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Multistability and Delayed Recurrent Loops
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Multistable dynamical systems have important applications as pattern recognition and memory storage
devices. Conditions under which time-delayed recurrent loops of spiking neurons exhibit multistability
are presented. Our results are illustrated on both a simple integrate-and-fire neuron and a Hodgkin-
Huxley-type neuron, whose recurrent inputs are delayed versions of their output spike trains. Two kinds
of multistability with respect to initial spiking functions are found, depending on whether the neuron is
excitable or repetitively firing in the absence of feedback.

PACS numbers: 87.22.Jb, 02.30.Ks, 07.05.Mh

Multistability in a dynamical system is the coexis- where V(¢), V(¢ — 7) is the membrane potential at,
tence of multiple attractors. In such a system, qualitarespectively, times and: — 7, I' is a time constantC
tive changes in dynamics can result from changes in th&s the membrane capacitandg,, is the sum ofV- and
initial conditions. A well studied case is the bistability 7-dependent currents through the various ionic channel
associated with a subcritical Hopf bifurcation [1]. Multi- types,I, is the applied currenty; describe the fractions
stable modes of oscillation can arise in delayed feedbactf channels of a given type that are in various conducting
systems when the delay is larger than the response tinstates (e.g., open versus closedf);(V) describe the
of the system [2]. Multistability of this type has been equilibrium functions, andB is a temperaturelike time
demonstrated in experiments involving electronic circuitsscale factor. The functiorF describes the effects of
[3] and laser optical devices [4]. the inhibitory neuron on the membrane potential of the

Multistability is a mechanism for memory storage andexcitatory neuron. In order to obtain the solution of
temporal pattern recognition in both artificial [5] and living Eq. (1) it is necessary to specify an initial functignon
neural [6] networks. In a living nervous system, recurrentthe interval[—7,0]. The functions¢ have the form of
loops involving two or more neurons are ubiquitous andneural spike trains.
are particularly prevalent in cortical regions important for When F(V(r — 7)) = 0, there is no recurrent input,
memory, e.g., the hippocampal-mesial temporal lobe comand the choice ofy determines whether the neuron is
plex [7]. Here we show that time-delayed recurrent loopsexcitable (firing only when stimulated) or periodically
have a potentially large capacity to encode information irfiring [11]. This observation leads to two mechanisms
the form of temporally patterned spike trains. The possifor multistability in a delayed recurrent loop. These
bility that some forms of memory in the living nervous sys- mechanisms can be most easily illustrated by considering
tem may be encoded into the temporal patterning of neuraln integrate-and-fire model representation of Eq. (1). The
spike trains has been well recognized [8]. The mechanisrmembrane potentidV of the neuron increases linearly at
we propose can be readily realized in simple to construca rate A until it reaches the firing threshold. When
electronic circuits and thus may find applications inthe de¥ = @, the neuron fires and/ is reset to its resting
sign of artificial computing and encoding devices. membrane potentiaVy. The period isT = 6§/A. The

We consider the dynamics of a recurrent inhibitoryfiring of the neuron excites the inhibitory interneuron,
loop composed of two neurons: an excitatory neutbn which in turn at a timer later, delivers an inhibitory
gives off a collateral branch which excites an inhibitory postsynaptic potential (IPSP) to the excitatory neuron.
interneuron| which in turns inhibits the firing ofE.  The effect of the IPSP will be to change the timing of
The inhibitory influence ofl on E depends on the the next neuronal firing by an amoué{e), wheres(¢)
activity of E at a timer in the past. This time delay is a function of the phase at which the IPSP arrives after
represents the sum of the conduction time along théhe neuron has fired [12—14]. For illustrative purposes we
axon and dendrites, the time required for quantal releaséake §(¢) to be independent ap. In this simple model,
processing times in the interneuron(s), and the rise timahen A > 0, changing the period by is equivalent
of the inhibitory potential. Thus, mathematical models ofto changingV by 6. By convention, whens > 0, the
recurrent loops are most naturally formulated in terms otiming of the next spike is prolonged by, and vice
delay differential equations (DDE) [9,10], e.g., versa.

. Case 1. Excitable regime=In the excitable regime
CV (1) =Lion(V, Wi, Wa,... ., W) + Lo + F(V (1 = 7)), both excitatory and inhibitory pulses can cause a neuron to
[W:(V) — W] produce an action potential. The former effect is obvious.

Wi(r) = B RO 1)
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The latter effect, known as anode break excitation oin summary, depending on the choice efand A, a
“rebound,” is paradoxical, although well documented andvariety of periodic, qualitatively different spike trains
thought to be important in a firing pattern generation [15].exist with periodT; = S(1 + A), whereS is the number

In the Hodgkin-Huxley model (below) it arises becauseof spikes per period (Fig. 1). For all solutions, except
the IPSP brings the system state across the threshotthe, T, > 7. The most remarkable property of these
separatrix, and an action potential follows upon release afolutions is that in contrast to case 1, small perturbations
the inhibition. Assume that in the absence of input thein spike timing are not perpetuated.

neuron is at rest (i.e4 = 0). If the neuron fires at timg We illustrate our findings with a numerical simulation
then it must, as a consequence of reboha= —1), also  of Eq. (1) in which the excitatory neuron is described by
fire atzy + 7. The condition for a permissible, periodic the Hodgkin-Huxley equations [19] ant(V(t — 7)) =
spike train pattern containing spikes occurring at times uV(t — 7), i.e.,

tiissimplyt;y; — t; = t,,i = 1,...,n, wherer, is the : _ 3 _ _ p—
time the first spike occurs;+; = t; + 7, andt¢, is the cv @) gna"h(V = Vaa) = gxn (V. = Vi)
absolute refractory time of the neuron. The condition that —g(V—=Vy) —uV(iE — 1)+ Iy,

qualitatively different, temporally patterned spike trains o B .
can occur isT > 2¢,. Under this condition an infinite m(t) = an(V) (1 = m) = Bu(V)m,

number of patterns can be stored; however, these are n(f) = a,(V)(1 — n) — B,(V)n, (2)
neutrally stable since a small perturbation in the timing of s o

a spike is perpetuated. This behavior is similar to that of h(t) = an(V) (1 = h) = Ba(V)h,

singularly perturbed DDEs [16]. where the functionsy, 8 are given in [19] and the con-
Case 2: Periodic regime-—Without loss of generality stantsg, Iy, w in [20]. We choose values df, for the ex-

we define the following dimensionless variables=  citable and periodic case that are outside the range over

/T, t=1t/T, v=V/0, A =5/0. The excitatory which these equations are known to exhibit bistability [11].

neuron fires periodically wheA > 0. We takeA(¢) = Figure 2 shows the effect of changing the initial func-

A, where0 < A <1 [17]. The output of the recurrent tion ¢ for Eq. (2) whenl, = 0 (excitable regime). Qual-
inhibitory loop depends on the value ef [18]. When itatively different solutions occur ag is varied. These
7 < 1, all solutions are periodic with period + A.

When 7 > 1 the behavior becomes more complex since

(a) ' ‘ ' p=0.1
the inhibitory pulses are not necessarily the result of the g9
immediately preceding excitatory spike. The complete
description of these solutions will be presented elsewhere. 50
0 ¥
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FIG. 2. Three spike train patterns generated by Eg. (2) for

t three choices ofp (left-hand side) wherl, = 0.0 (excitable
— regime) andr = 116 msec. The spikes in the initial function
on (—7,0) are 4 msec in duration. Witlu = 0.1 (a),(b),
spikes initially separated by 17 msec will propagate from one
FIG. 1. Solutions of the integrate-and-fire model wher= delay interval to the next. Faox = 0.2 (c), other extra spikes
4.1 and A = 0.8. The initial function¢ is consisted of three can be added or deleted from the initial spike function. The
spikes in an interval of length; one of these was fixed to initial conditions for all variables [including/(0) between the
occur at time equal to zero (not shown). spikes] correspond to the fixed point obtained whers= 0.
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solutions can be seen to be formed from repeating iderstricting ¢ to those initial functions composed of exactly
tical segments of length. Provided thatp satisfies the five spikes in an interval of length for which the timing
conditions given in case 1, there is a 1:1 correspondencaf three spikes is fixed and that of the remaining two is
between¢ and the solution of Eq. (2): If the spikes in varied. For theseb only the three solutions of Eq. (2)
¢ are sufficiently separated, they will propagate withoutshown in Fig. 3 occur. Theé which asymptotically yield
merging. However, if two spikes are too close, their rel-the solutions in Figs. 3(a), 3(b), and 3(c) are colored, re-
ative separation can change, or merging can occur aftespectively, white, gray, and black. the union of all areas
which a stable pattern is obtained. Thus, in contrast t@f a given color corresponds to the basin of attraction of
the infinitely sharp spikes of the integrate-and-fire modelpne of the three solutions shown in Fig. 3. Within the
spike train perturbations can propagate, provided spikelimits of our numerical simulations, these basins of attrac-
are close [21]. For the excitatory case, spikes propagat#on are not “riddled” [22]; i.e., except on a boundary, two
independently if separated by 11.6 msec for= —0.1 ¢ within a given color always yield the same solution of
or by 7.5 msec foru = —0.2. In the inhibitory case, Eq. (2). The intricate nature of the initial function space
the corresponding values are 17 msec for= 0.1 and revealed in Fig. 4 stresses the importance of controling
4.5 msec foru = 0.2. These values are governed by thewhen studying the dynamics of delayed recurrent loops.
phase resetting properties of Eq. (2) as a function of amindeed, it is quite possible that much of the variability
plitude and duration of the IPSP’s. When= 0.2, there  observed experimentally in delayed feedback dynamical
is not necessarily a one-to-one mapping between spikgystems [23] may result from the fact thatis typically
positions from one delay to the next [Fig. 2(c)]. Many not controlled between successive observations or simula-
different asymptotic patterns are then possible (as in théons.

case below), depending on the number and position of the The extent to which multistability in delayed recurrent

initial spikes in the loop. loops can be utilized in information processing is a
Figure 3 shows the effect of changing the initial func-function of the noise level. The observations in Fig. 4
tion ¢ whenl, = —10 uwA/cn? (periodic regime). The suggest that the basins of attraction have a positive

remaining parameters in Eqg. (2) are identical to those usesheasure implying that the different solutions will be
in Fig. 2, and we have taken/T = 7.9 [18]. Qualita- observed experimentally by changiggis the noise level
tively different neural spike train solutions of Eq. (2) re- is not too high. As the noise level increases, much of
sult from different choices ob. When multiple attractors the fine structure seen in Fig. 4 will gradually be washed
coexist for a DDE, there are multiple basins of attractionout. However, there may still be sufficient variability
in a functional space. In Fig. 4 we show a 2D sectionin the transient and asymptotic patterns as a function of
through a portion of this functional space obtained by re-
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-100 6“5500 5200 5400 FIG. 4. Initial function space of Eg. (2) in periodic regime
—msec , (see text for discussion). Three of the spikes in the initial
function were fixed atr; = —111 msec, t, = —44.14 msec,
FIG. 3. Three spikes train patterns generated by Eq. (2) fors = —4 msec, and the remaining twe, and r,, were varied
three choices ofp (left-hand side) when, = —10 wA/cm? from 0 to —116 msec. This function space is symmetric about
(periodic regime) andr = 116 msec (after 5000 msec of the 45 line and only the upper portion has been plotted. The
transients). The initial values ofi = 0.0818, n = 0.663 42, “black” region is quite small, but contains structure (see inset).
h = 0.15005, andv = 9.802 were taken from the limit cycle The resolution fors; and, was 0.5 msec (0.01 msec in the
solution of Eq. (2) whern = 0. inset).
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