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Weakly electric fish generate a periodic electric field as a carrier signal for active location and com-
munication tasks. Highly sensitive P-type receptors on their surface fire in response to carrier amplitude
modulations (AM’s) in a noisy phase locked fashion. A simple generic model of receptor activity and
signal encoding is presented. Its suprathreshold dynamics, memory and receptor noise reproduce ob-
served firing interval distributions and correlations. The model ultimately explains how smooth responses
to AM’s are compatible with its nonlinear phase locking properties, and reveals how receptor noise can
sometimes enhance the encoding of small yet suprathreshold AM’s.

PACS numbers: 87.19.La, 05.40.–a, 87.22.Jb, 87.19.Bb
There has been much interest over the past decades in
the nonlinear dynamical properties of excitable systems.
Studies of single cells and cell networks have revealed vari-
ous forms of synchronized activity to physical stimuli or
input from other cells (see, e.g., [1,2]). Also, there has
been much interest in the mechanisms by which cells or
ion channels respond to minute signals, and to the effect
of noise on such responses [2–4]. Many sensory stimuli,
such as sounds, contain an oscillatory component, and the
encoding of stimuli into neuronal firing patterns involves
phase locking to this component. This is the case for elec-
troreceptors involved in active electrolocation and electro-
communication tasks in weakly electric fish [5,6].

In particular, “probability”-type electroreceptors or
“P-units” are continuously driven by a highly periodic
quasisinusoidal electric field [electric organ discharge
(EOD)] generated by the fish. When the amplitude of this
EOD is constant, a P-unit always fires near a given EOD
phase, but skips a random number of EOD cycles between
firings, as shown in Figs. 1a and 1d. The probability P
of firing in an EOD cycle is a smooth increasing function
of the instantaneous EOD amplitude [5,6]. P-units can
thus encode amplitude modulations (AM’s) of this EOD
or “carrier,” arising from environmental stimuli, into the
frequency of “randomly” phase locked firings.

The dynamical origin of this firing pattern, and es-
pecially its implication for signal encoding in excitable
systems, are the focus of our Letter. Studying these im-
plications is possible only once we have a biophysically
justified model of P-unit activity. Theoretical studies of
various forms of deterministic phase locked firing abound
(see, e.g., [1,7,8]). None account, however, for the smooth
pattern of skipped cycles seen in P-units, for which inter-
spike interval histograms (ISIH) have many peaks at con-
tiguous multiples of the EOD period, and the peak maxima
fall on a bell-shaped curve. This pattern is similar to those
seen in the context of stochastic resonance [4], where a
subthreshold stimulus and dynamical noise together pro-
duce the smooth skipping pattern; those patterns, how-
ever, lack interspike interval (ISI) correlations displayed by
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P-units (see below and Fig. 1c). Subthreshold determin-
istic chaos [9] does produce similar ISIH’s. However, un-
less noise is added to the dynamics, ISIH’s do not have the
smoothness described above [10] and, even then, there are
no significant ISI correlations. Also, a detailed determin-
istic ionic model [11] for studying P-unit tuning curves
does not display the skipping patterns seen in the data, and
a stochastic P-unit model [5] which reproduces skipping
and frequency response data has no firing dynamics or ISI
correlations.

A P-unit is composed of 25–40 receptor cells and a
nerve fiber making synaptic contact unto upwards of 16
active neurotransmitter release sites per receptor cell [12].
Although intracellular recordings are not yet possible,
there is much indirect evidence that the EOD amplitude
changes individual receptor potentials, which govern

FIG. 1. Analysis of 10 000 consecutive interspike intervals
from a P-unit of the weakly electric fish A. Leptorhynchus
(data courtesy of Mark Nelson, Beckmann Institute, Illinois,
USA; we focus on such “nonbursty” units). Time is in EOD
cycles; the EOD frequency is 755 Hz. The firing rate is 145 Hz
which corresponds to P � 0.192. (a) Raster plot of ISI duration
versus ISI number, (b) return map, (c) serial correlation, and
(d) histogram.
© 2000 The American Physical Society



VOLUME 85, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 14 AUGUST 2000
the rate of release of a neurotransmitter onto the nerve.
The probability P that the nerve fires in an EOD cycle
is proportional to the amount of transmitter that binds
on target channels in the nerve membrane. Fluctuations
in release rates are thus one expected source of current
noise [5,13,14]. Others include conductance fluctuations
through various ion channels in the receptor cells and the
nerve fiber. Noise has been implicated in recent studies of
“passive” electroreceptors [2,3] that detect low frequency
electric field fluctuations without using an EOD. In
contrast to the EOD and AM’s studied here, those studies
involve much slower oscillations, with typically many
firings per cycle.

Noise is known to perturb periodic phase locked pat-
terns (see, e.g., [15]). Our model suggests that P-unit
firing results from suprathreshold dynamics with refrac-
tory effects, perturbed by a significant amount of intrin-
sic receptor noise. It is inspired from an analysis of ISI
correlations. We assume that the ith firing time is given
by ti � niT 1 ji , where T is the period of the external
forcing, ni is a positive integer that increases with i by
integer jumps, and the ji are independent and identically
distributed random values. The ji represent jitter in the
firing times around multiples of T . Defining the random
variable mi � ni 2 ni21, we can write for the serial cor-
relation of intervals Ii � ti 2 ti21 at lag one:

����Ii11 2 �I�� �Ii 2 �I�����
����Ii 2 �I��2���

�
��mi11mi� 2 �mi�2�T 2 2 �j2

i �
��m2

i � 2 �mi�2�T 2 1 2�j2
i �

.

(1)

These correlations can be estimated from the data in
Fig. 1 (the period T is normalized to one), since m repre-
sents the nearest integer to a given ISI: �j2� � 0.00461,
�mi11mi� � 24.86, �m2

i � � 26.78, and �mi�2 � 25.39,
yielding an serial correlation of 20.381. This is close to
the actual value of 20.351, which justifies our assump-
tion about the ti . Another justification comes from inspec-
tion of the ISIH; an ISI can be written as Ii � miT 1 hi .
The hi govern the ISIH peak widths and satisfy
�hi11hi���h2

i � � 20.5. This second serial correlation,
which our data exhibits (not shown) and which explains
the negatively sloped elongation of each cluster in the ISI
return map (Fig. 1b), results from phase locking: when a
firing leads (lags) the mean EOD phase at which firings
occur, the next firing will lag (lead) on average, so that
firings keep in step with the EOD.

The dominant serial correlation, due to �mi11mi�, im-
plies that long skips tend to be followed by shorter skips,
and vice versa. Thus, there is memory extending beyond
one ISI, as expected from refractory effects at such fir-
ing rates [13,14,16]. Our model builds on the leaky inte-
grate-and-fire (LIF) model [13,14,17] to account for this
memory as well as noisy phase locking to periodic input.
Firing occurs when membrane voltage reaches threshold,
after which voltage is reset to zero. In contrast with the
standard LIF model, this threshold is a dynamical variable
(see, e.g.,[14,16]). Resetting the threshold to the same
higher value after each spike [14], or to a random value
(see, e.g.,[18]), wipes out memory, as voltage resetting
does. Rather, here the threshold carries the memory of
previous spikes. After a spike, a fixed amount Dw is sim-
ply added to the threshold value just prior to firing. After
staying at this new value for an absolute refractory period
Tr , the threshold decays exponentially towards w0 until
the next firing. Alternative schemes in which the voltage
carries the memory and which involve noise and synaptic
input have been studied (without periodic input) in [16].
There are a number of plausible mechanisms for thresh-
old-based refractory effects which increase the voltage-
threshold distance after a spike. Examples include slow
sodium cumulative inactivation [19] , synaptic desensitiza-
tion [20], or other slow negative adaptation currents [21].

These refractory dynamics are here driven by stochastic
and periodic input. Let A sin�2pft� be the transdermal
potential due to the EOD of amplitude A and frequency
f. The P-unit’s nerve is driven by a steady state synaptic
current Isyn from its receptor cells [22]:

Isyn � gA�1 1 j�t�� sin�2pft�H�sin�2pft�� 1 h�t� ,
(2)

where g is a constant, j�t� is a zero-mean Gaussian
“synaptic” noise of variance s2 that is fixed over one
EOD cycle, and H�t� is the Heaviside function that
accounts for the fact that many receptors rectify a periodic
forcing [18,23]. An Ornstein-Uhlenbeck process h�t�
with correlation time th and variance D�th mimics other
noise sources [13,14,16] and further increases ISIH peak
widths. These choices are biophysically plausible, but our
results do not depend on the specifics of these choices.
The equations for voltage y and threshold w between
the last firing time tlast and the next one tnext, i.e., until
y�tnext� � w�tnext�, are

�y � 2
y

ty

1 Isyn , (3)

�w � H�t 2 tlast 2 Tr�
µ

w0 2 w
tw

∂
1 Dwd�t 2 tlast� ,

(4)

where d is the delta function. Spike train properties, shown
in Fig. 2, closely match those in Fig. 1. Without noise, 5:1
periodic firing occurs, i.e., the stimulus is suprathreshold.
The ISI serial correlation at lag one is 20.372, very close
to that in Fig. 1 [24]. We have verified that such corre-
lation is not present in the FitzHugh-Nagumo [9] or the
Hodgkin-Huxley models with standard parameters. Fur-
ther, subthreshold periodic forcing produced interval his-
tograms that were too broad or asymmetric. Note that,
while this correlation is a deterministic property, it appears
in Fig. 1 only when noise perturbs the 5:1 limit cycle. Fi-
nally, our model also reproduces tuning curve data [11]
(not shown).
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FIG. 2. Analysis of 10 000 ISI’s generated by the model of
Eq. (4). Time is in EOD cycles. (a) Raster plot, (b) return
map, (c) serial correlation, and (d) histogram. Parameters are:
f � 1000 Hz, Tr � 1 ms, A � 0.3 mV, g � 0.87, w0 �
0.03 mV, Dw � 0.05 mV, ty � 1 ms, tw � 7.75 ms, s2 �
0.0256, th � 0.075 ms, and D � 1.758 3 1024.

This model now finally allows us to make predictions on
the ability of P-units to encode AM’s. Increasing the EOD
amplitude increases P. Yet, without intrinsic noise and
AM’s, and due to the model’s deterministic phase locking
structure, two EOD’s of neighboring amplitudes may pro-
duce the same firing pattern, thus being indistinguishable
for higher brain centers. This occurs when amplitudes fall
within the same plateau in a plot of P (proportional to fir-
ing rate) versus forcing amplitude A, as shown in Fig. 3
(see also [8] for the LIF model). Interestingly, Fig. 3 ex-
hibits only small plateaus in the operating range around
P � 0.2. Thus, our model suggests the interesting prop-
erty that, even without noise, the P-unit in Fig. 1 has an
almost invertible relationship between amplitude and firing
rate despite nonlinear phase lockings, i.e., it has an intrin-
sic almost-smooth stimulus-response characteristic.

Figure 3 also shows that intrinsic noise in the P-unit
further smoothes out the small steps of the “devil’s stair-
case”: the noise breaks up phase locking patterns (see also
[15,23]). The implication for our model is that this intrin-
sic noise induces a skipping pattern whose mean frequency
(averaged over a few EOD cycles) can always track the
slower fluctuations of an AM. However, such smoothing
also results from AM’s alone, since they induce transi-
tions between neighboring (in parameter space) determin-
istic firing patterns. For example, the ISIH in Fig. 2 can
also be obtained by turning off the noise sources and turn-
ing on a random AM of a certain variance. Thus, it is
not clear whether P-unit noise enhances or degrades the
encoding. To address this point, we used the stimulus re-
construction technique [25] in the implementation of [6,18]
to quantify information transfer from bandlimited random
AM’s to the spike train. This method constructs from the
data an optimal response filter which, when convolved with
1578
FIG. 3. Mean frequency of firing versus amplitude of the forc-
ing in Eq. (4), without (hollow) and with (solid) P-unit noise.
A devil’s staircase structure is seen in the noiseless case; steps
are “rounded” by noise. Each value is obtained from the mean
firing rate of a 500 ms simulation.

the spike train, produces a “reconstructed stimulus” that is
closest, in the mean square sense, to the actual stimulus.

Figure 4 shows the novel result that the information
transfer increases or decreases with increasing P-unit noise
[j in Eq. (2)] in this suprathreshold case (h was set to zero
for simplicity). For small P, although increased informa-
tion transfer is expected from the linearization of plateaus

FIG. 4. Coding fraction g vs synaptic noise variance s2 on a
small plateau (5:1, upper curve) and a large plateau (2:1, lower
curve) of Fig. 3. The AFM signal S�t� is a lowpass-filtered
Gaussian noise of variance s

2
sig (fourth-order pole with cutoff

frequency fc equal to one-tenth of the EOD frequency [6]). This
signal modulates the amplitude of the carrier, i.e., A�t� � A�1 1
j�t� 1 S�t��. An optimal Wiener filter h�t� was obtained [6]
by minimizing the mean square error e � �

Rfc
2fc

Snn� f� df�1�2,
where Snn� f� is the power spectrum of n�t� � S�t� 2 Sest�t�;
here Sest�t� is an estimated signal resulting from the convolution
of the spike train with h�t�. The coding fraction is g � 1 2
e�ssig, the quality of encoding being best for g � 1. The signal
variances were 0.15 (5:1) and 0.04 (2:1), yielding lower values
of g for the latter case. Parameters other than s are the same as
in Fig. 2, except for A � 1.38 mV in the 2:1 case and D � 0
in both cases.
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(Fig. 3), the noise actually introduces more randomness
into the spike train. On the other hand, P-units with a
large P [5] sense a larger effective EOD amplitude. Their
deterministic dynamics may then fall on a large plateau
such as the one for the 2:1 firing pattern in Fig. 3 (i.e.,
P � 0.5). This pattern would therefore not change with
small AM’s. Thus, no coding could occur, unless perhaps
P-unit noise smooths out such a plateau as in Fig. 3. Infor-
mation transfer in this case now increases with increasing
noise (Fig. 4). The information transfer is again degraded
at larger noise as more spikes occur at irrelevant times.
Note that this is not a stochastic resonance effect [4], since
the forcing here is suprathreshold.

In summary, our analysis of ISI correlations in P-type
electroreceptors has led us to a simple generic excitable
model based on suprathreshold forcing, memory, and dy-
namical noise. Its phase locking structure suggests that
low-P P-units naturally have smooth responses to random
carrier AM’s. Furthermore, despite suprathreshold dy-
namics, receptor noise can help certain high-“P” P-units
encode small AM’s by perturbing periodic phase locked
patterns.
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