-(4) will appear elsewhere.
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