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Multistability and Delayed Recurrent Loops
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Multistable dynamical systems have important applications as pattern recognition and memory stora
devices. Conditions under which time-delayed recurrent loops of spiking neurons exhibit multistability
are presented. Our results are illustrated on both a simple integrate-and-fire neuron and a Hodgk
Huxley-type neuron, whose recurrent inputs are delayed versions of their output spike trains. Two kind
of multistability with respect to initial spiking functions are found, depending on whether the neuron is
excitable or repetitively firing in the absence of feedback.
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Multistability in a dynamical system is the coexi
tence of multiple attractors. In such a system, qual
tive changes in dynamics can result from changes in
initial conditions. A well studied case is the bistabili
associated with a subcritical Hopf bifurcation [1]. Mult
stable modes of oscillation can arise in delayed feedb
systems when the delay is larger than the response
of the system [2]. Multistability of this type has bee
demonstrated in experiments involving electronic circu
[3] and laser optical devices [4].

Multistability is a mechanism for memory storage a
temporal pattern recognition in both artificial [5] and livin
neural [6] networks. In a living nervous system, recurre
loops involving two or more neurons are ubiquitous a
are particularly prevalent in cortical regions important f
memory, e.g., the hippocampal-mesial temporal lobe co
plex [7]. Here we show that time-delayed recurrent loo
have a potentially large capacity to encode information
the form of temporally patterned spike trains. The pos
bility that some forms of memory in the living nervous sy
tem may be encoded into the temporal patterning of ne
spike trains has been well recognized [8]. The mechan
we propose can be readily realized in simple to constr
electronic circuits and thus may find applications in the
sign of artificial computing and encoding devices.

We consider the dynamics of a recurrent inhibito
loop composed of two neurons: an excitatory neuronE
gives off a collateral branch which excites an inhibito
interneuron I which in turns inhibits the firing ofE.
The inhibitory influence of I on E depends on the
activity of E at a timet in the past. This time delay
represents the sum of the conduction time along
axon and dendrites, the time required for quantal rele
processing times in the interneuron(s), and the rise t
of the inhibitory potential. Thus, mathematical models
recurrent loops are most naturally formulated in terms
delay differential equations (DDE) [9,10], e.g.,

C ÙV std  2IionsV , W1, W2, . . . , Wnd 1 I0 1 FsssV st 2 tdddd,

ÙWistd  b
fŴisV d 2 Wig

GsV d
, (1)
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where V std, V st 2 td is the membrane potential at
respectively, timest and t 2 t, G is a time constant,C
is the membrane capacitance,Iion is the sum ofV - and
t-dependent currents through the various ionic chan
types,I0 is the applied current,Wi describe the fractions
of channels of a given type that are in various conducti
states (e.g., open versus closed),ŴisV d describe the
equilibrium functions, andb is a temperaturelike time
scale factor. The functionF describes the effects of
the inhibitory neuron on the membrane potential of th
excitatory neuron. In order to obtain the solution o
Eq. (1) it is necessary to specify an initial functionf on
the intervalf2t, 0g. The functionsf have the form of
neural spike trains.

When FsssV st 2 tdddd  0, there is no recurrent input,
and the choice ofI0 determines whether the neuron i
excitable (firing only when stimulated) or periodicall
firing [11]. This observation leads to two mechanism
for multistability in a delayed recurrent loop. Thes
mechanisms can be most easily illustrated by consider
an integrate-and-fire model representation of Eq. (1). T
membrane potentialV of the neuron increases linearly a
a rate A until it reaches the firing thresholdu. When
V  u, the neuron fires andV is reset to its resting
membrane potentialV0. The period isT  uyA. The
firing of the neuron excites the inhibitory interneuron
which in turn at a timet later, delivers an inhibitory
postsynaptic potential (IPSP) to the excitatory neuro
The effect of the IPSP will be to change the timing o
the next neuronal firing by an amountdswd, wheredswd
is a function of the phasew at which the IPSP arrives afte
the neuron has fired [12–14]. For illustrative purposes w
takedswd to be independent ofw. In this simple model,
when A . 0, changing the period byd is equivalent
to changingV by d. By convention, whend . 0, the
timing of the next spike is prolonged byd, and vice
versa.

Case 1: Excitable regime.—In the excitable regime
both excitatory and inhibitory pulses can cause a neuron
produce an action potential. The former effect is obviou
© 1996 The American Physical Society
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The latter effect, known as anode break excitation
“rebound,” is paradoxical, although well documented a
thought to be important in a firing pattern generation [1
In the Hodgkin-Huxley model (below) it arises becau
the IPSP brings the system state across the thres
separatrix, and an action potential follows upon release
the inhibition. Assume that in the absence of input t
neuron is at rest (i.e.,A  0). If the neuron fires at timet0

then it must, as a consequence of reboundsd  21d, also
fire at t0 1 t. The condition for a permissible, periodi
spike train pattern containingn spikes occurring at times
ti is simply ti11 2 ti $ tr , i  1, . . . , n, wheret1 is the
time the first spike occurs,ti11 ; t1 1 t, and tr is the
absolute refractory time of the neuron. The condition th
qualitatively different, temporally patterned spike trai
can occur ist . 2tr . Under this condition an infinite
number of patterns can be stored; however, these
neutrally stable since a small perturbation in the timing
a spike is perpetuated. This behavior is similar to that
singularly perturbed DDEs [16].

Case 2: Periodic regime.—Without loss of generality
we define the following dimensionless variables:t ;
tyT , t ; tyT , y  Vyu, D  dyu. The excitatory
neuron fires periodically whenA . 0. We takeDswd 
D, where0 , D , 1 [17]. The output of the recurren
inhibitory loop depends on the value oft [18]. When
t , 1, all solutions are periodic with period1 1 D.
When t . 1 the behavior becomes more complex sin
the inhibitory pulses are not necessarily the result of
immediately preceding excitatory spike. The comple
description of these solutions will be presented elsewh

FIG. 1. Solutions of the integrate-and-fire model whent 
4.1 and D  0.8. The initial functionf is consisted of three
spikes in an interval of lengtht; one of these was fixed to
occur at time equal to zero (not shown).
r
d
].
e
old
of
e

t

re
f
f

e
e
e
e.

In summary, depending on the choice oft and D, a
variety of periodic, qualitatively different spike train
exist with periodTs  Ss1 1 Dd, whereS is the number
of spikes per period (Fig. 1). For all solutions, exce
one, Ts . t. The most remarkable property of thes
solutions is that in contrast to case 1, small perturbati
in spike timing are not perpetuated.

We illustrate our findings with a numerical simulatio
of Eq. (1) in which the excitatory neuron is described
the Hodgkin-Huxley equations [19] andfsssV st 2 tdddd 
mV st 2 td, i.e.,

C ÙV std  2gNam3hsV 2 Vnad 2 gKn4sV 2 VK d

2 gLsV 2 VLd 2 mV st 2 td 1 I0 ,

Ùmstd  amsV d s1 2 md 2 bmsV dm,

Ùnstd  ansV d s1 2 nd 2 bnsV dn, (2)

Ùhstd  ahsV d s1 2 hd 2 bhsV dh ,

where the functionsa, b are given in [19] and the con
stantsg, I0, m in [20]. We choose values ofI0 for the ex-
citable and periodic case that are outside the range o
which these equations are known to exhibit bistability [1

Figure 2 shows the effect of changing the initial fun
tion f for Eq. (2) whenI0  0 (excitable regime). Qual-
itatively different solutions occur asf is varied. These

FIG. 2. Three spike train patterns generated by Eq. (2)
three choices off (left-hand side) whenI0  0.0 (excitable
regime) andt  116 msec. The spikes in the initial function
on s2t, 0d are 4 msec in duration. Withm  0.1 (a),(b),
spikes initially separated byø17 msec will propagate from one
delay interval to the next. Form  0.2 (c), other extra spikes
can be added or deleted from the initial spike function. T
initial conditions for all variables [includingV(0) between the
spikes] correspond to the fixed point obtained whenm  0.
709
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solutions can be seen to be formed from repeating id
tical segments of lengtht. Provided thatf satisfies the
conditions given in case 1, there is a 1:1 corresponde
betweenf and the solution of Eq. (2): If the spikes in
f are sufficiently separated, they will propagate witho
merging. However, if two spikes are too close, their re
ative separation can change, or merging can occur a
which a stable pattern is obtained. Thus, in contrast
the infinitely sharp spikes of the integrate-and-fire mod
spike train perturbations can propagate, provided spik
are close [21]. For the excitatory case, spikes propag
independently if separated by 11.6 msec form  20.1
or by 7.5 msec form  20.2. In the inhibitory case,
the corresponding values are 17 msec form  0.1 and
4.5 msec form  0.2. These values are governed by th
phase resetting properties of Eq. (2) as a function of a
plitude and duration of the IPSP’s. Whenm  0.2, there
is not necessarily a one-to-one mapping between sp
positions from one delay to the next [Fig. 2(c)]. Man
different asymptotic patterns are then possible (as in
case below), depending on the number and position of
initial spikes in the loop.

Figure 3 shows the effect of changing the initial func
tion f whenI0  210 mAycm2 (periodic regime). The
remaining parameters in Eq. (2) are identical to those us
in Fig. 2, and we have takentyT  7.9 [18]. Qualita-
tively different neural spike train solutions of Eq. (2) re
sult from different choices off. When multiple attractors
coexist for a DDE, there are multiple basins of attractio
in a functional space. In Fig. 4 we show a 2D sectio
through a portion of this functional space obtained by r

FIG. 3. Three spikes train patterns generated by Eq. (2)
three choices off (left-hand side) whenI0  210 mAycm2

(periodic regime) andt  116 msec (after 5000 msec of
transients). The initial values ofm  0.0818, n  0.663 42,
h  0.150 05, and y  9.802 were taken from the limit cycle
solution of Eq. (2) whenm  0.
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stricting f to those initial functions composed of exact
five spikes in an interval of lengtht for which the timing
of three spikes is fixed and that of the remaining two
varied. For thesef only the three solutions of Eq. (2
shown in Fig. 3 occur. Thef which asymptotically yield
the solutions in Figs. 3(a), 3(b), and 3(c) are colored,
spectively, white, gray, and black. the union of all are
of a given color corresponds to the basin of attraction
one of the three solutions shown in Fig. 3. Within th
limits of our numerical simulations, these basins of attra
tion are not “riddled” [22]; i.e., except on a boundary, tw
f within a given color always yield the same solution
Eq. (2). The intricate nature of the initial function spac
revealed in Fig. 4 stresses the importance of controllingf

when studying the dynamics of delayed recurrent loo
Indeed, it is quite possible that much of the variabili
observed experimentally in delayed feedback dynami
systems [23] may result from the fact thatf is typically
not controlled between successive observations or sim
tions.

The extent to which multistability in delayed recurre
loops can be utilized in information processing is
function of the noise level. The observations in Fig.
suggest that the basins of attraction have a posit
measure implying that the different solutions will b
observed experimentally by changingf is the noise level
is not too high. As the noise level increases, much
the fine structure seen in Fig. 4 will gradually be wash
out. However, there may still be sufficient variabilit
in the transient and asymptotic patterns as a function

FIG. 4. Initial function space of Eq. (2) in periodic regim
(see text for discussion). Three of the spikes in the init
function were fixed att3  2111 msec, t4  244.14 msec,
t5  24 msec, and the remaining two,t1 and t2, were varied
from 0 to 2116 msec. This function space is symmetric abo
the 45± line and only the upper portion has been plotted. T
“black” region is quite small, but contains structure (see inse
The resolution fort1 and t2 was 0.5 msec (0.01 msec in th
inset).
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initial spike timing that the capacity to encode remai
significant.
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