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Theory of oscillatory firing induced by spatially correlated noise and delayed inhibitory feedback
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A network of leaky integrate-and-fire neurons with global inhibitory feedback and under the influence of
spatially correlated noise is studied. We calculate the spectral statistics of the network (power spectrum of the
population activity, cross spectrum between spike trains of different neurons) as well as of a single neuron
(power spectrum of spike train, cross spectrum between external noise and spike train) within the network. As
shown by comparison with numerical simulations, our theory works well for arbitrary network size if the
feedback is weak and the amount of external noise does not exceed that of the internal noise. By means of our
analytical results we discuss the quality of the correlation-induced oscillation in a large network as a function
of the transmission delay and the internal noise intensity. It is shown that the strongest oscillation is obtained
in a system with zero internal noise and adiabatically long delay (i.e., the delay period is longer than any other
time scale in the system). For a neuron with a strong intrinsic frequency, the oscillation becomes strongly
anharmonic in the case of a long delay time. We also discuss briefly the kind of synchrony introduced by the

feedback-induced oscillation.
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I. INTRODUCTION

Collective oscillations of groups of neurons is a common
behavior in diverse brain regions [1,2]. Neural oscillations
are thought to play critical roles in varied neural coding
schemes. Examples include the binding of visual scenes [3],
the detection of relevant stimuli [4—6], and position and ve-
locity codes in the hippocampus [7]. Another frequent obser-
vation is that many neurons often “share” common fluctua-
tions in both their membrane potential and spike trains [8].
These shared fluctuations can be induced by both common
external stimuli [3] or shared internal projections [9]. Cor-
relative relationships between collective oscillatory neural
dynamics and shared single neuron fluctuations are common
[3], yet direct causal mechanistic understandings are often
elusive.

The authors and their colleagues have recently related
neural population oscillations and shared fluctuations to the
coding of natural scenes. Specifically, in weakly electric fish
an oscillating firing activity in the first layer of information-
processing neurons [pyramidal cells in the electrosensory lat-
eral line lobe (ELL)] is present only if external stimuli are
spatially extended [10] and sufficiently spatially correlated
[11]. Put differently, the oscillation in the firing activity of
pyramidal cells indicates the spatial structure of the stimulus.
Electrosensory stimuli with these characteristics are repre-
sentative of communication calls between fish; this is op-
posed to prey or background scene inputs which can be ei-
ther spatially correlated or not [12].

In our past study [10] it was shown that a delayed inhibi-
tory feedback pathway was critical for the stochastic oscilla-
tion observed in ELL pyramidal cells. That delayed feedback
can result in oscillations is known for a long time [13]; the
interplay between internal feedback and external correla-
tions, however, has been addressed only rarely.

Analytical results on stochastic neural network oscilla-
tions are hard to achieve. Especially, the inclusion of an ex-
plicit delay in a stochastic system seems to lead to intractable
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complications in the analysis, given that for stochastic delay
systems even the determination of the stationary probability
density equation is a hard problem [14,15]; temporal corre-
lations that characterize an oscillatory activity pose in gen-
eral an even greater calculational problem than the stationary
probability density. Many researchers have analytically stud-
ied the population rate (population activity) of infinite net-
works, focusing in particular on the stability of neural activ-
ity (see, e.g., Refs. [16-24] and references therein). Two
popular approaches are to treat the network dynamics by
means of spike-response models in the framework of renewal
theory [17,21] or by means of a stochastic mean field ap-
proach using the Fokker-Planck equation [16,18,23]. These
approaches combined with the (mostly numerical) evaluation
of the resulting equations have shown a rich variety of dy-
namical behavior in pulse-coupled networks. Within the
framework of these theories, however, it has proven hard to
obtain explicit expressions for the spectrum of the population
rate. Furthermore, to our knowledge, no explicit results have
been derived for single-neuron measures like the power spec-
trum (or autocorrelation function) of a single neuron or the
cross spectrum (or cross correlation function) of two distinct
neurons within the network. Finally, the problem of corre-
lated stochastic input to a network (relevant in the aforemen-
tioned experiment in weakly electric fish and probably in a
lot more cases) has been addressed to our knowledge only
numerically for spiking neural systems [25-27] and theoreti-
cally for simplified uncoupled neural networks [28,29].

We have recently shown (Ref. [11]) that, for weak feed-
back, the spectral characteristics (characterizing oscillations
as well as correlations in the network) can be related to
single-neuron characteristics (power spectrum and suscepti-
bility of a single uncoupled neuron) and network properties
(coupling statistics, e.g., the feedback kernel) [11]. Our
simple linear-response-like approach provided an explicit ex-
pression for the power spectrum of a single neuron in an
infinite homogeneous network of stochastic leaky integrate-
and-fire (LIF) neurons subjected to a global delayed feed-
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FIG. 1. The network model. Pyramidal cells (circles) receive
correlated and uncorrelated external stimuli as well as inhibitory
feedback of their spike trains. This feedback consists of the sum of
all spike trains convoluted by an « function with time constant 7g
and delayed by a constant 7, corresponding to the finite axonal
transmission time.

back. The analytical solution described well the phenomenon
of oscillations caused by the interaction of correlated stimuli
and internal feedback in neural networks of weakly electric
fish.

Our intentions in the present paper are as follows. First,
we will generalize our theory to finite network size. We also
develop expressions for other spectral quantities of interest
which are accessible experimentally, such as the cross spec-
tra between stimulus and single spike train or between the
spike trains of distinct neurons. Furthermore, we want to
explore the parameter space of the model including varia-
tions of system size, of the delay time, and of the internal
noise intensity. We will show that an oscillation is already
present for a single neuron and that the oscillation induced in
a large network is enhanced by increasing the delay time and
decreasing the internal noise intensity. We will also discuss
the kind of synchrony in firing induced by the correlated
input and the feedback, respectively.

Our paper is organized as follows. In Sec. II we introduce
the neuron and network models as well as the spectral statis-
tics we are interested in. In Sec. III we calculate the spectral
measures for the case of a band-limited input stimulus (Sec.
IIT A) and a white-noise stimulus of unlimited bandwidth
(Sec. III B); in this section we also state the analytical results
for a single leaky integrate-and-fire neuron (Sec. III C) that
enable us to give explicit expressions for the spectral mea-
sures. Simulation results are compared to the theoretical ones
in Sec. IV: the role of the network size will be studied in Sec.
IV A; effects of varying the delay time and internal noise
strength are explored in Sec. IV B; finally, the issue of net-
work synchronization is addressed in Sec. IV C. We will
summarize our results and draw some conclusions in Sec. V.

II. MODEL AND SPECTRAL STATISTICS

We consider a neural network with global inhibitory cou-
pling as sketched in Fig. 1. The membrane voltage of the
single neuron follows leaky-integrate-and-fire dynamics

v;=—v;+ 1), (1)

with i=1,...,N. Here time is measured in units of the mem-
brane time constant, the resistance of the cell membrane is
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lumped into the current, and the voltage variable and current
are rescaled by a typical value such that all variables and
parameters are nondimensional. The dynamics Eq. (1) is
complemented by the well-known fire-and-reset rule: when-
ever the voltage reaches a prescribed constant threshold v,
the neuron fires and the voltage is kept fixed for an absolute
refractory period 7 and then reset to a value vg. In the
following we set vy=1 and vx=0. The output of the ith LIF
neuron is a & spike train determined by the jth instants of
threshold crossing of the ith neuron 7; ;

3(0=2 8lt-1,). 2)
J

The input current 1,(f) consists of the following components

[11]:

(0= u+ &0 +\T—cn) +\Nen ) + ). (3)

The constant base current u and the internal noise &;(z) of
intensity D belong to the autonomous stochastic dynamics of
the neuron itself. The internal noise processes of distinct neu-
rons are Gaussian and uncorrelated (in time and among neu-
rons)

(&0)=0, (&(ngt")=2Ds;;8t—1"). (4)

The noise processes 7,(f) and 7.(¢) are also uncorrelated
among each other and represent the external inputs, which
are specific for each or common to all neurons, respectively.
The power spectrum of these processes is S (w) [all pro-
cesses 7;(1), 1.(t) share the same statistics]. We note that
because of the scaling by the factors V1-c and \c in Eq. (3)
the total external input has a fixed intensity irrespective of
the value of the correlation parameter c. The latter parameter
can be varied between 0 and 1; ¢ sets the spatial correlation
coefficient of the external noise: for c=0 all external noise is
uncorrelated among neurons whereas for c=1 each neuron
receives an identical external stimulus.

The last term in Eq. (3) stands for the delayed inhibitory
feedback of all spike trains generated by the network

G[(® ~
f(l)=ﬁj dr

D

N
;ZDexp[— = TD}E yit=1. (5
S i=1

Ts

This represents a convolution of the sum of all spike trains
with a delayed « function. The feedback strength G <O is
negative, indicating an inhibitory feedback; the decay time 7y
is related to the typical synaptic transmission time and is the
inverse of the rate « used in our previous work [11]. Note
that the arguments 7, have been inadvertently omitted in Eq.
(3) in [11].

In our modeling of pyramidal cells in the ELL of the
weakly electric fish [10,11], the feedback kernel represents a
distant neural population. This so-called NP nucleus receives
the spikes generated by the ELL network and feeds them
back after a convolution (corresponding mainly to the syn-
aptic transmission to and from the distant population) and a
transmission delay 7. We note that the above network dy-
namics applies to an even simpler situation, namely, to a
network with delayed inhibitory all-to-all pulse coupling.
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We will be mainly interested in the spectral statistics of
the network. Introducing the Fourier transforms of the zero
average spike trains

T
yilw) = L_ f dt e (y (1) = ro), (6)
\NTJo

we can determine the power spectrum of an arbitrary neu-
ron’s spike train and the cross spectrum between spike trains
from two distinct neurons by

S(w) = im (557, (7)
Scross(w) = }1m<5)‘1)~)‘;>, J #1, (8)

respectively (the asterix denotes the complex conjugate).
Useful are also input-output relations like the cross spectrum
between an arbitrary output spike train and the common part
of the input noise

Siol®) = ;irgc@:-ﬁi). 9)

Finally, network properties can be characterized by the popu-
lation activity

1 N
Y(1) = ]—VE yilt) (10)
i=1

or by the time-dependent behavior of the feedback kernel
S(0) (cf. Ref. [10]). It is easily found that the power spectrum
of the population activity for a homogeneous network can be
expressed by

1
S 0, = SCI’USS + -~ S - Scrass 2 11
op N( ) (11)
while the feedback kernel possesses the power spectrum
Skern = |F|2Sp0p (12)
|F?
= F2S0r09€+ — (- S(‘ms? » 13
PP S a5 (S = S (13)
where
einD
Flo)=6——— 14
(©) =0 iy 14)

is the Fourier transform of the « function Eq. (5).

We see already here that, because of the mean-field-like
scaling of the feedback kernel, both the population activity
and the feedback kernel are dominated by the cross correla-
tion between distinct output spike trains; other contributions
enter only with 1/N.

III. THEORY

The model as it is constitutes a highly nonlinear system
(spiking neurons are per se nonlinear) that contains essential
stochastic components as well as delayed feedback. Here we
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present an analytical approach that allows to calculate spec-
tral measures for a single neuron as it has been measured in
experiments. The method works, as we will discuss below,
reasonably well for neuron models with a moderate level of
internal noise that linearizes their spectral transfer.

We assume that we know either exactly and by numerical
simulations the characteristics of the neuron model with only
internal noise, i.e., in open loop (no feedback, G=0) and in
absence of external noise [ 7,(1)=0, 7,.(t)=0]. In particular,
we need in the following the spontaneous firing rate r
=ro(w,D), the power spectrum of the spike train Sy(w, u,D),
and the susceptibility A(w,u,D) in open loop, where we
indicate the parametric dependence of these functions on the
base current w and the internal noise intensity D. All these
functions are known for a white-noise driven LIF with abso-
lute refractory period 7 [30,31] and will be explicitly stated
in Sec. III C.

In this section we aim at relating the spectral characteris-
tics introduced above to single-neuron properties (open-loop
spectrum and susceptibitlity) and network properties (feed-
back kernel; delay time).

We will start in Sec. III A with the case of band-limited
external noise sources. This case is conceptionally simple
and will help to understand the more involved theory for the
case of a unlimited white noise treated in Sec. III B. In Sec.
IIT C we list the analytical results for the LIF that enable us
to test explicit expressions of our theory against simulations
of the network.

A. Theory for band-limited external stimuli

Here we assume that the external stimuli #;(r) and #.(r)
have a small variance. This in turn requires a limited band-
width for these stimuli, as for example, a band-limited white
noise with small cutoff frequency or an Ornstein-Uhlenbeck
process possessing a small variance. Thus the results derived
here do not apply to the simple case of unlimited Gaussian
white noise which has infinite variance; this latter case will
be dealt with in the subsequent subsection.

Our first step is to split up the right-hand side of the
neurons dynamics into an unperturbed part (leak term, base
current, internal noise, and static feedback) and a perturba-
tion (external stimuli and time-dependent part of the feed-
back)

L=+ (F0) + &) + 1= ey () + Nen (1) + (F() = (F()).
(15)

Here (f(z)) is the stationary average of the feedback term or,
in other words, the static part of the feedback. The under-
lined terms represent the time-dependent parts of external
stimulus and feedback or, in other words, the perturbation.
We assume that these parts are weak, i.e., that the standard
deviation of all underlined terms is small compared to the
base current w. In particular, a single spike fed back through
the kernel F(z) cannot elicit a spike. Under these assumption,
the stationary firing rate of the full system equals that of the
unperturbed system which is an ensemble of independent
stochastic spike generators with the effective base current
u'=p+(f). Since the mean value of f is
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()=Gr (16)

[the mean spike train y;(f) equals the stationary spike rate
and the integral over the « function is one], the effective
base current u'=u+Gr and the firing rate can be found by
solving the equation

r=r0(Mer)=r0(M+GraD)7 (17)

where ry(u,D) is the stationary firing rate of a LIF neuron

with base current wu, driven by white noise of intensity D.
With respect to the underlined terms in Eq. (15), we make

the following linear response ansatz in the Fourier domain

() = 5o +A(w,,u')[ VI = c7(w) + Ve o)

Flw) <
+TF21}71((”)] (18)

As for a linear system, we assume that the Fourier transform
of the output equals that of the unperturbed system (denoted
by 5o.;) plus a correction term consisting of the Fourier trans-
form of the perturbative terms multiplied with the transfer
function (i.e., the susceptibility). Our ansatz is similar to the
so-called linear-fluctuation approximation [32]. Instead of
using a deterministic dynamics that is weakly perturbed by
noise, however, we extend the linear ansatz to a stochastic
system (governed by a nonlinear dynamics and an internal
noise) that is perturbed by external noise and by feedback.

In a linear system the transfer function is given by the
susceptibility of the time-dependent mean value (of the spike
train), which is A(w). This is not strictly true even for weak
perturbations since spike generators are nonlinear systems.
If, however, the internal noise level D is sufficiently strong,
we can expect that the error made with the ansatz is negli-
gible because the internal noise linearizes the system with
respect to external perturbations. See also Ref. [33] for a
discussion of this issue for another kind of spike generator.

In the following we will use the fact that the unperturbed
spike trains from distinct neurons are uncorrelated with each
other and to the external stimulus, i.e.,

<y~o,i)70,j> = <)70,i77:'k> = <fo,i77:> =0, i#]. (19)
Furthermore, since we deal with a homogeneous network,
the statistics for all neurons are the same, e.g.,

Gy =002 = =i (20)

similarly, the cross spectra do not depend on the indices as
long as these are different:

<)71)72>=<)71)73>= (21)

With these assumptions, it is possible to determine the spec-
tral statistics from the linear ansatz. Multiplying Eq. (18)
with
Kk Kk k% % . .
VisYisYopYo o Wiy OF 7. JF
and averaging yields seven linear equations for the unknown
quantities
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GanGa Gy J* i

These equations can be readily solved and after performing
the limit 7— o we obtain for the power spectrum

2 Re(AF) - |AF|?

|1 -AF)?

2 Re(AF) - |AF)?
|1 -AF)?

S=So+|AI*S, + c|APS,,

+18)+ (1= lAPs,) . @)

where Re(-) indicates the real part.

Let us first discuss the infinite N limit where only terms in
the first line survive. For N — o, the spectrum consists of the
unperturbed spectrum plus two correction terms. The first
one stands for the transmitted signal power of the external
stimulus—this term is expected for any driven system and
has nothing to do with the feedback. The third term in Eq.
(22) is proportional to the correlation parameter ¢ and in-
volves both response properties of the single neuron [i.e.,
A(w)] as well as network properties [i.e., F(w)]. For ¢
=0, S(w) equals the power spectrum of the neuron driven
solely by an external noise, i.e., the feedback has no effect in
this case. The maximal feedback effect comes obviously into
play with ¢=1. The second correction term itself results from
the correlation between spike train and the common part of
the stimulus noise 7, [leading to the real part Re(AF)] and
from the correlation between different output spike trains
(leading to the square |AF|?). For weak feedback (small G,
scaling the function F) the real part will be more important in
shaping the power spectrum; hence, the correlations between
spike train and input noise (input-output synchrony) is more
relevant than the spike-spike correlation (network syn-
chrony). This will be different for the population activity and
the behavior of the feedback kernel. In the opposite limit of
N=1 we obtain

_ SO + |A|2Sst

= ) 23
|1 -AF)? @3

Here, the correlation parameter ¢ becomes meaningless
(there is only one stimulus) and consequently does not ap-
pear in the power spectrum anymore. The power spectrum is
still influenced by the feedback, but with a multiplicative
factor acting on the sum of spontaneous spectrum and trans-
ferred signal power rather than in an additive fashion.

Turning to other spectral measures for general N, we find
for the correlation between an arbitrary output spike train
and the common part of the input noise

- ASy
Si o= \C .
’ 1-AF

(24)

The cross spectrum between the common part of the input
noise and the output spike train is the only quantity that does
not depend on N.

For the cross-spectrum between distinct output spike
trains we obtain
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2 Re(AF) - |AF)?
[1-AF)?

2 Re(AF) - |AF|?
|1 -AF)?

SCr()SS = C|A|2S5t + C|A|2SW

1
+ 5 S0+ (1= 0lAPS,) . (29)
The first term in the first line corresponds to the cross spec-
trum for two neurons that are driven by a common noise with
spectrum cS,; such a term is also expected in linear response
of a system without feedback. In the way we have written the
cross spectrum it becomes apparent that the feedback terms
(second term in the first line and the term in the second line)
are exactly the same as for the power spectrum. Thus feed-
back and correlations [i.e., the function F(w) and the param-
eter c] affect the auto and cross-correlation of the spike trains
in the same way. This is so because spikes of distinct pulse
trains and spikes of the same spike train are correlated
through the same thing, namely, the oscillation of the feed-
back kernel. Put in the terminology of Ref. [10], the waves
of inhibition arising periodically from the kernel correlate
spikes (of different or of the same spike train) among each
other. On top of that and on a short time-scale, auto- and
cross correlations will be different because of refractoriness
affecting the autocorrelation but not the cross correlation—
this is reflected by the feedback-independent terms that differ
in Eq. (22) and Eq. (25).

For large N we can neglect the second line in Eq. (25) and
as for the feedback-related correction to the power spectrum,
the cross spectrum between distinct spike trains is propor-
tional to the correlation parameter. This implies that uncor-
related stimuli (¢=0) do not induce any synchrony in a large
network.

Using Eq. (11) together with Eq. (22) and Eq. (25), the
population activity reads

C|A|2Sst 1 SO + (1 - C)|A|2Sst
= + —
PP 1-AF? N |I-AFP?

(26)

and the power spectrum of the kernel is according to Eq. (12)

C|FA|ZSsz |F|ZSO +(1- C)|A|2Ssr
kern = 2 + 2
|1-AF* N |1 -AF

(27)

We note that one of the advantages of the theory as derived
so far is that the effect of different spectral statistics Sy(w) of
the external input signal on the activity of the single neuron
and on the network behavior can be studied. This remains an
interesting subject for future investigations.

B. Theory for external white stimuli of unlimited bandwidth

Let us repeat what we have done so far. The static part of
the feedback was included in the unperturbed system; we
determined self-consistently the firing rate and the effective
base current for this unperturbed system. Then we calculated
in the spectral domain the linear response with respect to the
external stimuli #;, 7, and the feedback term. As pointed out
above, the ansatz will work only for a small-variance exter-
nal stimulus and a weak feedback, implying a finite cutoff
frequency of the external stimulus or a sufficiently fast decay
of the input spectrum at high frequencies.
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Since in our work we are not interested in the effects of a
finite cutoff frequency and a non-flat input spectrum, we can
avoid making the small-signal assumption for the input noise
as follows. We assume the external stimuli to be Gaussian
white noise of intensity Dy, i.e.,

(9()n(t")) =2Dpd(t - 1),

(i) =2Dp8, e~ 1), ij=1....N.  (28)
For such a stimulus a linear correction of the spectral quan-
tities is not valid anymore, because the variance of the white
noise is not small but in fact infinite. For band-pass-limited
external noise, a linear approximation of the effect of the
external noise on the various quantities was reflected in
terms like

So(w,D) +|A(w,D)[*S,, (29)

(here we explicitly show the parametric dependence of the
power spectrum and the susceptibility on the internal noise
level). This is a linear approximation of

SO,Q: SO(w’ Q)’ (30)

where Q=D+ Dy, is the intensity of the summed internal and
external noise sources. If both internal and external noises
are white and Gaussian, the single neuron cannot “distin-
guish” between both kinds of noise and, thus, to replace Eq.
(29) by Eq. (30) seems to be plausible. This also extends to
the firing rate and the susceptibility functions that should be
taken at noise intensity Q and not at D anymore. As a matter
of fact, an external stimulus treated by the strict linear re-
sponse in Eq. (29) will never affect the stationary firing rate
of the neuron. In contrast to this we expect an increase in
firing rate for a neuron that experiences a white noise of total
intensity Q=D+ Dy compared to the unperturbed case (Dg
=0). Replacing Eq. (29) by Eq. (30) and also taking the
susceptibility A(w,D) at the full noise level Q instead of D
[i.e., using Ap=A(w, Q) in all expressions] reduces our linear
response result with respect to both external noise and feed-
back to a linear response with respect to only the feedback
term. For the self-consistent determination of the firing rate
we also use the full noise intensity Q instead of D, i.e., we
solve

r=ro(u+ Gr,Q), (31)

where r( is the functional dependence of the firing rate on the
base current at the noise level Q.

Using this approximation, our results for the single-
neuron spectrum and the input-output cross spectrum read

So.0—2cDgAo|*
S=Seo+ 2d%Md2+J¥L—£Jiéi

N
2 Re(AoF) — |ApF[

|1 —AFJ?

) (32)
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A
S, =2\eD—2—. (33)
: 1-AgF

Regarding the remaining spectral measures, we note that
they all depend on the cross spectrum of distinct spike trains.
Using only single neuron properties, the above replacement
of So(w)+2DglA[* by Sy o(w) results in the following expres-
sions for the cross spectrum of distinct spike trains, the spec-
trum of the population activity, and the spectrum of the feed-
back kernel

S eross = 2cDEi +(So.0—2¢Dg|A g
Ccross |1 _AQF|2 ,
2 Re(A, F) - |A F|?
N|1 - AyF]|
Aol So.o—2cDg|A)?
Spop=2¢Dp 4ol 5+ 2 2 f', (35)
|1 = AyF]| N|1 - AyF|
FA,? So.0—2c¢Dg|A)?
St = 2000 5 +|FP=L 2 ZQ| (36)
|1 - AyF]| N|1 - AyF|

A better approximation of these quantities can be certainly
achieved when linear response is not used for the cross spec-
trum of the unperturbed system as it is in the above relations.
The cross spectrum in the unperturbed case corresponds to
that for a feedback-free system of two neurons driven by the
effective base current ', a common noise, and independent
noise sources, i.e., the input currents to the neurons are given
by

(0 = p' + &0 +1=cn(t) +em ), i=1,2. (37)

The cross spectrum S, o(w) for these two neurons is not a
single neuron property. Moreover, we are not aware of any
stochastic neuron model for which an exact expression for
this cross spectrum is known. Provided we know an expres-
sion or we measure it from a simulation of or experiment on
two uncoupled neurons, we can use the following relations
for a better approximation of the cross spectrum

So.0=2cDglA,?
SLTUSS:SL'V(ISSO—'-<2CDE|AQ|2+ L < E| Q| )
’ N
2 Re(AyF) — |AoF[

|1 —AFJ?

(38)

Using this relation together with Eq. (11) and Eq. (12) we
can also calculate a better approximation for the spectra of
the population activity and the feedback kernel. In the case
of a more complicated neuron model for which none of the
single neuron characteristics are analytically known, we
could apply the achieved formulas as follows. By a simple
simulation of the open-loop system (no feedback), we mea-
sure the unperturbed power spectrum, the firing rate, and the
cross spectrum of two neurons; adding an external periodic
signal we can also measure the susceptibility of the single
neuron at a specific frequency. These curves can then be used
by our theory to relate single-neuron characteristics (unper-
turbed power spectrum, susceptibility of the single neuron
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and the unperturbed cross spectrum of two neurons that are
driven by a common noise) and network properties (the ker-
nel) to the spectral statistics of the network and of a single
neuron within the network. The same holds for a real neuron
for which the single neuron properties can be measured in
vitro.

On the other hand, there are a few neuron models for
which the needed quantities are analytically known. The
most realistic of those models is the leaky integrate-and-fire
(LIF) neuron with internal additive white-Gaussian noise. In
the next subsection we briefly give the needed expressions
for this model.

C. Needed analytical expressions for the LIF

For the LIF model we can calculate the firing rate by the
following expression [34]

— (,LL—UR)/GE ) -1
ro(p.D) = T + \'Wf dz e“erfc(z) | . (39)
(

,LL—UT)/V“E

Furthermore, we know the power spectrum of the unper-

turbed system [30]
— 2 —
%(“ = T) Diw(“,—ﬁ)
D VD

Dm(LJ’T) - eﬁel‘“’fRDiw(“ _rvR)
\D D

2
UR_
o=

2
o2

So((l),,lL,D) =7 R

va+2uvr—vp)
4D

; (40)

as well as the susceptibility of the system (Fourier transform
of the linear response function) [31]
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The functions erfc(x) and D,(z) are the complementary error
function and the parabolic cylinder functions [35] that can be
readily calculated with computer programs like MAPLE or
MATHEMATICA.

IV. RESULTS: COMPARISON TO STOCHASTIC
SIMULATIONS

Here we compare our analytical formulas to simulation
results. We will be especially interested in what happens to
the feedback-induced oscillation at different network sizes,
internal noise strength, and values of the correlation param-
eter c.

The simulations we shall present in this section were ob-
tained as follows. We simulated between 10> and 10° real-
izations (depending on network size) with a time step of
At=5X107*. The internal noise source was simulated as an
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FIG. 2. Power spectrum of a single neuron in a network of N
=100 neurons for ¢=0 (squares, dashed lines) and c=1 (circles,
solid lines); simulations (symbols) compared to theory Eq. (32).
Parameters are D=0.12, G=-1.2, u=0.8, 7,=0.1, Dg=0.08, 7g
=0.5, and 7p=1.

unlimited white Gaussian noise (see, e.g., Ref. [36], Chap.
3.6) using a simple Euler procedure. For the external noise
we used either a bandpass-limited Gaussian noise with a high
cutoff frequency of F,,,=70 (Sec. IV A) or also an unlimited
white Gaussian noise (remaining subsections). We chose a
bandpass-limited noise in order to facilitate the calculation of
cross spectra between input and output in Sec. IV A.

As shown in [11], a sufficiently strong feedback-coupling
together with a spatial correlation of the external stimulus
results in a pronounced oscillation in the firing activity of a
single neuron embedded in the network. This is demon-
strated in Fig. 2 for a large network comparable to the situ-
ation discussed in [11]. For ¢=1 (entirely correlated external
stimulus), a peak around w=1.5 appears and the power at
low frequencies is considerably reduced. Both effects are due
to the delayed feedback in combination with the spatial cor-
relations. In fact, the correction to the unperturbed power
spectrum in Eq. (32) (for N— ) is zero if either the spatial
correlation (c=0) or the feedback [G=0 in F(w)] vanishes.
The case of vanishing correlations (¢=0) is shown in Fig. 2:
the peak around w=1.5 vanishes and the power spectrum has
more power at low frequencies (w<1). To furthermore dem-
onstrate that the oscillation is not impeded by the external
noise, we also show in Fig. 2 the power spectrum in the
absence of any external stimulus (Dz=0). In this case, not
only the spectral peak is absent but also the overall spectrum
is reduced because of the drop in firing rate when the exter-
nal noise is switched off.

A. Finite size network: Spectral measures

We now explore whether the network and the spatial cor-
relations are necessary for this effect and which kinds of
finite-size effects may be observed.

We choose a small bias current ©=0.8 such that even
without feedback the neurons are in a subthreshold firing
regime, i.e., spikes are solely induced by internal or external
noise. Furthermore, we use a large internal noise intensity
(D=0.12) and a weak feedback (G=-0.5; note that this is
considerably smaller than in Fig. 2). In Fig. 3 we show data
for a single neuron (N=1), a small “network” (N=2), and a
large network (N=100). As it turns out, the oscillation indi-
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cated by a low-frequency peak in the power spectrum (upper
row) is present already for a single neuron (left panel). We
postpone our discussion of the dependence of single spike
train spectrum on system size until we have covered the
spectra of the population, kernel, and the cross spectrum.

The power spectra of the output of the feedback kernel
(fourth row in Fig. 3) and of the population rate (fifth row in
Fig. 3) show a peak at finite frequency corresponding to the
feedback-induced oscillation. Because of the low-pass-filter
property of the kernel the oscillation peak is more clearly
visible in Sj,,,(®) and in S,,,(w) than in S(w). Remarkably,
the distinction between ¢=0 and c=1 for a small network
(mid panel) is much more pronounced than in the power
spectrum of the spike train. For a large network (N=100,
right panel), a peak remains only for ¢=1 but not for ¢=0.
Generally, even for c=1 the oscillation peak decreases with
system size.

The cross spectrum between different output spike trains
for N=2 and N=100 is shown in the lowest row in Fig. 3.
Because of symmetry, this spectrum is purely real. For N
=2 there is a remarkable difference between the correlated
and the uncorrelated case. For ¢=1 the cross spectrum is
positive for all frequencies with a peak at the oscillation
frequency. In contrast, for ¢=0 the cross spectrum can be
both positive and negative. This is reasonable because in this
case the neurons are not driven by the same external noise
anymore, and the correlation between different output spike
trains relies entirely on the feedback. The difference between
the cross spectra for c=0 and c=1 is much more pronounced
for a large network (N=100, right panel). Only for c=1 is a
noteworthy correlation observed, while for ¢=0 the correla-
tion among different spike trains is close to zero.

We now return to the oscillatory nature of the single spike
train as indicated by the pronounced peak in S(w) (top row in
Fig. 3). In particular, we note that the peak is most impres-
sive for a network with only one neuron (N=1), and reduces
as N increases. This drop, however, does not continue further
on increasing N, i.e., the power spectrum for N=100, is
roughly the same as the one we would get for N=1000.

The decrease of the feedback-induced peak with system
size is due to the way we scaled the system. To elaborate, the
influence of a spike train on the dynamics of the neurons in
the network is strongest when N=1. As N increases the in-
fluence of a given spike train is diluted by the presence of
other spike trains in the network. This scaling is needed to
guarantee that the feedback term is weak for all N. This
effective system size dilution reduces spike train—spike train
synchrony as measured by S, () (final row in Fig. 3). A
reduction in system synchrony via an increase in N has two
effects on oscillatory behavior. First, the feedback induced
shaping of the spike train power spectrum is compromised
due to a less temporally precise feedback term; this is evi-
dent by the reduction in S,,,(w) with system size (fourth row
in Fig. 3). However, the temporal average of the feedback is
necessarily invariant with respect to N as given by Eqs. (18)
and (32). Second, the capacity for stimulus-induced syn-
chrony (via an increase in c) to shape single unit oscillatory
behavior is enhanced. This is evident in that the small peak
in S(w) that is present for c=1 when N=100 vanishes com-
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FIG. 3. Spectral measures ob-
tained by simulations (symbols)
compared to theory (lines) for ¢
=0 (squares, dashed lines) and ¢
=1 (circles, solid lines) and differ-

ent system size N; from top to bot-
tom (with theoretical expressions
given in brackets): power spec-
trum of a single neuron [Eq. (32)],
real part and imaginary part of the
cross spectrum between the com-

mon part of the external noise and

the spike train of a single neuron
[Eq. (33)], power spectrum of the
feedback kernel [Eq. (36)], spec-
trum of the population activity
[Eq. (35)], and cross spectrum be-
tween spike trains from distinct

neurons [Eq. (34)]. Network size

is N=1 (left column), N=2 (mid
column), and N=100 (right col-
umn). Parameters are wu=0.8, D
=0.12, Dp=0.08, G=-05, 7
=0.1, 74=0.5, and 7p=1.
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pletely if ¢=0 and the power increases at low frequencies.
The real and imaginary parts of the cross spectrum between
common noise and output spike train are plotted in the sec-
ond and third rows of Fig. 3. As predicted by the theory Eq.
(33), this cross spectrum does not depend on the system size.
The real part is roughly one order of magnitude larger than
the imaginary part, indicating only a small phase shift be-
tween the output spike train and the common part of the
external noise. We note that the agreement with the theory is
excellent. Trivially, for ¢=0 this cross spectrum is zero (not
shown).

The strongest deviations between theory and simulations
are obtained for the cross spectrum between distinct spike
trains at high frequencies. According to the discussion in
Sec. III B, this was to be expected since we approximated the
cross spectrum of the system without feedback also by linear
response. As pointed out in that section, we may improve the
approximation considerably if we know the cross spectrum
for two uncoupled neurons (G=0) that are driven by an input
current Eq. (37), i.e., by the effective base current (including

the effect of the static part of the feedback) and by common
and internal noise sources. This is demonstrated in Fig. 4 for
the data shown in the lowest row in Fig. 3. Indeed, using the
cross spectrum of the two uncoupled neurons in Eq. (38), we
achieve an excellent agreement between theory and simula-
tion results. The improvement is mainly at high frequencies.

The ansatz Eq. (38) can be checked also in a different
way. We may simulate the network with feedback but with a
large value of the synaptic time constant 75. Such a small
value in the synaptic rate constant TEI implies that the feed-
back is smeared out in time—there is no sharp delay any-
more and for this reason we can expect that only the static
part of the feedback survives. Hence, we predict that

Scross,O(w’ MI > Q) = lim Scruss(w’ M Q) - (42)
Tg— 0

A test for this limit as well as for our improved formula Eq.

(38) is to use S,55(w, u,0) in Eq. (38) evaluated at a large

value of 7y and to compare the result to the cross spectrum at

a finite value of 7g. This is done in Fig. 5, where we changed
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FIG. 4. Improved theory for the cross spectrum for u=0.8, D
=0.12, Dg=0.08, G=-0.5, 73=0.1, 73=0.5, and 7p=1. Upper
panel: The full simulation result (black) is compared to the purely
theoretical result Eq. (34). This is a log plot of the data shown in
Fig. 3 (right panel in lowest row). Lower panel: The same simula-
tion result is compared to Eq. (38) where we have used the numeri-
cally computed spike train cross spectrum of two uncoupled neu-
rons driven by currents given in Eq. (37) with u'=0.6234
(incorporating the static part of the feedback for G=-0.5). Since the
latter cross spectrum was estimated by another simulation (of only
two neurons), the corresponding “theory” curve is not smooth. Note
the much better agreement in the lower panel.

the parameter values to demonstrate that the approach is
valid also for stronger oscillation strength, i.e., where the
cross spectrum shows many higher harmonics (see also the
next subsection).

B. Large network: Oscillation frequency and degree of
spectral coherence as functions of delay and internal noise

We now focus on a large network (N=100) and a corre-
lated stimulus (c=1) of unlimited band-width. We study how
the emerging oscillation depends on delay time and internal
noise level.

— Theory (LRT)
o—o Full simulation 7=0.5

Cross

0 5 10 15
(O]

FIG. 5. Improved theory for the cross spectrum for u=0.8, D
=0.12, D=0.08, G=-1.0, 73=0.1, 74=0.5, and 75=6.324 (feed-
back strength and delay have been increased compared to the pa-
rameters in Fig. 4). Upper panel: The full simulation result (black)
is compared to the purely theoretical result Eq. (34). Lower panel:
The same simulation result is compared to Eq. (38) where we have
used Eq. (42). The latter cross spectrum was estimated by another
network simulation using the parameters above except for the syn-
aptic decay time which we set 74=10>.
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FIG. 6. Spike train power spectrum (a) and spectrum of the
network activity (b) for different delay time 75, and a subthreshold
bias current u=0.8. The data were obtained by numerical simula-
tion of a network with N=100. Other parameters: G=-1.0, D
=0.12, D=0.08, 73=0.1, and 75=0.5.

Spike train power spectra and spectra of the network ac-
tivity for different values of the delay time are shown in Figs.
6(a) and 6(b), respectively. For small delay, no network os-
cillation is present. With increasing delay time (7,=0.2), a
peak appears both in the power spectrum of the single neu-
ron [Fig. 6(a)] and in the activity spectrum [Fig. 6(b)]. For
larger delays (7,>35) an increasing number of higher har-
monics can be observed. The fundamental frequency de-
creases with increasing delay time. A similar picture is ob-
tained when the theoretical expressions Eq. (32) and Eq. (35)
are plotted against frequency and delay time. A slight quan-
titative deviation between theory and simulation results is
observed at large delay, since the correction of spectra due to
the delayed feedback is pretty strong. As typical for a theory
with linear corrections, the oscillation is slightly overesti-
mated by the theory. Nevertheless the multi-peaked structure
is well reproduced—in Fig. 7 we show the first two peaks of
the population spectrum for a delay time of 7,=20.

The strength of the oscillation can be quantified by the
degree of coherence [37,38], i.e., the ratio of peak height and
peak-half width, the latter scaled by the peak frequency.
Since the spectrum of the population activity shows a much
clearer peak than the power spectrum of the spike train (the
latter saturates in the high-frequency limit), we consider in
the following the degree of coherence of the first (lowest-
frequency) peak in the spectrum of the population activity
given by

S pop( Drmax)
- wmax 0, max. 43
B Ao : (43)

where @y, and S,,,(0n,) are the center frequency and
height of the first spectral peak, respectively. The difference
Aw=wg—wy is the half-width, i.e., wg are the closest fre-
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FIG. 7. Power spectrum of the population activity for a large
delay time 7,=20. Symbols are the result of simulations that agree
well with theory [solid line, Eq. (35)] except for the peak height
which is overestimated by the theory. Other parameters are as in
Fig. 6.

quency values to the right and left of w,,,,, respectively, for
which S,,,, (g 1) =5 5 (@nax) 2.

We first consider the oscillation’s frequency and the range
of frequencies for which the spectrum is above half of the
maximum value (of course, the maximum value itself de-
pends on the system’s parameters). In Fig. 8(a) we show both
the oscillation frequency (solid line) as well as the mentioned
frequency range (grey region) as functions of the delay time.
The frequency of oscillation [Fig. 8(a)] drops with increasing
delay. At small delay, the peak is small and its location is
strongly determined by the frequency dependence of the sus-
ceptibility and by the synaptic time scale 7g. For large delay
the system oscillates with a period of twice the delay (wy,y
— a7/ 7p)—this asymptotic limit is shown by a dashed line
and becomes particularly clear in the log-log plot in the inset
of Fig. 8(a). The peak width also decreases with delay time.
Together with the increase in height of the spectral peak with
growing delay, we thus obtain a monotonically increasing
degree of coherence [cf. Fig. 8(b)].

That the oscillation becomes more pronounced with in-
creasing delay time is mainly due to the synaptic filtering
included in the feedback. At short delay, no sharp delayed
activity is received by the network due to the effect of the «
function. The larger the delay is, the more diminished is the
effect of the synapse. We also note that, for the small base
current u we have chosen, no pronounced intrinsic frequency
is present, so the oscillation peak is mainly determined by
the network properties, i.e., delay time 7, and synaptic time
scale 7. Remarkably, in the large-delay limit, the ratio of
peak width and peak frequency approaches a constant. The
same holds true for the height of the first peak. Consequently,
according to Eq. (43), the degree of coherence saturates for
large 7. Although the agreement between the predictions of
the theory and the simulation results is generally satisfying,
the theory overestimates the degree of coherence at large
delay time. Since the peak height is slightly overestimated,
the width of the peak will also be underestimated. Therefore,
the slight disagreement seen in the theoretical and simulation
spectra (cf. Fig. 7) leads to a fairly large error in S.

We now turn to the effect of varying the internal noise
intensity D. In Fig. 9 we show how the spectra evolve with
the internal noise intensity D instead of the delay time. At
low internal noise, a pronounced peak is apparent both in the
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FIG. 8. Oscillation frequency (a) and spectral coherence (b) of
the first peak in the power spectrum of the network activity vs delay
time 7. The width of the first peak in panel (a) is indicated by the
grey area and is defined by S(w)>S(wp,y)/2. Theoretical curves
have been obtained by numerical evaluation of the analytical ex-
pression Eq. (35). Simulation results were obtained by smoothing
the simulation spectra sufficiently by running averages (length of
average depends on system’s parameters) and estimating the oscil-
lation frequency and peak width by eye. The dashed line shows the
angular frequency that corresponds to twice the delay time
(7r/ Tp)—this frequency is approached by the oscillation frequency
at large delay as seen in the log-log plot in the inset. Parameters are
D=0.12, G=-1.0, ©=0.8, 73,=0.1, D=0.08, and 73=0.5.

power spectrum of the spike train and in the spectrum of the
population activity. With increasing internal noise, the spike
train spectrum shows an overall increase due to the increase
in firing rate. The peak, however, becomes less pronounced
and vanishes even in the strong noise limit. In the activity
spectrum the peak remains roughly at the same frequency,
decreases and becomes broader with growing D. The evolu-
tion of the spectra show that internal noise just adds incoher-
ent spiking unrelated to the delayed feedback. The “optimal”
internal noise intensity with respect to the oscillation is zero.
There is no stochastic-resonance-like effect present in the
system—at least not for the parameter sets we have in-
spected.

It is of course possible to increase the overall spike rate
by increasing the internal noise intensity D. The feedback-
induced modulation of the spike rate (leading to the peak at
finite frequency) is solely due to the common part of the
external noise 7,.(r). Decreasing or increasing the latter will
lead to the opposite effect, namely, a decrease and increase
of the peak height and coherence, respectively.

The above observations are also quantitatively confirmed
when we look at the degree of coherence depicted in Fig. 10.
First of all, an increase in internal noise intensity does not

061919-10



THEORY OF OSCILLATORY FIRING INDUCED...

FIG. 9. Spike train power spectrum (a) and spectrum of the
network activity (b) for different intensities of the internal noise and
subthreshold bias current ©=0.8, obtained by numerical simulation
of a network with N=100. Other parameters: Dg=0.08, G=-1.0,
mp=1, 7=0.1, and 74=0.5.

change the oscillation frequency drastically; further, the
width becomes only marginally wider with increasing D.
Both changes are solely due to the dependence of the sus-
ceptibility on the internal noise intensity. Second, the degree
of coherence [cf. Fig. 10(b)] is maximal in the zero internal
noise limit D=0. The theory overestimates (3, in particular at
small internal noise intensity. We note that in this limit the
assumptions we have made for deriving our theory are for-
mally violated. A linearization of the single neuron dynamics
as assumed in our ansatz Eq. (18) is only given for at least
moderate internal noise. However, since we incorporated the
external noise in the theory as an internal one, we still obtain
a reasonable agreement between theory and simulations.

So far we have considered the subthreshold (“noise-
activated”) firing regime of the single LIF neuron, where
both the original base current p as well as the effective base
current u' are so small (u,u’ <vy) that firings are solely
due to internal and/or external noise. In this regime, the neu-
ron does not show any pronounced intrinsic eigenfrequency
and, consequently, the observed feedback-induced time-scale
was merely determined by the network parameters 7, and 7.

Increasing the bias current such that p,u’>1 and de-
creasing the total noise strength Q will result in a pro-
nounced eigenfrequency of the neuron. In this case, will
there be any interaction between the delayed feedback and
the intrinsic time scales? This question is addressed in Fig.
11 where we show power spectra of the spike train and of the
network activity for a suprathreshold base current and differ-
ent values of the delay time. As in the noise-activated firing
regime, a small value of the delay time does not lead to a
feedback-induced peak. The peak which is present in the
power spectrum of the spike train is that due to the sponta-
neous activity at the eigenfrequency of the LIF neuron. For
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FIG. 10. Oscillation frequency (wp,,) and width of the first peak
[peak area is grey and is defined by S(w) <S(wpa)/2] in the spec-
trum of the population activity as a function of the internal noise
intensity. Theoretical curves have been obtained by numerical
evaluation of the analytical expression Eq. (35). Simulation results
were obtained by smoothing the simulation spectra sufficiently by
running averages (length of average depends on system’s param-
eters) and estimating the oscillation frequency and peak width by
eye. Parameters are D;=0.08, G=-1.0, ©=0.8, 73,=0.1, 7p=1, and
TS=O‘5'

moderate delay time (7,=0.2) a peak emerges that grows in
height and shifts to lower frequencies as we increase 7. At
large delay, we observe a qualitative difference in compari-
son to the subthreshold case: the peak at the basic frequency
drops in height, whereas the higher harmonic that is closest
to the eigenfrequency of the neuron is stronger than the basic
frequency. Note that according to our theory, we can expect
such an observation since, for an LIF neuron in the suprath-
reshold firing regime, the susceptibility is a nonmonotonic
function of the frequency with a strong peak at the neuronal
eigenfrequency. Indeed, plotting the theoretical expressions
yields a very similar picture to that in Fig. 11 (not shown).

It is evident that in the suprathreshold case, quantifying
the oscillation only by the basic frequency would yield a
nonmonotonic degree of coherence as a function of the delay
time. This would not be so, however, if the highest peak in
the activity spectrum were considered.

C. Large network: Synchrony in the network

In the case of a correlated input (c=1) there are two pos-
sible sources of synchronized activity. First, the neuronal fir-
ings can be partially synchronized via the common input
even in the absence of feedback. This is easily seen in the
limit of a vanishing internal noise and vanishing feedback
(D=0,G=0) where the firing of the neurons becomes en-
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FIG. 11. Spike train power spectrum (a) and spectrum of the
network activity (b) for different values of the delay time 7, and
suprathreshold bias current u=1.7, lower noise and smaller synap-
tic time scale than in the previous figures. Parameters are D
=0.025, D=0.025, G=-0.5, 73,=0.1, and 75=0.05.

tirely synchronized. Secondly, in case of a feedback-induced
oscillation, the spiking of the neurons is also locked in a
stochastic manner to this oscillation, and the spikes of two
arbitrary neurons will be correlated through this oscillation.
Here we consider the second form of synchronization be-
tween spike trains by means of the correlation function in the
time domain.

For finite 7g the correlation functions are well described
by the theory as shown in Figs. 12(a) and 12(b). Remarkably,
at the large delay time we have chosen in this numerical
example, the part of the graph corresponding to the
correlation- and feedback-induced oscillation is the same for
auto and cross correlation functions. This is similar to the
cases of excitability- and latency-induced cross correlation in
Ref. [39]. We recall that the spike-spike correlation function
can be interpreted as the probability with which a spike oc-
curs at time 7# 0 given there was a spike at 7=0. For the
auto correlation function the reference spike at 7=0 belongs
to the same spike train whereas for the cross correlation
function it belongs to the spike train of the second neuron.
The closeness of both correlation functions to each other at
larger 7 indicates that the cross- and autocorrelation in this
range are solely due to the common correlation of both spike
trains to the feedback kernel. This can also be extracted from
the theory as follows. Subtracting the cross spectrum be-
tween distinct spike trains Eq. (34) from the power spectrum
of a single spike train Eq. (32), we obtain

S- Scross = S(),Q - 2CI)E|AQ 2’ (44)

an expression that does not involve the feedback kernel F(w)
anymore. This implies that the difference of auto and cross
correlation functions does not contain any dependence on the
delay time (this difference equals the Fourier transform of

PHYSICAL REVIEW E 72, 061919 (2005)

VammN
)
N
o
2
W

o
=

=4
=
o)

<y, Oy, (D>

20 0 0 10 20 30
T

(b)O.lS. T T y

A fir oo SIMS ]
2 — THEORY
& 005 .
-
p—a
>
~
—
N’
>~0.
Vv
0L 0 10 20

Ao

(C)0.15| T I T

0.1 —=
o-oauto correlation

o0 cross correlation

0.05f i E

-0.05

0135 10

FIG. 12. Auto- and cross-correlation functions of single neuron
spike trains for a large network with N=100. (a) Cross correlation
of two spike trains from distinct neurons. Simulation (grey circles)
are compared to theory [solid line, numerically calculated inverse
Fourier transform of Eq. (34)). The cross correlation shows minima
and maxima at multiples of the delay time 7,=6.324. (b) Autocor-
relation function. Simulations (grey circles) vs theory [solid line,
numerically calculated inverse Fourier transform of Eq. (32)].
Again minima and maxima are observed at multiples of 7,=6.324.
(c) Comparison of the simulation data for cross- (solid line) and
autocorrelation functions. Note that both differ only for small 7 but
agree well at the oscillation-induced peaks at multiples of the delay
time 75,=6.324.

the difference between auto and cross spectra) and, hence, no
signature of the network oscillation.

V. SUMMARY

In this paper we have developed a simple theory for spec-
tral measures of spiking stochastic neurons in a network with
delayed feedback coupling. We have shown that oscillatory
spiking activity in a large network can result from the com-
bination of a shared noisy input (with no specific time scale)
and an internal network delayed feedback. We saw that the
oscillation for neurons in the subthreshold (noise-activated)
firing regime is most pronounced at low internal noise and
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long delay. In contrast, in the supra-threshold (intrinsic os-
cillation) firing regime the optimal delay time (with respect
to the network oscillation strength) is—in a certain sense—
not at infinity but at a value that corresponds to the inverse
intrinsic eigenfrequency of the neuron. At larger delay time,
a high anharmonicity of the oscillation occurs—the highest
spectral peak is not necessarily at the fundamental frequency
of the oscillation but at the higher harmonic which is closest
to the eigenfrequency of the neuron.

Finally, we showed that the synchronized activity due to
the feedback-induced oscillation correlates spikes within the
same spike train and in different spike trains in a similar way.
This is comparable to two neurons that are driven by the
same external periodic signal, or by two neurons whose ex-
citability levels are covaried in time [39]. At short time
scales, auto- and cross-correlations will be different due to
the refractory period of the single neuron. At larger time,
however, firings of the two neurons and the firings of one
and the same neuron will be correlated in exactly the same
way, namely, through the phase of the external signal.

To date, many past theoretical treatments of network dy-
namics properly account for a stochastic forcing where the
time-dependent input statistics are synchronously covaried
across the population [16-22,22-24]. However, by necessity
of the stochastic mean field treatment, all these studies re-
quire that the specific membrane fluctuations are uncorre-
lated between separate neurons in the population. Surpris-
ingly, relatively few studies have considered the impact of
shared fluctuations across the population (see the Introduc-
tion for references). Our quantitative theory is a perturbative
treatment where we have focused on the small shared fluc-
tuation case, even though in practice our predictions hold
well with moderately large shared fluctuations (we note that
even for c=1 the shared fluctuations are still not complete
since the intrinsic noise is assumed moderate). The regime of
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small (but nonzero) shared fluctuation is perhaps a relevant
case for most neural systems. It is well known that synaptic
release is unreliable [40], and there is growing evidence that
the connectivity within cortical assemblies is sparse [41,42].
However, even small overlapping projections can support
nontrivial effects in feed-forward cortical systems [43], and
shared fluctuations due to network dynamics have been mea-
sured in vivo in auditory cortex [9]. These observations sug-
gest that while it is unlikely that two neurons receive com-
pletely correlated inputs, interesting and important results
may occur when even small shared fluctuations are consid-
ered.

We believe that the applicability of our theory is much
wider than the framework of the presented material and the
reader is encouraged to use some of the techniques revealed
here for other neural network phenomena. For instance, the
signal transmission of the correlated part of the input noise
through the spike train of a single neuron or through the
population activity has yet to be addressed. Also, it would be
straightforward to extend the analysis to the case of a mixed
excitatory and inhibitory feedback. Further, the restriction of
a homogeneous network can be relaxed when the spectral
equations are averaged with respect to a prescribed distribu-
tion of parameter values. The open issues in our analytical
results are not so much related to the network problem but to
unknown characteristics of the single neuron. It would be,
for instance, satisfying to know the cross spectrum of two
uncoupled LIF neurons that are driven by independent and
correlated noise sources. This elementary problem is, to the
authors’ knowledge, still unsolved even for the case of sim-
pler neuron models like the perfect integrate-and-fire (or
random-walk) model. Likewise, analytical expressions for
the cross spectra between the output spike train and the cor-
related or uncorrelated noise sources could be incorporated
into a more exact theory of the network activity.
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