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1. INTRODUCTION

The study of algebraicity of special values of the L-function of a
grossencharacter of an imaginary quadratic field K was first initiated by
Eisenstein. His work appeared much later in a different formulation in the
work of Birch and Swinnerton-Dyer [1] and Damerell [2]. Shimura
generalized this aspect to more general CM fields [7]. Using the same
language, Goldstein and Schappacher [4] related the work of Eisenstein
and Damerell to the conjecture of Birch and Swinnerton-Dyer on elliptic
curves and to the Deligne conjecture.

The purpose of this article is to study, with the same methods, the
special values of certain twisted L-functions as follows:

Let E be an elliptic curve defined over Q, of conductor N, and let L(E, s)
be its usual L-function. Let us write L(E, s)=�n�1 an n&s (for Re(s)>3�2).

For every b # Z�NZ, we set

L(E, b, s)= :
n�1

e2i?bn�Nann&s (R(x)>3�2). (1.1)

It seems reasonable to conjecture that the series L(E, b, s) admit an
analytic continuation to every s # C, and we would like to study the values
at s=1 of these Dirichlet series. For b=0, this is essentially one aspect of
the Birch and Swinnerton-Dyer conjecture. To be more precise, we need a
conjecture of the form

L(E, b, 1)=:b |++;b|&, (1.2)

with :b , ;b expressed in terms of the arithmetic of E, and b. The periods
|+, |& are defined in a modular language. For example, they are the
so-called u\ in the article of Shimura [8].
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We study the algebraic properties of L(E, b, 1) in the case when E has
complex multiplications by OK . There exists a finite number (say r) of
torsion points xi of C�L (for a lattice L corresponding to E over C) and
a simple explicit function C(E, s) (depending on the choice of xi) such that

C(E, s) Lp(/, s)= :
r

i=1

K1(xi , 0, s, L),

where / is the grossencharacter associated to E, Lp is a certain partial
Hecke L-function depending on an integral ideal of OK relatively prime to
N .OK , and K1 denotes the Kronecker series. The Hecke L-function is
recovered by taking the sum of the partial L-series corresponding to
integral ideals for which the Artin symbols describe the Galois group of the
ray class field modulo N. Because of the complex multiplication, the ray
class field is equal to the extension of K generated by the N-torsion points
of E�K. Our results concerning L(E, b, 1) follow then from the properties of
the Hasse�Weil and Hecke L-functions and the relationship between the
Kronecker and the Eisenstein series.

The next two sections deal with the necessary background concerning
Hecke characters, L-functions, complex multiplication, and torsions
points. The last section presents our study of the values at 1 of the twisted
L-function.

2. HECKE CHARACTERS AND L-FUNCTIONS

In this section we recall some important properties which will be used in
subsequent sections.

Let F be a number field with OF its ring of integers, and let m be an
integral ideal of K and Im be the group of fractional ideals relatively prime
to m. Let K be another number field in which F can be embedded. If G is
the set of embeddings of F in K, we denote by Z[G] the free abelian group
over G. A Hecke character / of the field F with values in K* having
conductor m and of type at infinity (n_)_ element of Z[G] is:

1. A homomorphism from the group of fractional ideals of F
relatively prime to m into K*.

2. For every : # F* such that the ideal :OF is relatively prime to m
and :=;�#, with ;, # # OK relatively prime to m and ;## mod m (we say
:#1 mod m), we have

/(:OF)=` _(:)n_ # K*.
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If /1 is defined over Im1
and /2 is defined over Im2

and if the two give the
same map from Im1m2

to K*, we identify them to one character /. The
conductor of / is the smallest ideal m of OF such that / is identified with
a Hecke character of Im .

Let E be an elliptic curve defined over a field F with complex multiplications
by OK where K is an imaginary quadratic field. There is an embedding of
K into F which we fix, and we look at F as embedded into K� . We define
a character attached to these data as a map

/ : If � K*,

where f is an integral ideal which is divisible by all prime ideals at which
E has bad reduction, as follows:

If p is a prime ideal in If , we consider the embedding

Q�Z End(E)/�Q�Z End}p
(Ep),

where }p is the residue field of K at p. Let

F: Ep � Ep

(x, y) [ (xNp, yNp)

be the Frobenius map at p. Here Np=|(Ok �pOK)|. Then Fp is in the center
of End}p

(E) and hence is in the image of the above embedding. Therefore,
there exists /(p) in Q�EndF (E) such that the image of /(p) is Fp . Since
E has complex multiplications, one can show that the map / : If � K* is a
Hecke character (the grossencharacter of E). We talk about NF�K as the
type at infinity of / since it acts on a principal fractional ideal (:) of F*
relatively prime to f by

/(:)==(:) NF�K (:), (2.1)

where = is a homomorphism of (OK�f)* into the groups of units of OK and
NF�K is the norm of the extension of F�K. In particular, if :#1 mod f then
/(:)=NF�K (:). Moreover, / is unramified outside the places of bad
reduction of E.

Let L(/, s) denote the Hecke L-function attached to / and L(E�F, s)
denote the Hasse�Weil L-function of the elliptic curve E�F. From the
properties of / one can show that

L(E�F, s)=L(/, s) L(/� , s), (2.2)

where /� is the complex conjugate of the character /.
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From now on we assume that E is defined over Q and has complex
multiplications by OK . Using the fact that /� (p)=/(p� ) for p prime in OK

and comparing the local factors of the L-functions according to whether p
is ramified, inert, or splits in OK , the relation (2.2) yields [3]

L(E�Q, s)=L(/, s). (2.3)

We finish this section by an important relation which will be useful later
on. Let NE be the conductor of E, f the conductor of the grossencharacter
/ and dK the discriminant of the field K. Then

|dK | .Nf=NE . (2.4)

This follows from the functional equations satisfied by the L-functions and
from (2.3).

3. TORSION POINTS OF AN ELLIPTIC CURVE

Let E�Q be an elliptic curve with complex multiplications by the ring of
integers OK of a quadratic imaginary K. We fix an embedding K/�C.
There is a lattice 4 of C such that we have the Weierstrass isomorphism

!:
C

4
� E(C)

(z, 4) [ (^(z, 4), ^$(z, 4)),

where ^ is the Weierstrass elliptic function. Since E�Q has complex multi-
plications, then 4=0 } OK for 0 # C*. In fact, we can choose 0 to be a
nonzero real number.

Let N be a nonnegative integer; the N-torsion group of E over C is the
subgroup of E given by

EN=[!(z, 4), z # N &14]�P2(C).

If we add the coordinates of all the points in EN to K, we obtain a finite
extension K(EN) of K. If S denotes the set of places of K at which E has
bad reduction, then the extension K(EN)�K is abelian, nonramified outside
the places in K dividing N .OK and the places in S. Moreover, if b is an
integral ideal of K relatively prime to N and to S, and if \ # N &14�4, then
the action of the grossencharacter / on torsion points is given by

!(\, 4)(b, K(EN)�K )=!(/(b) \, 4), (3.1)
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where (b, K(EN)) is the Artin symbol of b and / is the Hecke character
attached to E.

Since E is defined over Q with complex multiplications by OK , the class
number is hK=1, so that all fractional ideals are principal. Let N be the
conductor of E�Q and f the conductor of the grossencharacter of E.
A representative :OK of the principal ray modulo N satisfies :#1 mod N,
and from (2.4) we deduce that N .OK=|dK | . f� �f; therefore :#1 mod f.
Hence, any character of (OK�f)* acts trivially on an representative of the
principal ray mod N. Using (2.1) and (3.1), we deduce that we have an
abelian extension K(EN)�K nonramified outside N and such that the Artin
symbols of ideals in the ray class group modulo N act trivially on K(EN).
From class field theory we have K(EN)�KN , where KN is the ray class
field modulo N. On the other hand, using [6, 5.10, p. 124], we have KN=
K(8E (P), P # EN) where 8 is the Weber function 8E (P)=x( p) i, with x
being the x-coordinate and i= 1

2 |O*K |. Hence KN �K(EN). Therefore, the
field K(EN) is the ray class field mod N.

Let us denote by _a the Artin symbol (a, K(EN)�K ). Since / is unramified
outside N, then, for a=(:) and b=(;), _a=_b if and only if for some unit
= in O*K we have =:�;#1 mod N. It follows that

if _a=_b then Na#Nb mod N. (3.2)

Let +N be the group of the N th root of unity. Consider the Weil pairing
eN: EN_EN � +N (see [9]). The set [eN(S, T ), S, T # EN] is a subgroup
+d of +N . It follows that for every S and T, 1=eN(S, T )d=eN([d] S, T ).
By the nondegeneracy of the Weil paring, we must have [d] S=0; i.e.,
S is a d-torsion point. Since S was arbitrary, it follows that d=N. Moreover,
the pairing eN is equivariant under the Galois action. Then for every
_ # Gal(K(EN)�K(EN)), we have eN(S, T )_=eN(S _, T _)=eN(S, T ) since S
and T are in K(EN). It follows that eN(S, T ) # K(EN) and therefore +N �
K(EN)*. Hence, we have the following inclusions

Q ww�
2 K � K(EN)

Q ww�
,(N)

Q(+N) � K(EN).

Since the cyclotomic field Q(+N) is the ray class field modulo N of Q, then
if !N is a primitive Nth root of unity, we have

!(a, K(EN)�K )
N =!Na, Q(+N)�Q)

N =!Na
N . (3.3)
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4. TWISTED L-FUNCTIONS

Let 4 be a lattice in C. If (u, v) is a Z-basis of 4 such that I(u�v)>0
then the real number (u� v&uv� )�2i? is positive and independent of the basis;
we denote it by A(4). Let us consider the following homomorphisms of the
additive group C into the unit circle parametrized by the variable z0 :

�(z, z0 , 4)=exp \z0z&z0z�
A(4) + .

For k�0, we define the holomorphic functions on the domain R(s)>
1+k�2 by:

Kk(z, z0 , s, 4)=: $ �(|, z0 , 4)
(z� +|� )k

|z+||2s .

The sum is extended to every | in 4 except &z if z # 4. For i and j integers
satisfying j>i�0 and z # C�4 we set

E*i, j (z, 4)=Ki+ j (z, 0, j, 4)

and

Ek*(z, 4)=E*0, k(z, 4).

The Kk are the Kronecker double series and the Eij are the Eisenstein
series; see [11].

We consider now an elliptic curve E�Q with complex multiplications by
OK , K being an imaginary quadratic field. Recall that

L(E�Q, s)=L(/, s)= :
(a, f)=1

/(a)
Nas ,

where f is the conductor of the Hecke character /. We are interested in
nonprimitive L-functions in which the sums in the L-functions are extended
over prime ideals which are relatively prime to NOK where N is the con-
ductor of E�Q. Recall also that N # f. For _ # Gal(K(EN)�K ), we define the
partial L-series associated to / and relative to _ by

L(/, _, s)=:
/(a)
Nas ,

where the sum ranges over integral ideals a�OK with _a=_. Each
_ # Gal(K(EN)�K ) corresponds to a _a for some integral ideal a�OK ; let
A be a complete set of integral ideals in OK representatives for all elements
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in Gal(K(EN)�K ). If we denote the series L(/, _a , s) by La (/, s), it is clear
that

L(/, s)= :
a # A

La(/, s).

Let 0 be a fixed nonzero real number such that E(C)$C�4 with 4=0OK .

Proposition 4.1. Let a= p0OK be an ideal relatively prime to f. Let
\ # 0K*/C* such that \0&1OK=f&1. Then for Re(s)>3�2, we have:

/( p0OK)
N( p0Ok)

}
p� 0\

| p0\|2s } La(/� , s)= :
pOK # A

K1(/( p) p0\, 0, s, 4).

Proof. We note first that p0 \ is an f-torsion point. We have /(a) /� (a)=
Na and if b is relatively prime to f, then /(b) OK=b. Thus

:
pOK # A

K1(/( p) p0\, 0, s, 4)= :
p .OK

:
|

/( p) p0\+|
|/( p) p0 \+||2s

=
p� 0\

| p0 \| 2s :
p .OK # A

:
: # p 0

&1
f

/( p)+:
|/( p) \+:|2s .

It remains to show that

La(/� , s)= :
p # A

:
: # p

0
&1

f

/� ((/( p)+:) a)
N((/( p)+:) a)

.

For this, it is enough to check that for p .OK # A and : # p&1
0 f, we have

_a=_(/( p)+:) a (: # a&1f). This follows from class field theory. K

Remark 4.1. There is a similar decomposition in [5]. See also [4].
The series La has an analytic continuation to the whole complex plane in
the same way as the Hecke L-series. From the above proposition and the
definition of E 1* we have

Corollary 4.2. With the same notations, we have:

/(a)
p0\

La(/� , 1)= :
p .OK # A

E 1*(/( p .OK) P0 \, 4).

Proposition 4.3. We have

1. E 1*(/( p0 .OK) p0 \, 4) # K(EN).

2. E 1*(/( p0 .OK) p0 \, 4)=E 1*(/(OK) \, 4)_a.
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This a particular case of [4, Theorem 6.2].
Since \ # 0K*, the corollary implies that 0&1La(/� , 1) and � K1*(/( p0) \,

4) are K-proportional. And using the above proposition, we obtain:

Proposition 4.4. For every a, we have

1. La(/� , 1)�0 # K(EN).

2. If a is relatively prime to N, then

La(/� , 1)

0
=\

LOK
(/� , 1)

0 +
_a

.

Proposition 4.5. We have

L(E, 1)

0
=TraceK(EN)�K \

LOK
(/� , 1)

0 + .

Proof. Since 0&1LOK
(/� , 1) # K(EN), the expression makes sense. Since

E is defined over Q, for a real number s we have

La(/� , s)=La(/, s).

Since L(E, s)=�a La(/, s), it follows that

L(E, 1)

0
=:

a

La(/� , 1)

0
=:

a
\

LOK
(/� , 1)

0 +
_a

,

where _a describes Gal(K(EN)�K ). This proves the proposition. K

The quantity LOK
(/� , 1)�0 is real; indeed, 0� =0 and LOK

(E, s)=� /(a)�
Nas, where the sum is over all a=(:) such that :#1(mod N) and _a =1.
Hence

LOK
(E, s)= :

a� =(:)

/(a� )
Na� s =LOK

(E, s). (4.1)

We now introduce the twisted L-function associated with E�Q which still
has complex multiplications by OK and N is its conductor.

If the Hasse�Weil L-function of E is given by

L(E, s)= :
n�1

an n&s for R(s)>3�2,
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then, for every b # Z�NZ, we set

L(E, b, s)= :
n�1

e2i?bn�Nann&s.

Proposition 4.6. For R(s)>3�2, we have

L(E, b, s)= :
a # A

e2i?nNa�NLa(/� , s).

Proof. This follows from the definition and from (3.2) which says that
if _a=_b , then Na#Nb mod N. K

Let !N=e2i?�N be a primitive Nth root of unity. From (4.1) we have

!_a
N =! (Na, Q(+N)�Q)

N =!Na
N .

Therefore, using (4.4), we have

L(E, b, 1)
0

=:
a

(!b
N)Na

La(/� , 1)
0

=:
a

(!b
N)Na \

LOK
(/� , 1)

0 +
_a

=:
a
\!b

N

LOK
(/� , 1)

0 +
_a

.

The above sums are over ideals a such that _a runs over the Galois group
Gal(K(EN)�K ). Therefore, we have

Theorem 4.7. The value L(E, b, 1) is a K-rational multiple of the period
0; more precisely:

L(E, b, 1)

0
=TraceK(EN)�K \!b

N

LOK
(/� , 1)

0 + .

Remark 4.2. We should note that 0 is well determined up to a scalar
in K*. It also has a homological interpretation; see [4]. The formula in the
theorem gives the expression (1.2). It remains to express these quantities in
terms of the arithmetic of E.
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