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1. INTRODUCTION

In this work a close connection is established between certain cohomol-
ogy spaces of quantized universal enveloping algebras and a twisted g-de
Rham (Jackson—Aomoto) cohomology of configuration spaces.

In the Lie algebra case, the idea of such a connection belongs to V.
Ginzburg and V. Schechtman. In [4] and [5], these authors have con-
structed canonical morphisms between the de Rham homology of certain
local systems over configuration spaces and Ext-spaces between Fock-type
modules over Kac—Moody and Virasoro Lie algebras. This construction is,
in turn, a generalization of the classical Feigin—Fuchs construction. In
their study of representation theory of Virasoro algebras, Feigin and Fuchs
have discovered a way of obtaining intertwiners between Fock modules
over the Virasoro algebra from the top homology of certain one-dimen-
sional local systems.

We investigate this connection between the geometry of configuration
spaces and the representation theory in the case of quantum groups. The
representations considered here are Verma modules over the quantized
enveloping algebras of semisimple Lie algebras. The existence and the
uniqueness of these modules were established by Lusztig [9]. We consider
a family of operators between the Verma modules that satisfy certain
difference equations and certain cocycle conditions. These equations are
built using a family of g-difference operators that generate a flat connec-
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tion in a one-dimensional vector bundle over the n-dimensional torus. In
fact, these difference operators are the “differentials” of a “g-de Rham”
complex of the space of formal algebraic g-differential forms over the
n-torus. The homology groups of this complex can be regarded as the
homology groups of the n-torus with coefficients in a local system with
stalk C. From these data, we construct the canonical “g-de Rham”
cocycles, and consequently we obtain the canonical maps between the
homology of the local systems and the Ext-spaces between the Verma
modules.

This paper is organized as follows. Section 2 is concerned with Hopf
algebras; we make some constructions and prove some results that we
need later. Two key ingredients are introduced, namely a bracket that will
have a major role in all of the work, and a cochain complex of Hochschild
type that will lead to the Ext-spaces. In Section 3, we treat the simple case
of the algebra #,(s(,). And in Section 4 we treat the general case of a
semisimple Lie algebra; we define a sequence of certain vertex operators
that, taken together, define a cocycle in a double complex. This double
complex is a mix of the difference de Rham complex and the Hochschild
cochain complex with coefficients in a Hom-space between two Verma
modules. In the course of the work, we found some nice features of the
g-deformed picture. We mention one of them: the appearance of the
Kashiwara operators ¢, and ;0 of Lusztig in the solution of the main
difference equations. | should mention also that the same construction has
been made in [13] for the quantum affine algebra ?/q(gz), with different
techniques. The operators are the so-called screening operators, and the
representations are the g-analog of the Wakimoto modules.

2. HOPF ALGEBRAS AND THEIR ACTIONS

In this section we present some constructions concerning Hopf algebras
and their representations and establish some results related to them. All of
the algebraic structures will be over the field of complex numbers.

Let H be a Hopf algebra, and let A, A, and & denote, respectively, the
comultiplication, the antipode, and the counit maps. These maps satisfy
the following axioms, in which we use the Sweedler notation for the
comultiplication:

A(x) =Y x' ®x" (x€H).
(x)
Yre(x) @ (x) = L(x) ®(x) ®x

(x) (x)
(Coassociativity axiom). (2.1)
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Y x'e(x") =Y e(x)x" =x  (Counit axiom). (2.2)
(x) (x)
Yx'A(x") = Y A(x")x" = e(x).1  (Antipode axiom). (2.3)
(x) (x)

Moreover, A is an antihomomorphism, and £ A = &.

The modules considered in this section are algebra left-modules. If .#
and .7 are two H-modules, one can define a structure of left module on
both .# ®.# and Hom(.#Z,.#) by

x-(men)=)Y (xm)® (x"n) (mes,nesxcH),
(x)
(x-f)(m) = Lx'f(A(x")m)  (m e, feHom(L /), xEH).
(x)

Each vector space carries a structure of H-module through the map e.
Therefore the dual space .#* = Hom(.#,C) is an H-module, where the
action of H is given by

(x-¢)(m) = Ye(x")p(A(x")m)

(x)

= L o(A(e(x)x")m)

()
= ¢(A(x)m) using (2.2).

2.1. Composition of Maps

If #,#,and £ are three H-modules, we wish to factorize the action of
elements of H on maps in Hom(.#Z, ) that are compositions of maps
from Hom(.#,.#) and Hom(#, ). To simplify the notations, we change
the superscripts ' and ” to numerical subscripts when more than one
is involved. The proof of the following lemma was outlined to me by
S. Montgomery.

LEMMA 2.1.  For every x € H, the following relation holds in H ® H ® H:

Y ®1®x, = ) x; ®A(x; )X, 1 ® X, 5. (2.4)
(x) (x)

Proof. We prove the identity by applying the coassociativity of the map
A several times. By coassociativity we have for x € H

X ®Xy 1 ®Xy, =X 1 OX; , X,
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Now, applying 1 ® A ® 1 to the left side, and 1 ® 1 ® A to the right side,
we obtain by coassociativity

Xy ® X511 ®Xp15®Xy5 =X, 1 ®X; 5 ®Xy 1 ®Xy 5.
Hence

X1,1 ®A(x112)x2y1 ® Xy, =X ®A(x2,1,1)x2,1,2 ® Xy 5
=Xx; ® S(xz,l) ® X,

=x; ®1®x,,

using (2.2) twice. This proves the lemma. |

PropPosITION 2.2 (Composition lemma). If #, .4, and % are three
H-modules, then for every f € Hom(#, ) and for every g € Hom(.#Z,.#)
and x € H, we have

x-(feg) = L(x'-f)e(x"-g).

(x)

Proof. The relation can be written as

xlf(g(A(xz)m)) = xly1f(A(x1’2)x2v1g(A(x2Y2m))) (mes),

which follows from (2.4) in the above lemma after applying 1 ® 1 ® 4 to
both sides. |

The composition lemma seems to be just a consequence of the axiomatic
definition of the Hopf algebra, especially from the coassociativity. Let us
consider the composition map (f,g) = fog. It is a bilinear map and
therefore induces a linear map

Hom(, #) ® Hom(.#Z,.%) > Hom(.Z, ).

Using the action of H on the tensor product and on the Hom space, we
can restate the composition lemma as the following result

COROLLARY 2.3. The composition map is H-linear.

Remark 2.1. The linearity of the composition map is known and proved
in the literature only when .7 (or both .# and %) is finite-dimensional, in
which case Hom(.7,.#) is isomorphic to .#* ®.# (see [8]). Here we
established it for the general case, because all of the representations we
will be considering are infinite-dimensional.
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2.2. A Bracket and a Cochain Complex

Let H be a Hopf algebra over C with the associated maps as above. We
define a bilinear map (-,-) on H ® H by

(x,y) = Lx'yA(x") —e(x)y  (x,y €H).
(x)

(2.5)

This bracket satisfies the following relations:
ProposITION 2.4. Forall x, y, z in H, we have
D (w,z) =L{x, Ly, 2)) + e(x)y, z) + e(yXx, z).

2 e(x,y»=0.
() A*x, ) = (A%(x), A2(y)).

Proof. The first relation follows since A is an algebra homomorphism
and A is an algebra antihomomorphism. The second relation follows from
(1.3) and from & being an algebra homomorphism. We will prove the third
relation: we use the identity A(A(x)) = X, A(x") ® A(x"), the fact that
A is an antihomomorphism, and that £(A(x)) = &(x). We have

A(A*(x)) = LA (x)" ® A%(x)"
= LA(A(x)") ® A(A(x)")
=(A®A4)(LA(x)" ®A(x)')
= (A2 ®A2)(Zx’ ®x”)
= Y A%(x') ® A(x").

Therefore,
(A% (x), A*(y)) = LA (x") A% (y) A(A*(x")) — e(A*(x))A%(y)
= A?(Lx'yA(x")) = &(x) A*(y)

= A*({x, 7).

Note that {1, x) = {x,1) = 0 for every x € H. And if H is commuta-
tive, then (x, y) = 0 for every x, y € H, whereas if H is cocommutative,

then
(x, A(y)) = A<x, y).
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Let .# be a left H-module. Following [11], we call m €.# an H-
invariant if xm = e(x)m for every x € H. If .+ is another H-module, we
set

(x,¢)=x-¢p—e(x)¢ x€H, ¢<Hom(40). (2.6)

Notice the analogy with the definition of {x, y). We say that ¢ is an
invariant if {x, ) = 0 for every x € H.

PROPOSITION 2.5. For all x, y in H and for all ¢,  in Hom(.#.) we
have

(,d) =x-{y, ) + e(y){x, d). (2.7)

(x ) = 2 Ax", )x" ) + {x, Iy + ¢{x, ). (2.8)
(x)

Proof. The first relation is the same as the relation (1) in the above
proposition when we substitute ¢ for z. The second relation is a conse-
quence of the composition lemma and the fact that e(x) =
Ly (xDe(x"), which follows from (2.2). 1

Remark 2.2. The importance of the bracket ¢ -, - ) will appear through-
out this work. For Lie algebras, the expression [x, ¢] defined by [x, ¢1(m)
= x¢p(m) — ¢(xm), where ¢ is a homomorphism between two modules,
defines a left action of the Lie algebra on the Hom-space. This action is
enough to define homological sequences, e.g., Koszul complexes. For our
case, we are dealing with associative algebras that need two actions (left
and right) to define homological sequences, e.g., Hochshild complexes (see
below). This explains for the moment the choice of the bracket {x, ¢),
which we define as the difference of two actions of x on ¢. In the case of
the universal enveloping algebra, this bracket coincides with the Lie
bracket, and for the quantized versions of these algebras, the appearance
of the trivial action will emphasize the role of the group-like elements, as
will be seen in the next sections.

Let .# be a H-module, and let us consider the following sequence:

C*=C(H®* #):0 > #/ > Hom(H, #) — -
- Hom(H®", .#) — -,

and the linear map

d:Hom(H®" ', #) - Hom(H®", .#),
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defined as follows: If ¢ € Hom(H®" !, .#) and x, ®x, ® - ®x, €
H*®", then

dd(xy,xy,...,x,) =% d(x,,...,%,)
n—1 )
+ 2 (1) P(xy e X XX Xy X,)
i=1
(=) P (x1, %5, X, ) 8(X,).

One can look at this sequence as a Hochshild complex of the associative
algebra H with a left and a right action that commute on the space .7Z.
The right action is given by the trivial action, i.e., by & [1]. It follows that
(C*, d) is a cochain complex, i.e., d*> = 0.

One can choose the coefficients of the cochains in Hom(.#Z,.#), where
A and . are two H-modules. Thus we obtain a complex,

C*(H, #,n) =Hom(H®*,Hom(.Z,1)).

If ¢ € Hom(.Z,.#), then d¢(x) = {x, ¢). Hence, d¢ = 0 implies that
{(x,¢) =0 for all x € H. It follows that the Oth cohomology space is the
space of H-invariants. We will see that in the case of quantum groups, the
space of invariants coincides with the space of intertwiners. More gener-
ally, the cohomology spaces are the Ext-spaces Ext}, (.Z,.7).

3. THE ALGEBRA 7, (5(,), INTERTWINERS,
AND COCYCLES

3.1. The Main Constructions

Let g be a nonzero complex parameter that is not a root of unity. The
quantum group %, = %(élz) is the associative algebra generated by four
variables E, F, K*! and the relations

KK'=K'K=1, (3.1)
KE = q%EK, (3.2)
KF = q 2FK, (3.3)

K-K!
[E,F]= —t. (3.4)
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The associative algebra %, has the structure of a Hopf algebra. Comulti-
plication, counit, and antipode are given by

A(E)=1®E+E®K,

A(F)=K'®F+F®1,

A(Kil) = K+ ®Ki1,

e(E)=¢(F)=0 and &(K*') =1
and
A(E) = —EK™', A(F) = —KF, A(K*)=K%!

If A is a nonzero complex number, .#Z(A) will denote the Verma module
over %, with highest weight A. This module is generated by a nonzero
vector v, satisfying

Ev, =0, Ku, =q’y,.

The action of the generators of %, on the Verma module H(N) is
summarized in the following proposition, which one can easily prove by
induction.

ProrosITION 3.1.  Let v, be the highest weight vector of .#()). Then
K"Fip, = ¢"A"20F%y  (a€N,n € Z),

n—1

E"F'v,= [][a—-k][A—a+k+1]F* ", (a eN,n eN),
k=0
where
al — a1
[a]= 1
q—4q

With the convention that Fv, = 0 ifa < 0.
Let A and X' € C, and let us examine the C-linear map
V:s#(N —=1) »#(1—1) (neN),
given by
V. (F'vy_,) =F*""v,_, (aeN,neN).
By direct computation, we obtain
PROPOSITION 3.2. The pairing of V,, with the generators of %, is given by

0 (E V) Fv,_)=q " %" Y(a+nlA —a—n]—
[allA' —aDF** " o, 4,
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(“) <F’I/n>(FaU)‘,_l):(l_q)\'—)‘+2n)Fa+n+1U)‘_ll
(|||) <Km’1/n>(FaU)\’71) — (_1 + qm()\f)\’72n))Fa+nUA71,
for every n,a € N and m € 7.

If « € C, we define a twisted differential d: C[[z]] = Cl[z]ldz/z lin-
early by

dz
d,(z")=[n+ a]z”?,

where z is a formal variable. Let .Z(A — D[[z7*]] be the module of
Laurent series in z~! with coefficients in .#(A — 1) and consider the
operator

dz
V(z) = Y V,z " Ydz: (N — 1) (A= D[[z71]] —.
n>0 z

We would like to find a number « € C and an operator

V(E,z) = L V(E)z" (N = 1) »a(A = 1)[[271]]

n>0
such that
(E,V(z)) =d,V(E, z). (3.5)
This equation is equivalent to
(EV,y=[-n+alV(E) (neN).
Applying this to F“v,,_, for a nonnegative integer a, we obtain
[—n + alV,(Fiv,_y)
=g M2 Y [a+n][A—a—n] - [a][N —a])F*"" 1o, _,.
We look for a number a’ depending on a such that, for every n, we have
[a+n][A—a—n]—[a][N —a]l=[-n+a][n+a'].
After multiplication by (g — g~1)?, the right side gives
_q2n7a+a’ _ q72n+a7a' + qu+a’ + qfafa'l
and the left side gives

q2n+2a7)\ _ q72n72a+)\ + q2a7)\’ 4 q72a+)\' + q)\ + qf)\ _ q)\’ _ qf)\’.
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Identifying the powers containing 2n (g is not a root of unity), we obtain
—a+a =2a— A hence a' = 2a + o — A. Now identifying the powers
containing 2a, we get &« + a’ = 2a — A'. This gives 2a = A — A’. We must
also have g* + ¢~* = ¢* + ¢~ "', which gives g* = g* " If g* = q", then
we are dealing with the same Verma module, since it is ¢* that is involved
in the highest weight condition. Therefore without loss of generality, we
can assume that A = + X',
From now on, we suppose A = —A’; hence a’ = 2a and a = A. Thus

(EV,) = [—n + AV, (E),
where
VAE)(F'v_, 1) =" [n+2a]F**" 2o, .. (36)

By doing the same for the other generators F, K, K !, and using
Proposition 3.2, we have

ProPosITION 3.3. For X=E, F, K*! and for every n € N, one can
define operators

V(X): #(—A—1) »#(A—1)
given by
V.(E)(Fv_, ) = q"*%* [n + 2a]F**"~ 1y,
VAE)(Fv_y 1) =q" Ma—q )F"" oy,
VA(KEY(FUo_,_y) = —q*C"™ (g — g ) F* o, _y,
and which satisfy
(X, V) =[-n+AV,(X).

Remark 3.1. If we omit the term with &(x) in the definition of the
pairing { -, - ), V,(K *1) cannot be defined; at the same time, K ** are the
only generators for which & is not zero.

Next, we need to define the operator V,(x) for every x € 7,.

PRoPOSITION 3.4.  Let | be the free associative algebra generated by E, F,
and K*'. Then for every x €f and n € N, there exists an operator
V(x): #(—1 — 1) >#(A — 1), which satisfies

(x, V) =[—n+ AlV,(x). (3.7)

Proof. Assume that for x and y in f, and for every n € N, one can
define V,(x) and V,(y) satisfying (3.7). Then for every n € N one has

(o, V) =x-y, V) + e(y){x,Vn) using (2.7)
=[-n+2Al(x-V,(y) + e(»)V(%)).
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We set V,(xp) =x-V,(y) + e(y)V (x). Then we have {xy,V,> =[—n +
AV, (xy). Since, for x, a generator of f, V,(x) exists and satisfies (3.7), the
proposition follows. [

Now we extend the definition of 1/,(x) to %,.

PROPOSITION 3.5.  For every x in %, and for every n € N, there exists an
operator V,(x): #(—A — 1) ».#(\ — 1) satisfying the relation (3.7).

Proof. Recall that on {f we have

Vi(w) =x-V(y) + e(y)Vi(x). (3.8)

In view of the above proposition, we need to prove that this relation is
compatible with the defining relations of the algebra #,. For the relation
(3.1), we have

VA(KK™) =K-V,(K™') + e(K )V, (K)
— KV,(KH)K ! + V,(K).
Hence

V(KK ) (Fv_,_y)
=KV;1(K71)(q2a+)\+1FaU,A,l) +q7n+)\(q _qfl)FaJrnUAil
— (_q2a+)\+lqn—/\(q _ q_l)K+ q—n+A(q _ q_l))F!H—nU)\_l
= 0.

On the other hand, it is clear that V,(1) = 0. Similar calculations hold for
K 'K =1
For the relation (3.2), we have
VAKE)(F'v_y_1) = K-V(E)(F'v_,_1) + e(E)W,(K)(F'v_,_1)
=KV, (E)K Y(Fv_,_;) +0
— q2a+3)\—2n+3[n + 2a]F“+”_1UA_1
and
V.(EK)(F'v_,_,)
(E-V(K) + V,(E))(F'v_,_1)
—V,(K)EK™*Fv_,_y + V,(K)K*F'v_,_, + V,(E)F*v_,_;.
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The coefficient of F**"~tv_, | is
q2a+A+1((q _ q—l)q—nw\[a][)\ 4 a]
+(g—-q")g " Ma+n][A—a—n]+[n+2a])

1
2a+2A+1 —n+2A+2a —3n+2A—2a

=q — 14 - q
qg-q l( )

- q2a+3)‘72n+1[n + 2(1]
Therefore
V.(a*EK)(Fv_,_,)
_ q2a+3/\72n+3[n + 261]Fa+n711))\,1 — I/n(KE)(FaU—)\fl)'

The compatibility with (3.3) is checked in the same way. Finally,

K—-—K1
Vil —/— =

q—4

1 —n+A -1 n—A -1 at+n
m(q (=g ) +q" Mg—q )F "0,
(qn—/\ +q—n+/\)Fa+nU)\_ll

(F'v_x-1)

On the other hand:
V[E, F]) = =V,(FYEK™* + EV,(F)K™* + K", (E)KF = FV,(E).

Applying this to (¢ — ¢ *)F“v_,_,, we obtain successively the following
factors as coefficients of F**"v, _:

(q30+n+l _ qa+n+1)(q/\+a _ qf)\faz)l

(q3a+2n+2 _ qa)(q)\f(a+n+l) _ qu\+(a+n+1))

qf)\+2a+2n+1(qn+2a+2 _ q—n—Za—Z), and q)\+2a+l(qn+2a _ q7n72a).

Summing these expressions, we get
(9= q " WlEF]Fv_,
= (qﬂwn(q _ qfl) + q,\—n(q _ qfl))Fa+nUA71,

which gives the same expression as V,(K — K™1). 1
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Recall that we have set

dz
V(z) = ZOV,,Z*’“ldz: M(—A—=1) > (A — l)[[zfl]]?,
V(x,z) = ZOVn(x)z’”: M(—A=1) »(A-D)[[z7*]]  (x€%,).

Using the definition of the twisted differential d, and the previous propo-
sitions, we have

THEOREM 3.6.  For every x € %, there exists an operator

V(x,z) = Y Vy(x)z7" #(—r—1) >(x—1)[[z71]]

n=0
linearly dependent on x such that
(x,V(z)) =dV(x,2). (3.9)
Moreover, forx, y in %,, we have

V(xy,z) =x-V(y,z) + e(y)V(x,z). (3.10)

3.2. Intertwiners and Cocycles
We consider the complex of length one:
Q°:0-Q° 2 Q' -0,
where
dz
-

Q°=c[[z71]], a'=c[[z]]
Recall that d, is defined linearly by
dz
d(z™")=[A—n]z7" -

The length one is due to the fact that $[, has one simple root. From
this complex and the cochain complex C* introduced in the first section,
we construct the following bigraded space:

CY=C U, #(—\— 1), #(\—1))
= Hom(#,>',Hom(.#(—A — 1),.#(\ — 1) ® Q)

for i,j > 0, where Q/ =0 for j > 2.
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Note that C is isomorphic to Hom(%,>' ®.#(—A — 1), #(A — 1) ®
Q7). The bigraded space C* has a natural structure of a bicomplex. The
first differential d’: C/ — C'*/ is induced by the differential d intro-
duced in the first section. The second differential d”: C/ — C"/*1 is
induced by the differential d, of Q°.

The operator V(z) is an element of C%, and we denote it by 1 %(z2).
The operator V(x, z)(x € %,) defines an element 1/'°(z) of the space C*°
given by

VRO(z)(x) =V(x,z).
PROPOSITION 3.7.  The elements V" (z) and V*°(z) satisfy
dVO(z) = d"V(2), (3.11)
d'VO(z) = 0. (3.12)
Proof. For x € 7, one has, by the definition of d’,
(VO (2))(x) =x-VO(z) - e(x)V(2)
= (x,V%(z)),

and d"V¥*(z)x) = d,V(x, z). Thus, the first relation is simply a conse-
guence of the relation (3.9) of Theorem 3.6. And for x,y € %,, one has

d'(VP(2))(x®y) =x-V¥(2)(y) = V*(2)(w) + e(»)V(2)(x)
=x-V(y,z) =V(w, z) + e(y)V(x, 2)
=0,
using the relation (3.10) of Theorem 3.6. |

Let @* =&*(%,, #(—X — 1), .#(\ — 1)) denote the simple complex
associated with the double complex C*°, that is,

"= @ C* (nez).

at+b=n
Its differential d is defined by [1]:
Dlew=d + (-1)'d".

THEOREM 3.8. The element (V°(2),V*(2)) is a 1-cocycle of the com-
plex #°.

Proof. The element (V*(2),V*(2)) is in %%, Hom(.Z(—\ — 1),
A (X — 1))). Applying b, we get

DV (z) + V¥(2)) =d' V" (z) +d"V*"(z) +d'V¥(z) —d"VP(z).
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And we have d"V%(z) =0, since Q° is of length one. Using Proposi-
tion 3.7, we have d'V*(z) = 0 and d'V%(z) = d"V*(z). Hence

D(V™(z) + V¥(z)) = 0.

Let us consider again the complex (1°, a monomial z™" € Ker d, if and
only if [-n + A] = 0. Since ¢ is not a root of unity, this is equivalent to
A = n. Thus the complex Q° is acyclic if A is not an integer. We assume
that A is a nonnegative integer for the rest of this section. Thus the space
2°(Q°) is a one-dimensional space generated by the function z~*. The
space #(Q)*) is generated by the class of the form z *dz/z.

If we consider the homology spaces % =.#'*, then /%7, is a one-dimen-
sional space generated by the linear form

Q- C

w — Res,_y(wz").
The space .#° is generated by the linear form
Q- C

f2) = Res._of 1212 C |

PrROPOSITION 3.9.  The operator Res,_ (V" (z*)) in Hom(.#Z(— A — 1),
M#(X — 1)) is an intertwiner.

Proof. From the first section, we know that C° is a space of -
invariants. We need to show that in fact it coincides with the space of
intertwiners in our case. Let ¢ € C°, i.e., d¢ = 0. We need to show that ¢
intertwines with the generators E, F, and K*!. Let m €.#(—A — 1);
since {E, ¢ )(m) = 0, we have —p(EK *m) + E¢(K *m) = 0. Therefore
d(EK *m) = E¢(K 'm). This shows that E intertwines with ¢ (note that
K1 isinvertible). Now, if (K™, ¢ )(m) = 0, then K~ ‘¢p(Km) — ¢(m) = 0,
which shows that K intertwines with ¢. The intertwining property for K*
follows from the invariance of ¢ with K. Finally, if {F, ¢)(m) = 0, then
— K '¢(KFm) + F¢(m) = 0; since K intertwines with ¢, we see that F
does too. |

Remark 3.2. The operator Res,_,(V(z"): #(—X — 1) »#(A — 1)
is the unique %, -homomorphism sending v_,_, to F*u,_ ;. Hence it is
nontrivial (notice that F*v_, _, is also a singular vector).
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From the discussion preceding the proposition, we have the following:

CoRoLLARY 3.10. We have
H#(Q°) =2°(%, Hom(.2( =\ — 1), #(A))).

PROPOSITION 3.11. The operator Res,_,(V**(z)dz/z) is a nontrivial
element of the space Ext;q(%(—/\ —D,.#(A — 1))

Proof. The operator Res,_,(V%z%z/z) is in the space Hom(%,,
Hom(.#(—A — 1), .#(A))). By Theorem 3.8 it is a 1-cocycle of the algebra
%, with coefficients in the #,-module Homg(.Z(—A — 1), #(X — 1)),
hence it defines an element of Ext}, (A (=X =D, #(A - 1). It is a
nontrivial element; indeed,

dz
Vi(z)z* —(E) = Y qg" Y n]z"r— F o,y
z

n>0

(Recall that V(EXv_,_,) = ¢**[n]F"*v,_v,_,). Therefore

dz
Res._o[1V2(5)2 S (B)(0 4 ) = ¢ AP

The right side is not zero since A is a nonzero integer and ¢ is not a root
of unity. |

Remark 3.3. The case when g is a root of unity does not present a
significant difference with the generic case, except for the fact that the
homology spaces are not one-dimensional, and all of the above construc-
tions can be carried out, obtaining an infinite family of linearly indepen-
dent cocycles [12].

4. GENERALIZATION TO THE DEFORMATION OF A
SEMISIMPLE LIE ALGEBRA

4.1. The Quantum Group %,(q)

Root Systems

Let (a;);.;;.y be an n X n indecomposable matrix with integer
entries such that a;, = 2 and a;; < 0 for i #j, and let (d,,...,dy) be a
vector with relatively prime entries such that the matrix (d;a ”) is symmet-
ric and positive definite. Notice that (aij) is a Cartan matrix of a simple

finite-dimensional Lie algebra g. Let f) be a Cartan subalgebra, TT = {«;,
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1 <i < N} the corresponding root system, and TI1V={q,",1 <i < N}
the corresponding coroot system. (5, II,I1") is called a realization of g
[7]. There exists a nondegenerate symmetric bilinear C-valued form (.,.)
on [ satisfying

(Y h) =(h,apd;* forhel, i=1,...,N.
Here {.,.) is the natural pairing between §* and . Since (.,.) is nondegen-
erate, there is an isomorphism u: § — §* defined by

Chyu(h)) = (hyh) (hyh € ).

This isomorphism induces a symmetric (nondegenerate) bilinear form (,,.)
on H*. Thus we have

and
(e, aj) = diaij = djaji'
Let p be the element of fH* defined by
<aiv’p>=ll l:]-lyN

Then p satisfies ( p, ;) = d;. We define also the fundamental reflexions
r, 1 <i<mn,of h* by

r(A) =A—<{a”, Ay (A€ b*).

In particular, r(e)) = a; — a;;a;.

Gaussian Binomial Coefficients

Let g be an indeterminate. For n € Z, d € N, we define the g-integer
[n], by

dn —dn

q9 " —4q

[n)le=—F—=
d qd_q d

If d =1, we denote it simply by [n], and we have [n], = [nd]/[d]. We
also set

[n],= n[]

And we define the g-binomial coefficients

- e

forjez, j<n,
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and
m =0 ifj>n.
J d
We have
[-n+j-1
[n} —( 1),[ ntj }
] d ] d
and

n—1 n
l_l (1 + qZJdZ) — Z qdj(n_l)[?] zj (l’l > O)y (41)
s=0 j=0 d

where z is another indeterminate. It follows that [*], € Z[q,q7 ']
If mand n arein Z and j € N, then

— d(ml—nk) m} [ﬂ} .
z 4 [k a1

d k+i=j

m-+n
J

By putting z = —1in (4.1) and using [n], = [n]_, for integer n, we obtain

quf“")[”.} - 0. (4.2)
j=0 Tl

The Drinfeld—Jimbo Algebra %, [2], [6]

We assume that g is a generic complex number, and we set g, = g%. We
consider the algebra #, defined by the generators E;, F,, K** (1 <i <n)
and the relations

KK, =KK, KK*'=K"'K =1, (4.3)
K.E, = q{"EK;, KF, =gq;“"FK, (4.4)
[E.F] =5 K=K (4.5)
v Vg gt '
1-ay 1
K — a;; —a..—s s g . .
Y (-1 [ S ILE} " EE} =0 ifi #j, (4.6)
s=0 i
l—a[j 1
s —a;; l1-a;;—s s _ 3 -
EO (-1) [ S jL.Fi IFF =0 ifi#]. (4.7)
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The last two relations are referred to as the Serre relations. There is a
unique algebra involution w: %, — %, such that w(E,) = F,, o(F) = E,
o(K;) = K;*.

The associative algebra %, has a Hopf algebra structure given by [9]:
A(E))=E,®1+K,;,®E,
A(F)=F,®K*+18F,

A(K) =K;®K;, A(Ki')=K'®K*,
e(E) =¢e(F) =0, &(K)=e(K')=1

L

A(El) = _KflEiv A(Ft) = _EKH A(Kiil) = K'il'
Fori=1...N.
4.2. Differentials and Operators

The Maps 9, and ;9

Following [9], we let {’ be the free algebra with 1 generated by the F;'s.
Let Z[II] be the root lattice and N[IT] be the submonoid of Z[II] of all
linear combinations of elements of II with coefficients in N. For any
a = Ya;a; in N[II], we denote by f/, the subalgebra of {’ spanned by
monomials F; F; --- F; such that for any 7, the number of occurrences of i
in the sequence i,,i,,...,i, is equal to a,. Each {/, is a finite-dimensional
vector space, and we have a direct sum decomposition {' = @ _f/,, where
a runs over N[IT]. We also have f.,{, cf .., 1€ f, and F, € { . An
element x € f’ is said to be homogeneous if it belongs to {/, for some a;
we then set |x| = a.

We denote by ;d the linear map ;d: f' — §’ such that

(1) =0, 9(F)=4¢,; forallj
and
() =;9(x)y + q(‘x"a")xia()’)

for all homogeneous x, y. Similarly, we denote by g, the linear map
d;: f' — §' such that

3,(1) =0, o(F)=2¢,, forall;j

J L]

and

9 (xy) =g *9,(x)y +xd,(y)
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for all homogeneous x, y. These maps are examples of the so-called
Kashiwara operators [9]. If x € f,,, then ;d(x) and J,(x) are in f,_, if
a; >1and;d(x) = d(x) =0if a, = 0.

In [9] it is shown that the maps ;9 and 4, stabilize the radical .# of a
certain bilinear inner product on {’; this radical turns out to contain (even
to be generated by) the Serre relations. Therefore they are also defined on
the quotient ' /7. Here we will check directly that ;0 and ¢, conserve the
Serre relations, because the inner product will not be of any use in this
section.

ProposITION 4.1. Fork, i, andjin{1,..., N}, i # j, we have

=0, (4.8)

lfa,-j
s|1—ay; —a;;—s s
ka( L (-v|* | men
s=0 a;

= 0. (4.9)

1-a;
69k( Z (_l)s[l aij] Fil—aii—sF}Fis
s=0 s d;

i

Proof. A simple induction shows that
(I(E) = 0(F) = yqp *[n),EP (n e N,
It follows that for k # i and k # j, the proposition is clear. If £ = i:

i&(El—alf—sF}F'l_s)
— q(‘Fﬂ'ai)i&(F}l_aij_S)F}S + Fil—ail—stia(Ex)
— q(\F[‘"\,a[)+(|F/-\,a,-)k&(El—a[,—s)F}ES + qis—l[s]ii;}l—a,j—sF}Es—ll

Since || = sq;, (o, @) = 2d,, |IF}| = a;, and (;, ;) = d;a;;, we have

ia(Fl_l—ai/—stFi.r)

=q;[1 —a;; = s|,F 0 FF + ¢ [sLES 9 TEF
At this point we set ¢ = 1 — a,;, and we have to show that

ij

a
L ('[§], (aila —shbr " RE + g [sLERET) = 0

a
N

d;
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The left-hand side is equal to

a
N

[a —sligiF*°'EF?

i

d

Y (-1
s=0

a
_1N\%la s—1lpa-s s—1
+ X (0|4 laE R

a—1
- X (-0'[4] la=slare R
s=0 §la;
a-1 a
— — $ gSFa—s—lp s
PE Sl I N P

which is equal to 0 because [¢],[a — s], = [, ¢,],[s + 1],.
If £k =

l—a;—s s\ — F{|, a; l—a;—s s
J9(EE4 ) = g0 (R )
— qjm,-jFilfa,-j.
It follows that

s| 1 — a;; —a..—
j&( 1- aij(—l) [ S JJ Flai SFJ.FL.S)
s=0 d;

i

Elfaij’

l1-a;;
Y s|1—a;; $as:
=( Z(—1)|: ’J} q’ti
S d;

which is equal to 0 by (4.2). This proves (4.8). The relation (4.9) is obtained
in the same way. [

COROLLARY 4.2. The maps d; and ;0 extend to well-defined linear maps
on the algebra T generated by F, (1 < i < N) satisfying the Serre relations.

The following proposition will be useful in all that follows.

PropPosITION 4.3.  For x € f homogeneous and 1 < i < N, we have

K;x = q~ (" «)xK, (4.10)
K;a(x) — a;(x) K+
+

E.x = xE. —
q; — 4;

1 12

(4.11)
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Proof. The relation (4. 10) is clear for x = 1, and for x = F; it follows
from (4.4), since (x|, ;) = d;a;; and g1*'*? = g/, Assume that (4.10) is
true for homogeneous x’ and x” in f; then

Ki(xr n) =q —(|x'], a)x/Kx
— g WIF ey g
=q (¥l edy x" K, since |x'x"| = |x'| + |x"].
Therefore (4.10) is true for any homogeneous x € f. The relation (4.11) is
a version of Proposition 3.1.6 in [9]. We will prove it using (4.10). For x = 1

it is clear, and for x = F; it follows from (4.5), since d,(x) =;d(x) = §;
and

K o1
—(K;;d(x) — d;(x K;l = 3,%
qi_qil( () () ) jqz'_%'l

Assume that (4.11) is true for homogeneous x’' and x” in f; then
Ex'x" —x'x"E,

1
=x’El.x” + ﬁ(Kii&(x’) - ai(x’)Ki_l)x” —x'x"E,

i i

1
= mx'(&iﬂ(f') - 9(x")K;t)

1
+——(K,;d(x") — d,(x)K;H)x"
g qr T K (¥ = 4K

1 ,
— (4K (x) — XK
q; — 94,
+Ki,~o"(x’)x” _ q(|x”|,a,)0r)i(xr)xrrK;1)
(9(xr //) _ ﬁi(xl II)K 1

q; — ‘L’fl

Therefore (4.11) is true for x'x”. This completes the proof. |

Remark 4.1. Since 4, and ;J are linear, the relation (4.11) is in fact
valid for every x € f.
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The Operators V(z) and V(x, z)

The notations used here are those of the previous subsection. Fix
A € h* and let .Z(A) denote the Verma module over %, of highest weight
A — p and highest weight vector v, satisfying, for i = 1,..., N,

Euv, =0,
K, = q*=P ey, = qi<)‘_Plaiv>U)‘.

The fundamental reflexions r, of H* were defined by ;A = A — (A, o, ) «;.
We fix an index i € {1,..., N} for the remainder of this section, and we
consider A" = r;A. For j =1,..., N, we introduce the following g-numbers
associated with an integer n:

qii a;i (A i y—nm) _ 1

ui(n) = [’y =] if n# (A, ),
+ —1 qiiaii -1 . v
pi(n) = (6 —a')——— ifn=C "),
and
_ \2
() = [( [ n+ A q >)6]lji]jq;_<)ha/_v>+</\'a!v>aﬁ
Ly _n+<A1aiv>i J .
We have
+ _
_ v vy, Mij T Mg
1’[4(;1) =q1 (A" )+ (A @ )aﬂ—_
J J a4 —q; 1
and
o un
lim n,(n) = lim 220 _
g—1 qg—1 qj _qj

We treat these expressions as deformations of the entries of the matrix
(a;;); ;- For each n > 0, we define an operator V; ,: .#(X') —>.#(A) by

Via(xvy) =xE'vy  (x €7).
And for each x, a generator of %, we define the operator

Via(x): #(N) >#(N),



g-DE RHAM COCYCLES 653

given by
Vi J(Ej)(xvy) = m(n) 6;(x) F'oy, + x;0(F") vy,
= nij(n)aj(x)FinUA + 51‘]‘[”]ij”71”,\’
I/i,n(Kji)(xUA') = i (n)xF"v,,
ViulF) =0,
forl<j<N.
ProposITION 44, Forx = E,, F,, K;* (1 <i < N), one has
Vi =[=n+ 0 @] Vil (x). (4.12)
Proof. If x is homogeneous in f, one has
CE, V. )(xv,) = EV, (x,) =KV, (K 'Ejxv,)  (4.13)
and
1
EV; ,(xvy) = E;xF/'v, = W(ij‘?(xﬁn) - ﬁj(XFin)Kj_l)U)u
using (4.11).
By definition of 4, and ;4, this is equal to
ﬁ(ijé'(x)Fi” + q(‘xl’a’)Kjxja(ITin)
95— 4q;
—q " (x) 'K = xa(F) K)o,
The second and the fourth terms give

1 Y B B
ﬁ(sﬁ[”]jq}klﬂ{j}'ﬂinilv}\ —q e [ n]q) " xE lUA)
q; — 4;

— 1 ( —2(n—1)+<A—p,aiv>8 [n] n—len—1U

— —1\4 il 1id; i A
q; — 4;

—g; 03, g )
- —6’7 [n].(q_—(n—lwu—p,a,»w _ qa—l—u—p,am)xp_n—lv
_ -1 J\1j J i A
q; — 4;
= [—n+ A, o], 8;[n]xF o,
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Using (4.10), the second term in (4.13) gives

KV,

jrin

(K;'E;)xv,

1
———— KV, ,(;0(x) — K;'9,(x)K; o,
q; — 4;

1 o a
— (ija(x)EnUA — gl =2V =p.ey >KjI/i,n&j(x)U)\’)
J J

-2 "—p, v -p, Vv
_ f_l(Kl'ja(x)FinU/\_qj Wopardze e
q4; — 4;

q 5, (x) Fl,)

1 v v
W(K,,-&(x)F,—"vA — g} E GG () B, ),
J ij

where we have used the fact that if x is homogeneous, then j&(x) and
d,(x) are also homogeneous; the fact that (|F"|, o)) = n(«;, a;) = nd;a;; =

nd;a;; and that

N aYy = e’y = e ap @) = h ) — a4, @),
Summing both terms of (4.13), we get
<Ej'I/i,n>(xU/\’) = [—n + A e >],’(8ij[n]jXFin_l + nij(n)aj(x)Fin)U/\'

This proves the proposition for x = E;. For x = F;, the proposition is clear,
since <F;,V; ,» = 0. And for x = K, we have

<Kiji,n>(xUA’) = KjVi,anlva' - S(Kj)Vi,n(xv)v)
= g g N e K xF v, — xF'u,
= (geuxatymm — 1) xpr,

l

= [=n+ X )|V (KF)(x0y).

The case x = K;* is similar. I
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A Cocycle Condition

Having defined the operators V; ,(-) for the generators E;, F,, K;*, we
can also define them for any element of the free associative algebra
generated by E;, F;, and K].i (1 <i < N). Indeed, assume this is done for
two elements x and y; then using (2.7), we have

o, Vi) =x-p V0 + e(0)<x V0 (4.14)
therefore, if we set
Via(w) =x-V,,(y) + eV, (%),
then
o Vi) = [=n+ L a)] V().

It remains to extend this construction to the algebra 7, .

PROPOSITION 4.5. For any x in %, there is an operator V; (x) from
H(N') to #(N) for any nonnegative integer n satisfying

(x, Vi 0= [—n + (A, aiv>]iVi'n(x).
Moreover, fory in %,, we have
Vi) =x-V, ,(y) + e(y)V, .(x).
Proof. As in the previous section, we need to show that the cocycle
condition (4.14) leaves the defining relations of %, invariant.
We have
Vi (K K)) = KV (K Kt

Hence

Vi a( K Kp) (x0,)

(1 (m)gi 4o b g i () xFr
qi(—n+<)\,06,v YNaj+a) _ 1
[—n + (A, a,—v>]

n
xF'v,,

i

which is symmetric in k and /. Therefore, V; (K, K) =V, (K,K,). For
the relation K,K;* = K;'K,, it is straightforward (see Section 2). This
shows the compatibility with (4.3). For the relation (4.6) we have

Vi l(KiFy) = KoV, L (F) + e(F)V, ,(Ky) =0,
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and for x homogeneous,
Viu(FiK) (xvy) = (F- Vi (Ky) ) ()
= (FV, (K ) Ky =V, (K FiK ) (o)
= g O N D ik () FxFlo, — pi(n) FycF o)
= 0.
Also for x homogeneous we have
Vin(E F, = FiE) (xvy)
= —(F;-V;, .(Ep))(xvy)
= —(FV: (E)K, =V, ,(E)F,K,)xv;
= —q e (FY (B xoy = Vi (E) Fawy).
The expression between parentheses is equal to
M () Fy i (x) vy + 8y [n] FixF~ o,
= (1) 0, (Fix) F'vy — 8y [n]eFixF)~ oy
Since d,(F,x) = ¢! *9§,,x + F,9,(x), we obtain
Vi E F, = FF) (xvy) = 8,77 Oy () xFl',.
On the other hand,

K, Pl Oy -1
m (XU)\r) = —,1(Vi,n(Kk)qu’ - Vi,n(Kk )XU/\V)
k

5klI/i,n
k 9r — 9k

Sk -
ﬁ(fﬁk(”) — pi(n))xF'v,
9x — 4k

= 8,9 " O (n) xF'v,,

which shows the compatibility with the relation (4.5). The verification for
the remaining relations is done using the same calculations. ||

For any #,-module .#, we define a shifted differential,
dz
N e T B
given linearly by
dz

dy(z7") = [=n+ <A, aiv>]iz*” —
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Let us consider the operators
- X Ve Hom(%(m),//fu))[[z*]@
and
i‘, J(x)z7meHom(2(rA), 2(N)[[271]  (x€%,).

The results of this section can be reformulated in the following:

THEOREM 4.6.  Forany x, yin %, and i € {1,..., N}, we have
(x,Vi(2)) =d, Vi(x,2), (4.15)
Vi(w,2) =x-Vi(y,2) + e(0)Vi(x, 2). (4.16)

4.3. g-de Rham Cocycles

In this section we fix an element w of the Weyl group of the Lie algebra
g. We assume that w =r;, ---r, is a reduced decomposition of w into

fundamental reflexions. We also fix an element A € §h*, and we consider
the following elements of §*:

Let o = Cllz; %, ...,z ]] and let Q7,1 <p < a, be the free »-module
generated by {dz Lz A A dz; /z 1<j, < - <j, <a}. We consider
the sequence of ,sa/ modules

Q0-0°- Q> - - 0% >0,

and we define a linear map d”: Qf — Q**1 as follows.
If

— f(,-1 NN
n=f(z' ...z, 1) A A , (4.17)

s Zik
where f is a monomial in &/, and if n, is the exponent of z;l in f, then
a dz dz. dz.
= Z[—np+</\p, ] flzrt oz ) —EA—2 A AR

p=1 Zp Zj Zj
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Using the notations of the previous subsection, this can be expressed as
a dz, dz.
dmn= Y dy  flzt .z YA =LA AR
prp Z. Z;
p=1 J1 Jk
We extend d” by linearity to any n in Q.

PROPOSITION 4.7. We have d"? = 0, so (Q°, d) is a complex.

Proof. Let f(z) =f(z;% z,% ..., 2z, 1) be a monomial, and let n be a
form given by (4.17). Then

4 dz dz; z;
=% [=ny+ Ay aD], S PN AL A
p

p=1 1 ka
and
drrZ — Z [_np + <)\p’ ai;\)/>]i[,
p=1
dz, dz dz;
( Y [=n + @D f(2) = A=A A ]k)
s—1 g Zg Zp Zj,
=(Z X [=n, + A,
p=1 s=1
dz, dz, dz; dz;,
[=ny + <AL D] F(2) = A= A=A A
o Zs Zp Zj; Zj
=0
1

For each p = 1,..., a, we consider the operators defined previously:
V(2 #(Xyer) 2#(1,)2, [ 2,1]]
and
Vi(x.z,): #(Ay0) 22 (0[] (xe7,)
We recall from Section 1 that we have the following complex:

Hom(#%,°*, Hom(.#(wA), .#(1))),
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and the differential d' of this complex is defined on the cochains as
follows:

dd(x1ei ) =Xy b0 x,)
n—1
+ Z (_1)l¢’(x11---7xi—1’xixi+1!xi+2: c Xy,)
i=1

(=1 (1 x, 1) e(x,).

We consider the double complex
C** = Hom(#,°*, Hom(.#Z(wA), .#()) ® Q*))
= Hom(%>* ®.#(w\), #(A) ® Q*).

The first differential for this double complex is d’; the second differential
is the shifted de Rham differential d” defined above. In the following, we
will construct an a-cocycle in the simple complex associated with C*e.

For xi,x,,...,x, in %, and p,, p,,...,p, being an increasing se-
quence in {1,..., a}, we define (x,,...,x,,; p1,--.,p,) as equal to the
following expression:

(Z;Vl(zl) Vpl—l( Zplfl)l/pl(xél.' Zpl)x/]l.
X

(Vyii(Zpen) = Vs 2, )V (5. 2,)
(- Vo (X 2, )50 (Vi 212y 00) - Vil2) -+ ) )z,

Adz, A - Ndz, A Ndz,,

where ~ means omission, and the summation is over all of the terms

involved in the comultiplication of x,, ..., x,, in the Sweedler notation. In

each summand, we consider initially the composition V(z)V,(z,) -

V,(z,), and for each p, we substitute V,(z,) by V,(x},z,)x;- (...,

where x7, acts on all of the remaining factors to the right, if there are any.
For each m, 0 < m < a, we define the operators

pma-m o Hom(?/qébm, Hom(%(w)\),/(/\) ® Qﬂ—m)) (a)
as follows:
Vm'aim(xln---vxm)

_ (_1)m(m+l)/2

17 P .
Y () TS (ke X Prre )

1<py< - <py=<a
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To clarify these rather complicated expressions, we will give some
examples:

VOa =Vi(z)) - Vy(z,)dz, A\ - dz
Val(x,,...,x,)

= by Vi(x, z¢) X7
(Xl) ----- (xa—l)

.(Vz(x’z,zz)x’z’( (VX gz )X Vi(X,,2,)) ))

For a = 2:

a-

V02 =Vi(z,)V,y(z,)dz, A dz,
Vl’l(x) = Z(Vl(x”zl)x” “Vi(z,)dz, — Vl(Zl)VZ(x'ZZ)le)
(x)

Vz,o(xl, X,) = Z Vi(xy, 20) %] Vo(x,, 2,).
(Xl)

For a = 3:
VO3 =Vi(z2))V,o(2,)Vs(z3)dzy A dz, A dz,.

Vl'z(x) = (Z)Vl(x”zl)x” ~(V2(22)V3(23))dzz/\d23

- Z Vi(z))Vo(x', zp)x" - Vi(z3)dzy A dzg
(x)

+ Vi(2)Vo(2,)Vi( X, 25) dzy A dz,.

Vz'l(xl! X,) = E Vi(xy, z1) %] (Vz(x’zvzz)xZ : V3(zs))d23
(xp), (x5)

- Z Vi(xi, z1) X - (Vz(zz)Vs(Xsza))dzz
(Xl)

+ Z Vi(z1)Vo( X1, 22) X1 - Vo( x5, 23) dz;.
(xy)

V3'0(x1, Xy, X3) = Z Vi(xy, z0) %] (Vz(xlzvzz))x/zl “Vi(x3, 23).
(xl)v(-xz)
ProrPosITION 4.8. We have
Q) d"Vvee=q'v*° =0.
(2) d'Vkek=(=Drg"yktla-k-1 fork=0,...,a — 1.
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Proof. 'We will prove (1); (2) is proved in the same way after changing
the right side using the relation (4.15) of Theorem 4.6. The fact that
d"V%e =0 is clear, since Q° is of length a.

By definition of d' we have

d'V@O(xy, . Xy Xy 1)
=x1-V“’0(x2,...,xa+1) (a)
+ N (D) VOO (xy X X ) (b)
k=1
+(=D) " e(x, )V (2, x,). (c)

Using the composition lemma, we have

(a) = X X Vi(xp z)xt-(xg- [ ]),

where the terms in [ ---] are the same as in V*%(x,,..., x,.,), except for
the first factor. Hence

(@)= X (x- Vil 2)) () - [-]).
Using Theorem 4.6, the summand corresponding to k in (b), for k < a, is
equal to
(—) Vi, 21)
(Vo zp) x5 o x4
(% V(X 10 20) + (X )Vi( X0, 2)) X0 Xy 00 ))
Using the counit axiom, this is equal to
(—1)"Vi(xy, 21) 4]
(Vo xy zp)xy oo xf g (% V(X1 2) (X3 X5 40) - (7))
+(—1) W (x4, z2) X (e Xy (VX 2) (XX 1) ).

Using the composition lemma one more time in the second term, we
obtain

k !/ "
(—1) V() z1)x]
. (VZ(xrz,Zz)x’z’ Ceen x’]i_l . (x;c . Vk(x;c+1, Zk)(x’]éx;é+l) . ( )))
k ! "
+(—1) V(X1 z,) x]

(b (20 (K ()3 0) ).
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The term corresponding to k = a in (b) is
(=) VO (xpsee e XX,
which is equal to

(_1)021/1(3‘/1: z) X7 (o (xo1xy) Var (X1, 2,) o )

a
+(=1) ()Y 021,00 1),
It follows that all the terms in (b) cancel, except the first and the last, and
it is clear that the first term cancels with (a) and the last one cancels with

. 1
As a consequence of the preceding results, we have the following:

THEOREM 4.9. The element 7= (V°1,...,V*%) is an a-cocycle in the
simple complex associated with the double complex C*(%,, Hom(.Z(w)),
AN N Q).

And we have

THEOREM 4.10. The cocycle 7” induces linear maps,
fnt 27 (Q0)* = Exty " (A (wA), #( X)) 0<m<a.

Proof. Let ¢,,: Z"(Q*) - C be a linear form. We extend ¢ to the
space Z™(Q°) of cocycles up to homotopy. We obtain a linear form
¢b,,. Z™(Q*) - C. Then we extend ¢,, to ) by taking it to be zero on a
complement of 2™ in Q™. Let xy,...,x,_, be elements of %, and set

O, =VTmM(x, ® - ®x,_,,) € Hom(.Z(wA), #(A) ® Q™).
We consider the composition

D,
HAwr) = 2N ® Q"
l]d@ Dm

H#(N) ® C =2()).

The map obtained is then an element of Hom(%‘™ ™,
Hom(.#Z(w)), .#()))). Since V is an a-cocycle by the preceding theorem,
we have d'Vemm = (=10 mg"ye-mrlm-1. therefore d'((Id ®
) ®,) = 0. Meanwhile, ¢, was chosen up to homotopy, satisfying
d"e ¢, = 0; it follows that the resulting map is a cochain in the com-
plex C*(#,, Hom(.Z(wA), .#(A)). And since d"Ve ™" =
(= m-tq'ye-m-Lm+l (by Proposition 4.8), the class of this cochain
modulo coboundaries does not depend on the choice of ¢, up to homo-
topy, because the above relation implies that the image of ¢, od" is
d'((Id ® (¢,,°d"))>d,), and hence is a coboundary. Since the cohomol-
ogy spaces of the cochain complex C*(%,, Hom(.Z(w)), .#()))) are the
Ext-spaces Ext;/q(%(wh), #(A)), the theorem is proved. |
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To illustrate this theorem, we assume that the numbers <A, a,}’),

p =1,...,a, are nonnegative integers. The homology space #“(Q°) is
one-dimensional (g is not a root of unity), generated by (the image of) the
linear form r € Q** defined by

r(n) = Reszazo Reszlzo(zf)‘l’a'lv> Z<)‘a zn n)

The element f,(r), in Hom%(%’(w)\) M (X)), is the unlque intertwiner
between .Z(w\) and .Z()), sending v,,, to Firoai) L. FOua)+ly,
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