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Abstract

The leaky integrate-and-fire (LIF) model is one of the elementary neuronal models that has been widely used to gain
understanding of the behavior of many excitable systems. The sinusoidally forced standard leaky integrate-and-fire model
reproduces the quasiperiodic and phase locked discharge trains observed experimentally in neurons. However, this basic model
fails to generate chaotic firing, whereas this form of behavior has been observed experimentally. We modify the standard LIF
through the introduction of threshold fatigue responsible for progressive decrease of excitability during high frequency firing,
as observed experimentally. We show that the dynamics of this neuron model under sinusoidal forcing are governed by the
iterates of an annulus map and derive expressions for its two characteristic Lyapunov exponents. Using these exponents, it is
shown that chaotic dynamics are possible for this model, unlike the standard leaky integrate-and-fire model. Chaotic dynamics
occur when memory effects are strong and only under certain forms of threshold fatigue.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Discontinuous dynamical systems are playing an important role in the study of many physical (see e.g.[25]) and
biological systems (e.g. neurons,[34]). There have been recent advances on techniques for analyzing such systems
[21]. Our work examines the dynamics of one such system of relevance to the behavior of excitable systems such
as neurons.

Neurons transform incoming information into trains of action potentials that are transmitted to and processed
by other neurons. An action potential is an “all-or-none” stereotyped response to a stimulus. Typically the action
potential has a much shorter time scale (order of milliseconds) than the other time scales in the neuron (over tens
or hundreds of milliseconds). For this reason, it can be approximated as a delta function in neuronal models.
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One example where this approximation has been widely used is the leaky integrate-and-fire (LIF) model, arguably
the most elementary spiking neuron model[34]. In this model, the membrane voltage is discontinuously reset to a
fixed value once it reaches a certain threshold. Despite its simplicity, this model is able to reproduce a great deal
of known features of real neurons including the all-or-none response and the postdischarge refractoriness. It also
reproduces rectification and phase locking behavior of neurons under sinusoidal forcing[3,30,33]. However, it fails
to reproduce some key features observed experimentally in certain neurons like adaptation[9] and chaotic behavior
under sinusoidal stimulation[10,19,26].

Analyzing the response of neurons to controlled stimuli has been one of the methods used to determine the
relationship between incoming stimuli and the response they elicit in neurons. Historically, among the various
signals that have been used for this purpose, sinusoidal stimuli have played a prominent role. Such stimuli were first
used as a means to estimate the transfer function of preparations such as stretch receptors, considered as linear black
boxes (see e.g.[29]). The same class of stimulation also proved the limitation of the linear approach by revealing
that periodically forced receptors could display substantial non-linearities in the form of rectification and phase
locking [12]. Similar non-linear responses were observed in diverse preparations (e.g.[36]), eventually opening
the door for the analysis of neuronal behavior from the standpoint of non-linear dynamical systems theory. This in
turn was instrumental in unraveling that the variability in discharge times of sinusoidally forced neurons was not
necessarily due to noise, but could as well be due to chaotic behavior[1,16].

Since these early studies, one direction of investigation has been to determine the basic neuronal properties that
can underlie the various behaviors observed experimentally. One approach to this problem has been to construct
minimal models that present only the basic biologically plausible properties necessary to reproduce a given class
of responses. This approach can be instrumental in determining the contribution of different neuronal properties
in neuronal coding. For instance, the sinusoidally forced standard perfect integrate-and-fire model, one of the
simplest neuronal models, reproduces rectification, but not phase locking[19,20,33]. However, by augmenting
this elementary model with a leak current, one obtains the standard leaky integrate-and-fire model that reproduces
both rectification and phase locking[3,30,33]to the input. In this way, the systematic analysis and comparison of
these elementary models, confirmed that, not surprisingly, the firing threshold was responsible for rectification, and
revealed as well that forgetful integration due to the leak current was instrumental for obtaining phase lockings.
However, the standard LIF fails to reproduce more complex dynamics such as chaotic ones. The concern of the
present study is the construction of a minimal model capable of generating chaos by augmenting the standard LIF.

In this paper, we provide a non-linear dynamical analysis of a modified LIF model incorporating threshold
fatigue under sinusoidal forcing. This particular modification is biologically motivated[4] and has been previ-
ously used with great success to model different classes of neurons[7–9,13,17,18,23,24,27,28,32,35]that display
adaptation. It has furthermore been shown that threshold fatigue could model very different physiological mecha-
nisms including an ionic current giving rise to adaptation[23], synaptic depression[15], and recurrent inhibition
[11].

The paper is organized as follows. We first present the model inSection 2. After showing that it is equivalent
to an annulus map, we derive expressions for its Lyapunov exponents by generalizing Coombes’s method[10] to
evaluate Lyapunov exponents for the standard LIF inSection 3. Numerical simulations inSection 4demonstrate
that chaotic dynamics are possible. It is known that successive discharge phases of the standard LIF model un-
der sinusoidal (or more generalized periodic) forcing are given by iterates of a monotonically increasing circle
map [19,26,30](we refer to a circle map as monotonically increasing when any lift associated to it is mono-
tonically increasing, and henceforth cannot give rise to chaotic dynamics. However, no such restrictions exist
for the annulus map which can thus display chaotic dynamics. We further reduce our model to a circle map in
Section 5which we show to be non-monotonic for certain parameters inSection 6and thus can also display chaotic
dynamics.
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2. The model

We consider a sinusoidally forced LIF with dynamic threshold given by the following differential equations and
firing rules:

dv

dt
= − v

τv
+ µ+ a sin(wt) if v(t) < s(t), (1)

ds

dt
= sr − s

τs
if v(t) < s(t), (2)

v(t+) = v0 if v(t) = s(t), (3)

s(t+) = s0 +W [s(t), α] if v(t) = s(t), (4)

wherev is the voltage,s is the threshold,µ is a constant input stimulation,a andw are the respective amplitude and
angular frequency of the sinusoidal forcing,τv andτs are the time constants for voltage and threshold, respectively,
andsr is the value at which the threshold would stabilize in the absence of firing. Firing occurs when the voltage
reaches the threshold. Following this, the voltage is reset tov0 (Eq. (3)) and the threshold is set tos(t+) =
s0 + W [s(t), α], wheres0 is a parameter andW is a positive monotonically increasing function ofs andα with
W(s,0) = 0. The parameterα controls the amount of memory in the system. The particular functionW used in model
studies can be linear or non-linear as its exact shape is not currently known experimentally and will likely depend on
the specifics of the neuron under study. Typical functionsW areW(s, α) = α(s−sr) andW(s, α) = exp[α(s−sr)]−1
and we will study the impact of the functional form forW on the model’s dynamics. Whenα = 0, the threshold
is always reset to the values0. The model thus displays no memory and no interspike interval correlations[9]. As
we increaseα, memory effects become more important asW(s, α) grows with respect tos0. Most previous models
usedα = 1 [7,8,13,23,24,27,28,35]and the effects of varyingα on adaptation, ISI statistics, and firing behavior
was explored in[9]. The time evolution of the dynamics are graphically illustrated inFig. 1.

We denote byv(t, tn) ands(t, tn, S+
n ≡ s(t+n )) the voltage and threshold solutions at timet comprised between the

nth andn+ 1th discharge times (tn < t < tn+1) and assume, without loss of generality, thatv0 = 0. Furthermore,
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Fig. 1. The dynamics of the voltagev(t) (black line) and the thresholds(t) (grey line) in the model given inEqs. (1)–(4). An action potential
occurs whenv(t) = s(t). Immediately after,v(t+) = v0 while s(t+) = s0 +W(s(t), α).
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we assume thatµτv > 0 andsr > 0. Given the initial conditionsv(tn, tn) = 0 ands(tn, tn, S+
n ) = S+

n , t ≥ tn, and
provided that no firing occurs on the interval [tn, t], these solutions are given by

v(t, tn)=µτv
(

1 − exp

[
tn − t

τv

])
+ aτv

1 + w2τ2
v

[ sin (wt)− wτv cos(wt)]

− aτv exp[(tn − t)/τv]

1 + w2τ2
v

[ sin (wtn)− wτv cos(wtn)], (5)

s(t, tn, S
+
n ) = sr + (S+

n − sr)exp

(
tn − t

τs

)
. (6)

The model generates sustained firing if the sequence{tn} of discharge times is unbounded, i.e.tn → ∞. A necessary
and sufficient condition for sustained firing is given by

µτv + aτv√
1 + w2τ2

v

> sr. (7)

This condition has already been proven to be necessary and sufficient in the periodically forced standard LIF[26].
We now prove that this condition is necessary and sufficient for sustained firing in the LIF with threshold fatigue.
Condition(7) is obviously sufficient for sustained firing in the LIF with threshold fatigue. In order to establish that
it is also necessary, we need to prove that when it fails, then the LIF with threshold fatigue generates at most a finite
number of discharges. To see this, we remark that the threshold of the LIF with fatigue satisfiess ≥ sr at all times,
and regardless of the firing history. Hence, if an input produces at most a finite number of firing in the standard
LIF with constant threshold fixed atsr, it does necessarily so in the LIF with threshold fatigue. Given that when
condition(7) fails, the standard LIF with constant threshold fixed atsr fires at most a finite number of times, the
same must hold for the LIF with threshold fatigue.

Remarkably, this condition does not depend on the initial condition: there are no parameter sets such that for
some initial conditions the firing stops in a finite time while for others it would persist indefinitely. We will assume
that the condition for sustained firing holds throughout the paper.

The continuous-time LIF dynamics are not smooth due to the reset condition, and so the standard theory of
dynamical systems does not apply directly to this model. However, this problem can be overcome by noticing that
the LIF dynamics are in fact equivalent to the iterates of a map of successive firing times, that is to a discrete-time
dynamical system. This formulation can then be used to analyze the dynamics of the LIF. More precisely, the model
described inEqs. (1)–(4)is equivalent to a two-dimensional annulus map[9]. Given thenth discharge timetn and
the corresponding postdischarge thresholdS+

n , then+ 1th firing timetn+1 is given by

tn+1 = H1(tn, S
+
n )

def= inf {t : t > tn, v(t, tn) = s(t, tn, S
+
n )}, (8)

and the corresponding postdischarge thresholds(t+n+1, tn, S
+
n ) ≡ S+

n+1 is given by

S+
n+1 = H2(tn, S

+
n )

def= s0 +W(s(tn+1, tn, S
+
n ), α). (9)

A two-dimensional mapH can be defined as:H : (tn, S+
n ) → (tn+1 = H1(tn, S

+
n ), S

+
n+1 = H2(tn, S

+
n )) on

[0,∞) × [s0 + W(sr, α), s0 + W(Vupper, α)], whereVupper = µτv + 2aτv/
√

1 + w2τ2
v is an upper bound to the

maximum value of the voltageVmax = µτv + aτv/
√

1 + w2τ2
v .

It is convenient to introduce the firing phase as in[10] as

φn = 2π
{ tn
T

− int
[ tn
T

]}
, (10)

where the int[·] denotes the integer part andT ≡ 1/f = 2π/ω is the forcing period.
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Given thatH1(t + T, S) = T + H1(t, S) andH2(t + T, S) = H2(t, S) for all t andS, the mapH is a lift of the
annulus map̃H = (H̃1, H̃2) on [0,2π)× [s0 +W(sr, α), s0 +W(Vupper, α)]:

H̃1(φn, S
+
n ) = 2π

T
H1

(
T

2π
φn, S

+
n

)
modulo T, (11)

H̃2(φn, S
+
n ) = H2

(
T

2π
φn, S

+
n

)
. (12)

For the standard LIF (i.e. whenα = 0), the threshold remains constant throughout time, so thatH̃2 is constant,
and we retrieve the one-dimensional mapH̃1 that has been used in previous studies of periodically forced LIFs
[19,26,30].

3. Lyapunov exponents of the model

The main purpose of our study is to establish that the modified LIF can exhibit chaotic dynamics. This is done
by establishing that there are regimes in which the model displays sensitive dependence on initial conditions as
indicated by a positive Lyapunov exponent. To this end, we first derive the expression for the Lyapunov exponents
of the model given inEqs. (1)–(4). While both differential equations governing interdischarge dynamics of the
voltage and the threshold are linear, the discontinuous jumps occurring at each discharge introduce non-linearity
in the dynamics of this model. The main step in the derivation of the Lyapunov exponents consists therefore in
evaluating the consequence of these discontinuities on solutions starting from nearby initial conditions.

For smooth continuous-time dynamical systems, Lyapunov exponents can be derived either directly from the
variational equation associated with the continuous-time description of the dynamics or from the variational equa-
tion associated with the discrete-time description of the dynamics through iterates of a Poincaré map (see e.g.
[31]). In the same way, there are two possible standpoints for the evaluation of the Lyapunov exponents of the
non-smooth periodically forced LIF with threshold fatigue. One is to consider the exponents associated with the
annulus map introduced in the previous section, and estimate the growth or decay rates of perturbations of the
postdischarge threshold and phases. The other possibility is to estimate the growth and decay rates of perturba-
tions of the postdischarge threshold and voltage that will of course depend on the evolution equations of these
variables. The signs of the Lyapunov exponents do not depend on the method, even though their absolute values
may. For our purpose, which is to determine the existence of chaos, either method is acceptable. We selected the
second one because it proceeds similarly to previous studies of the standard LIF[10] using ideas developed for the
study of impact oscillators[21,25]. The derivation and expressions for the Lyapunov exponents are presented in
Appendix A.

4. Evidence for chaotic firing: numerical simulations

In many studies of periodically forced systems, the focus is on the occurrence of particular periodic dynamics
such as phase locking regions, and their organization into Arnold tongues. An illustrative example for the standard
LIF is provided by Keener et al.[19]. In our investigation of the dynamics of the sinusoidally forced LIF with fatigue,
we also observed such regimes. However, here, we do not proceed with their description, as our main concern is
not the organization of periodic orbits, but to show that the modified LIF is capable of producing chaos. Therefore,
we limit the presentation of numerical results to examples of chaotic dynamics.
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The numerical simulations of forced LIF model with threshold fatigue were performed as follows. Starting from
t0 = 0, the analytical solutionsv(t,0) ands(t,0, S+

0 ) with S+
0 chosen arbitrarily were used to find the firing time

t1 > 0 that is the smallest solution of

v(t1, t0) = s(t1, t0, S
+
0 ). (13)

The threshold valueS+
1 immediately aftert1 was computed as

S+
1 = s0 + exp{α[s(t1, t0, S

+
0 )− sr]} − 1. (14)

The smallest solutiont2 of v(t, t1) = s(t, t1, S
+
1 )was then computed. Following this recursive procedure, we obtained

the firing time and threshold sequences{ti}Ni=1 and{S+
i }Ni=1, respectively forN large. Typically, we tookN to be

greater than 1000. This allowed us to numerically estimate the Lyapunov exponents of the system following the
procedure outlined inAppendix A.

We have previously explored the influence of the parameterα on ISI statistics and adaptation displayed by
the model[9]. In order to explore the existence of fatigue-induced chaotic dynamics, we proceeded here with a
systematic analysis of the influence of the parameterα and the functionW on the asymptotic behavior of the model.
Thus, we performed numerical simulations using different values ofα and different functional forms forW starting
from α = 0 and incrementing between each simulation.

The observations based upon these systematic numerical investigations carried out for diverse parameter sets can
be summarized as follows. Forα = 0, the leading Lyapunov exponent of the model is either negative or zero. It
does not take on positive values. In fact, simulations suggest that without threshold fatigue, the model behaves in
the same way as the standard LIF[19] that produces phase locked, quasiperiodic dynamics and strange non-chaotic
behavior. Simulations at low values ofα produce similar observations. Asα is increased, there may be drastic
qualitative changes in the asymptotic dynamics of the model, in the sense that the leading Lyapunov exponent
becomes positive, while, simultaneously, the discharge phases become irregular and unpredictable. In such cases,
simulations of solutions of nearby initial conditions confirm the sensitive dependence on initial conditions, since they
grow rapidly apart with time. We argue that this numerical evidence supports the fact that these regimes correspond
to chaos. These constitute the main numerical evidence for fatigue being capable of producing chaos in neuronal
responses.

An illustrative example of the results is shown inFig. 2, that represents the impact of increasingα on the dynamics
of the system.Fig. 2a shows a bifurcation diagram obtained while varying the parameterα, whileFig. 2b shows the
leading Lyapunov exponent of the systemΓ = max(λ, µ) for the same range ofα. The parameter values are chosen
such that forα = 0, the model exhibits periodic phase locking dynamics. This regime alternates with quasiperiodic
behavior asα is increased. This is similar to what is seen in the LIF model under sinusoidal forcing[10]. However,
asα is increased further, chaotic dynamics start appearing as shown inFig. 2. This illustrates the rich dynamical
behavior exhibited by the model.

The lines in the bifurcation diagram correspond to periodic firing where the interspike intervals take on a finite
number of values. The thick parts correspond to regimes where the interspike interval takes either a countable
but very large number of values, or an uncountable value. Given that in the diagram there are only finitely many
points represented, it is not possible to state whether these regimes correspond to periodic orbits with large periods,
quasiperiodic or chaotic regimes. The leading Lyapunov exponent brings in valuable information in this respect,
as the exponents associated with these regimes are respectively, negative, zero and positive. The ranges of positive
exponents inFig. 2b suggest that, as expected, there are indeed chaotic regimes within these regions. Besides the
existence of chaos,Fig. 2contains valuable information about the scenario leading to such dynamics asα is varied.
The diagram reveals that tangent bifurcations (nearα = 31) and period doubling cascades can lead to chaotic
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Fig. 2. (a) ISI∆n as a function ofα illustrating the complex dynamics exhibited by our model. Period doubling bifurcations as well as tangent
bifurcations are seen. (b) Largest Lyapunov exponentΓ of the model as a function ofα.Γ is positive for certain values ofα indicating sensitivity
to initial conditions and thus chaotic dynamics. Parameter values were:sr = 0.0268,τs = 0.8, τv = 1, a = 0.1732,w = 0.62832,µ = 0.25,
s0 = 0.1. We further usedW(s, α) = exp[α(s − sr)] − 1. We used 1800 time units worth of data to estimate the Lyapunov exponents for each
value ofα.

dynamics in the model. Our numerical explorations revealed the role of another factor, besidesα, in the onset of
chaos.

Sensory neurons adapt in different ways, some faster and more markedly than others. To account for this, we
used different fatigue functionsW to check how the shape of this function affected the possibility of the onset of
chaos. The simulations showed that this factor could indeed be important in this respect. For instance, whenW was
taken as a linear function, the simulations did not produce chaotic dynamics (not shown), while whenW increased
exponentially, such regimes were readily observed (Fig. 2). However, a sigmoidal form ofW did yield chaotic
dynamics (not shown). At this point, the simulations do not suffice to rule out the possibility of chaos for the linear
fatigue function, however, they do indicate that, if there are chaotic dynamics for this variant, then they occur in
more restricted parameter ranges than for variants with rapidly increasingW .

In summary, our numerical investigations of the dynamics of the sinusoidally LIF with fatigue showed that this
model, unlike the standard LIF, is capable of producing chaotic dynamics, provided that the fatigue functionW

increase sufficiently rapidly and that the fatigue parameterα be large enough. In the following section, we try
to clarify the underlying mechanisms by analyzing a particular regime where the model dynamics can be further
simplified.

5. Approximation with a circle map

To gain deeper understanding of the chaotic dynamics brought about by the parameterα, we reduce the dynamics
to a one-dimensional map. In general, the reduction of the dimension from 2 to 1 is not possible. Such a scheme
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is valid under special conditions, that require extra hypotheses on the parameters. Schematically, the reduction is
possible when the voltage transient dynamics are substantially faster than the evolution of the threshold. In heuristic
terms, this assumption means that, after each discharge, the voltage rapidly reaches its asymptotic oscillatory regime
before crossing the threshold. In this way, we can neglect the transient voltage dynamics following each discharge.
This allows us to focus on only one equation, that of the threshold decay. In this way, we are able to reduce the
model to a single one-dimensional system whose dynamics are captured by a circle map.

5.1. Definition of the reduced model

We first introduce the reduced model’s voltage and threshold as

v̂(t) = Vr + A sin(Ωt − φ), (15)

ŝ(t, tn, S
+
n ) = sr + (S+

n − sr)exp(tn − t). (16)

In fact Eq. (16)definingŝ is identical toEq. (6)defining the threshold of the full model, so that from this point on
we use the same notations (without the “hat”) for both models.

The successive discharge times and postdischarge thresholds of this model are defined similarly to those of the
full model (Eqs. (8) and (9)) as

tn+1 = F1(tn, S
+
n )

def= min{t : t > tn and v̂(t) = s(t, tn, S
+
n )}, (17)

S+
n+1 = F2(tn, S

+
n )

def= s0 +W(s(tn+1, tn, S
+
n ), α). (18)

At this stage, the description of the reduced model is through a two-dimensional mapF = (F1, F2). Similarly to the
full model, this map is a lift of a map of the annulus that we denote byF̃ . We show that the dynamics of the iterates
of this map can be derived from those of a one-dimensional circle map. More precisely, the essential difference
between the full and reduced models resides in thatv̂ (Eq. (15)), unlikev (Eq. (8)), does not depend explicitly on
tn. Taking advantage of this, and thats(tn, tn−1, S

+
n−1) = v̂(tn), we can rewriteEq. (18)at then− 1th iterate as

S+
n = F red

2 (tn)
def= s0 +W(v̂(tn), α), (19)

which can be substituted intoEq. (17)to yield a one-dimensional maptn → tn+1:

tn+1 = f(tn)
def= F1(tn, F

red
2 (tn)). (20)

A necessary and sufficient condition for the existence oftn+1 is

Vr + A > sr. (21)

This is similar to condition(7) stating that the firing is sustained if and only if the maximal voltage is larger than
the resting threshold. Provided this condition is satisfied, we havef(t)+ T = f(t + T) for T = 2π/Ω, so thatf is
the lift associated to a degree-one circle mapf̃ defined asθ → Ωf(θ/Ω) modulo 2π.

In terms of the dynamics on the annulus, the above result shows that (i) the subset of the annulus defined as
C = {(θ, S) : S = s0 +W(v̂(θ/Ω), α)} is forward invariant under̃F (i.e. F̃ (C) ⊂ C), (ii) the subsetC is absorbing
as for any(θ, S) in the annulus, we havẽF(θ, S) ∈ C and (iii) the dynamics of̃F onC are given by the iterates
of the circle mapf̃ . In other words, the reduced model defined on the annulus can indeed be reduced to a circle
map. The mapf is not necessarily onto, so that in the following we make the extra assumption:

Vr − sr > A
√

1 +Ω2. (22)
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Condition(22)ensures thatf is onto, and furthermore, that the voltage and threshold curves intersect transversally
(cannot be tangent to one another) at any discharge time. This latter condition proves important when considering
the full model as a perturbation of the reduced model. Finally, we also assume thats0 > Vr +A, so that, even when
adaptationα is set to zero, the reduced model is well defined: all postdischarge thresholds are above the voltage.
This is made necessary because in the reduced model there is no postdischarge voltage reset.

5.2. Pointwise convergence of the full model to the reduced model

Theorem 1. Let the maps H and F be defined as above. Let time be rescaled to the threshold time scalet → t/τs,
and setVr = µτv, A = aτv/

√
1 + w2τ2

v ,Ω = wτs, cos(φ) = 1/
√

1 + w2τ2
v with φ ∈ [0, π/2]. Asτv → 0, while

holdingVr, A andφ constant, the map H of the full model converges pointwise to the map F of the reduced model
defined above.

Proof. We start with a preliminary remark concerning the interdischarge intervals of the full and reduced models.
We rewrite the voltage of the full model as

v(t′, t) = v̂(t′)+ g(t′, t, τv), (23)

wherev̂ is given inEq. (15)andg is defined as

g(t′, t, τv) = exp

[
− t

′ − t

τv

]
(A sin(Ωt − φ)− Vr) if τv > 0, (24)

g(t′, t, τv) = 0 if τv = 0. (25)

From condition(22), we have thatA− Vr < A
√

1 +Ω2 − Vr < −sr < 0, so that, forτv > 0, g(t′, t, τv) < 0 and
v(t′, t) < v̂(t′) for all t andt′. This means that the voltage of the full model is always below that of the reduced
model. A direct consequence of this is that if at timet, the thresholds of both full and reduced models are set to the
same valueS > s0, the reduced model will be the first of the two to fire. In terms of the maps, this translates into
F1(t, S) < H1(t, S). Denoting byTm the shortest interspike interval of the reduced model, i.e.Tm = inf {F1(t, S)−t :
t ≥ 0, S ≥ s0}, we see thatTm does not depend onτv, andtn+1−tn ≥ Tm ≥ ln[(s0+W(sr, α)−sr)/(Vr+A−sr)] > 0
for any pair of successive discharge times(tn, tn+1) of the full model (at any value ofτv).

Now, we compare in more detail the discharge times of the full and reduced models. The discharge times of both
models are defined by the following implicit relation:

Φ(t′, t, S, τv)
def= s(t′, t, S)− v̂(t′)− g(t′, t, τv) = 0. (26)

From the definition ofg, settingτv = 0 in this equation corresponds to the reduced model. However, this does not
imply that the above relation is smooth inτv = 0. In factτv → Φ(t′ = t, t, S, τv) is not continuous atτv = 0. This
does not pose a problem in the following, because as reported in the preliminary remark of the previous paragraph,
our main interest would be in the range oft′ ≥ t + Tm, and therefore bounded away fromt′ = t.

We denote byΘ(t, S,0) = min{t′ > t : Φ(t′, t, S,0) = 0} the discharge time of the reduced model, that is,
Θ(t, S,0) = F1(t, S). Our assumptions on model parameters ensure that forS ≥ s0,Θ(t, S,0) is well defined, and
moreover thatΘ(t, S,0) ≥ t + Tm. The map(t′, τv) → g(t′, t, τv) is of classCm (m times smoothly differentiable)
for any positive integerm, on [t+ Tm/2,+∞)× [0,+∞). The same holds for(t′, τv) → Φ(t′, t, S, τv). Moreover,
from condition(22) the partial derivative∂Φ/∂t′ does not vanish at(Θ(t, S,0), t, S,0). More precisely

∂Φ

∂t′
(Θ(t, S,0), t, S,0) = ∂s

∂t′
(Θ(t, S,0), t, S)− v̂′(Θ(t, S,0)), (27)
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∂Φ

∂t′
(Θ(t, S,0), t, S,0) < sr − Vr + A

√
1 +Ω2, (28)

∂Φ

∂t′
(Θ(t, S,0), t, S,0) < 0. (29)

Given the above conditions, the implicit function theorem yields that there are neighborhoodsU andU ′ of τv = 0 and
Θ(t, S,0) in [0,+∞) and [t + Tm/2,+∞), such that for eachτv ∈ U, there is a uniquely definedΘ(t, S, τv) ∈ U ′

such thatΦ(Θ(t, s, τv), t, s, τv) = 0. Furthermoreτv → Θ(t, S, τv) is of classCm (for any positive integerm) onU.
The above means that the voltage and threshold of the full model cross one another at timeΘ(t, S, τv). The

preliminary remark above precludes such intersections at any timet′ such thatt < t′ < t + Tm (in fact, we
must havet′ > t + Θ(t, S,0) ≥ Tm), so thatΘ(t, S, τv) is indeed the first crossing between the voltage and the
threshold followingt. In other words we haveΘ(t, S, τv) = H1(t, S). Combining this withΘ(t, S,0) = F1(t, S),
and the smoothness ofτv → Θ(t, S, τv) establishes thatH1(t, S) → F1(t, S) as τv → 0. Finally, given that
H2(t, S) = s0 +W(s(H1(t, S), t, S), α), andF2(t, S) = s0 +W(s(F1(t, S), t, S), α), the pointwise convergence of
H2 to F2, and henceforth that of the full annulus mapH to the reduced annulus mapF , at fixed(t, S) asτv → 0
follows suit. �

Corollary 1. The derivatives of H also tend pointwise to those of F asτv → 0.

Proof. For τv sufficiently small, the map(t, S, τv) → Θ(t, S, τv) is also of classCm. This completes the
proof. �

5.3. Uniform convergence of the full model to the reduced model

Theorem 2. Let the maps H and F be defined as above. Let time be rescaled to the threshold time scalet → t/τs,
and setVr = µτv, A = aτv/

√
1 + w2τ2

v ,Ω = wτs, cos(φ) = 1/
√

1 + w2τ2
v with φ ∈ [0, π/2]. Asτv → 0, while

holdingVr, A andφ constant, the map H of the full model converges uniformly to the map F of the reduced model
defined above.

Proof. For τv > 0, the functiong introduced inEq. (24)satisfies:

g(t′, t, τv) < g(t′, t, τ′v) < 0 for τv > τ
′
v, (30)

−e−Tm/τv(Vr + A) < g(Θ(t, S, τv), t, τv) < 0. (31)

From the first inequality, we derive thatτv → Θ(t, S, τv) is monotonic increasing, that isΘ(t, S, τv) > Θ(t, S, τ′v)
for τv > τ′v. From the second inequalities, we obtain that the crossing timeΘ(t, S, τv) is betweenΘ(t, S,0) (the
crossing time of the reduced model) and that of the threshold throughṽ(t) = v̂(t) − e−Tm/τv(Vr + A). We denote
this latter time as̃Θ(t, S, τv). Now, under condition(22), we have that forτv sufficiently small

sr − Vr + A
√

1 +Ω2 + e−Tm/τv(Vr + A) < 0, (32)

so that:

0< Θ(t, S, τv)−Θ(t, S,0) < Θ̃(t, S, τv)−Θ(t, S,0) < b(τv), (33)

where

b(τv)
def= e−Tm/τv(Vr + A)

Vr + sr − A
√

1 +Ω2 − e−Tm/τv(Vr + A)
, (34)

tends to zero asτv → 0.
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Thus, we haveH1(t, S) = Θ(t, S, τv) → F1(t, S) = Θ(t, S,0)monotonically uniformly asτv → 0 and the right
hand side of inequality(33) provides an upper bound for the speed of the convergence. Using(33), we obtain the
following bound for the differences between the thresholds at the discharge times of the reduced and full models:

0 ≤ s[Θ(t, S,0), t, S] − s[Θ(t, S, τv), t, S] ≤ (SM − sr)e−Tm [1 − eb(τv)], (35)

whereSM = s0 + W(Vr + A
√

1 +Ω2, α), does not depend on(t, S). This inequality shows that(t, S) →
s[Θ(t, S, τv), t, S] converges uniformly to(t, S) → s[Θ(t, S,0), t, S] asτv → 0. This yields uniform convergence
of H2 to F2, as

0 ≤ F2(t, S)−H2(t, S) ≤ K(SM − sr)e−Tm [1 − eb(τv)], (36)

where

K = max

{
∂W

∂s
(s, α) : s ∈ [s0 +W(sr, α), Vr + A

√
1 +Ω2]

}
.

Furthermore, in the same way as forH1 to F1, the convergence ofH2 to F2 is monotonic (i.e.H2 increases to
F2 as τv → 0) becauses → W(s, α) is monotonic increasing,t′ → s(t′, t, S) is monotonic decreasing, and
τv → Θ(t, S, τv) is monotonic increasing. This completes the proof of the uniform convergence ofH to F as
τv → 0. �

We have actually proved a stronger result in that‖F − H‖ decreases monotonically to zero asτv → 0, where
the‖ · ‖ represents the supremum norm for(t, S) ∈ [0, T ] × [s0 +W(sr, α), SM ].

5.4. Geometrical interpretation of the reduction

We now provide a geometrical interpretation of the above results to show how the annulus map is transformed
into a circle map asτv → 0. The annulus map̃F of the reduced model maps the whole annulus into the subset
C = {(θ, S) : S = s0 +W(v̂(θ/Ω), α)} (Section 5.1). The setC is a circle-like subset winding around the “hole”
in the middle of the annulus. DefiningC(τv) = {(θ, S) : S = s0 + W(ṽ(θ/Ω), α)} by substitutingṽ for v̂ in the
definition ofC, we obtain another circle-like subset of the annulus that lies “inside”C, in the sense that at fixed
angleθ, the radius ofC(τv) is smaller than that ofC. In this way, the region, denoted byΞ(τv) is betweenC(τv)
from inside andC from outside, is itself annulus-like. The annulus mapH̃ of the full model maps the whole annulus
intoΞ(τv). As τv → 0, the lower borderC(τv) of Ξ(τv) approaches the upper borderC uniformly in (θ, S), so that
the two-dimensional domainΞ(τv) shrinks into the one-dimensional graphC, accounting for the transformation of
the full model into the reduced model described by the iterates of a circle map.

Finally, to ensure thatH inherits some of the dynamics ofF whenτv is sufficiently small, we show that partial
derivatives ofH with respect tot andS converge uniformly to the partial derivatives ofF asτv → 0. The expressions
for the partial derivatives ofH1 andF1 with respect tot andS can be obtained from the implicit function theorem
applied toΦ (Eq. (26)). The uniform convergence ofH1 to F1 together withEq. (31), ensure that∂H1/∂t and
∂H1/∂S converge uniformly to∂F1/∂t and∂F1/∂S for (t, S) ∈ [0, T ] × [s0+W(sr, α), SM ] asτv → 0. The uniform
convergence of∂H2/∂t and∂H2/∂S to ∂F2/∂t and∂F2/∂S is obtained in a similar way.

In conclusion, we have that‖F − H‖ + ‖dF − dH‖ → 0 asτv → 0, where dF(t, S) and dH(t, S) are linear
operators on the plane defined by the differentials ofF andH with the second norm above computed as

‖dF − dH‖ = sup
(t,S)∈[0,T ]×[s0+W(sr,α),SM ]

‖|dF(t, S)− dH(t, S)‖|
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‖|(dF(t, S)− dH(t, S))‖| = sup
max(|l1|,|l2|)=1

‖(dF(t, S)− dH(t, S))(l1, l2)‖.

One can thus consider the mapH associated with the full model as a regular perturbation of the mapF as-
sociated with the reduced model. This implies some similarity between the dynamics of the full and reduced
models. For instance if for some parameterα, F has a hyperbolic fixed point or periodic orbit, then so would
H for sufficiently smallτv. Furthermore, the corresponding fixed point or periodic orbit ofH would be close
to that ofF . In general, if the dynamics of the reduced model are structurally stable on the annulus, then for
τv sufficiently small, the dynamics of the full and reduced models would be qualitatively similar. In the same
way, if for someαc, the reduced model undergoes a codimension one bifurcation, one expects to find a similar
bifurcation for a nearbyα = αc(τv) for all τv sufficiently small. For more complex dynamics, our numerical in-
vestigations suggest that the similarity between full and reduced models is also present in the regimes where the
reduced model displays chaotic dynamics (these are identified numerically from the sign of the Lyapunov expo-
nent). The reduction is thus a valid means to investigate the mechanisms underlying chaotic dynamics in the full
model.

5.5. Practical consideration on the approximation with the circle map

The bounds on the distance between the map of the full model and that of the reduced model are given in
Eqs. (33) and (36). The key quantity that ensures that these bounds tend to zero asτv → 0 is e−Tm/τv . Having
e−Tm/τv < ε ensures that‖F − H‖ < cε for some constantc that is independent fromτv. So the condition
for H to be close toF with the precisioncε is verified as soon asτv < −Tm ln ε. We remind thatTm is the
shortest interdischarge interval for the reduced model, computed over all initial conditions on the annulus, that is,
Tm = inf {F1(t, S) − t : t ≥ 0, S ≥ s0 + W(sr, α)}. ThusTm is longer than the time required for the threshold
initiated at the lowest threshold levels0 +W(sr, α) to reachVr + A, the highest voltage value. In other words, we
have a lower bound forTm which is:Tm ≥ T ∗ = − ln[(s0 +W(sr, α)− sr)/(Vr +A− sr)] > 0. The conditionτv <
−T ∗ ln ε, ensures that the distance betweenF andH is smaller thancε. AsT ∗ can be computed directly from model
parameters, this relation can be used in practice to obtain an upper bound for the distance between full and reduced
models.

It is possible to improve on this first approximation by limiting the set over which the minimal interdischarge
interval is computed from the full annulus to the setΞ(τv) (comprised betweenC(τv) andC). Indeed, as argued
previously, the iteration of̃H sends the annulus into this set, so that one can limit the comparison of the action of
F̃ andH̃ to the setΞ(τv). We denote byT ′

m this minimal value to distinguish it from the previous one.
The restriction from the annulus toΞ(τv) increases the lowest admissible threshold froms0 + W(sr, α) to

s0 +W(Vr − A− e−Tm/τv(Vr + A), α). From this we derive that:

T ′
m ≥ ln

{
s0 +W(Vr − A− e−Tm/τv(Vr + A), α)− sr

Vr + A− sr

}
≥ T ∗∗(τv),

where

T ∗∗(τv) = ln

{
s0 +W(Vr − A− e−T ∗/τv(Vr + A), α)− sr

Vr + A− sr

}
.

The conditionτv < −T ∗∗(τv) ln(ε) ensures that onΞ(τv) the map of the reduced model approximates that of
the full model with a precision better thancε. We haveT ∗∗(τv) > T ∗, so that the new condition reveals that the
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approximation by the circle map holds to a precisioncε over a wider range ofτv than the one derived fromT ∗. In
this sense, the restriction of the set yields an improvement.

5.6. Lyapunov exponent of the reduced model

We have shown that the reduced model can be described by iterates of a one-dimensional map. Here again, as in
Section 3, we can either derive the Lyapunov exponents associated to this map, or, as before, analyze the growth
rate of small perturbations to the model variables. We once again adopt the second approach. The expressions are
presented inAppendix A.

5.7. The mechanism for chaos: relation with non-monotonic circle maps

The reduction of the model is possible only under certain hypotheses on the voltage and threshold time scales.
Theoretical arguments suggest that despite these simplifying assumptions, the reduced model can capture the main
scenarios of transition to chaos observed in the full model. This is verified using numerical simulations:Fig. 3
illustrates the similarity between the two models.Fig. 3a shows the bifurcation diagram whileFig. 3b shows the
Lyapunov exponent of the reduced model when the parameterα is increased. As inFig. 2, transitions to chaos in
the reduced model are associated with period doubling and halving cascades as well as tangent bifurcations. In this
sense, the reduced model reproduces the main scenarios observed for the full model and constitutes a satisfactory
simplification.

The contribution of this reduction is that the dynamics of the one-dimensional model correspond to those of circle
maps, that is, of a well understood class of systems. Therefore, we can take advantage of this, to determine how
the increase in the parameterα can lead to chaos. We now study the effects of different functional forms for the
functionW on the dynamics exhibited by the model.
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Fig. 3. (a) ISI∆n as a function ofα illustrating the complex dynamics displayed by the reduced model. It displays similar dynamics to the full
model. (b) Lyapunov exponentΓmap of the reduced model.Γmap is positive for certain value ofα indicative of chaotic dynamics. Parameter
values are the same as inFig. 2.
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6. The circle map is monotonic for sublinear fatigue, and non-monotonic for sufficiently
supralinear fatigue

In this section, we examine the dependence of the circle map on the rate of increase of the fatigue functionW .
Roughly speaking, whenW increases at most linearly, then the map is always one-to-one. Conversely, whenW [s, α]
increases assβ, then the map is non-monotonic forβ > 1 large enough. The exact value ofβ is shown to depend
on the system parameters.

The circle mapf̃ is of degree-one asf(t + T) = f(t) + nT for n = 1. Thereforef̃ is one-to-one if and only
if it is monotonic increasing. When this is the case, iterations off̃ cannot produce chaos. Using this observation,
we prove that when the threshold fatigueW [s, α] does not increase rapidly enough ins, chaotic dynamics cannot
occur. The importance of this result is in that it does not depend on model parameters as long as one assumes that
condition(22) is satisfied, which was the case throughout the reduction procedure. Next, we investigate necessary
conditions for the occurrence of chaos. These depend more explicitly on parameters, in the sense that the minimal
rate of increase ofW to destroy monotonicity off depends onsr, Vr,A andΩ, and the minimal value ofα at which
this happens depends on these ands0.

One way to interpret the dynamics of the reduced model is to consider that, after each discharge, the threshold is
reset at̂vh(t) = s0 +W(v̂(t), α) and then decays exponentially until reachingv̂ at some timet′ > t (v̂(t) is defined
in Eq. (15)). A necessary condition for a discharge to occur at a timet is that the threshold crossv̂ from above at
t. In other words, the slope of the threshold at the crossing must be smaller than the slope of the voltage. Now, the
slope of the threshold equalssr − s, which at the time of crossing equalssr − v̂. With this, the necessary condition
for a discharge to occur att reads:

sr − v̂ ≤ v̂′. (37)

This inequality is satisfied when condition(22) holds. Hence, it holds for all reduced models considered in this
work, and we assume that it is valid throughout this section as well. In other words, we deal with circle maps that
are onto. This is of prime importance. Indeed, for the sinusoidally forced standard LIF, there are parameter ranges
such that the circle map is not monotonic. However, in these cases, the map is not onto, and when it is restricted
to its domain, it becomes monotonic[19]. Such a restriction is not possible in the situations we consider below
because the map is onto, and the lack of monotonicity cannot be avoided by restricting the domain.

In the degree-one circle maps we consider, chaos cannot occur if the map is monotonic. Therefore a sufficient
condition to exclude chaos is to show that the map is monotonic and, conversely, a necessary condition for the
occurrence of chaos is for the map to be non-monotonic. Equivalently, we can restate these conditions as follows:
a sufficient condition to exclude chaos is that the map be one-to-one and a necessary condition for chaos is the
existence of two pointst1 < t2 in [0, T) with f(t1) = f(t2). So we examine first necessary and sufficient conditions
for the map to be one-to-one.

A necessary and sufficient condition for the circle map to be one-to-one is that any threshold curvet → s(t, t0, S)

cross the reset curvêvh at a single point. If there is a threshold curve crossingv̂h at two distinct pointst1 < t2 in
[0, T), then we haves(t, t1, v̂h(t1)) = s(t, t2, v̂h(t2)) for all t, notably at the crossing between the threshold and the
voltagev̂, so thatf(t1) = f(t2), and the map is not one-to-one. Conversely, when the circle map is not one-to-one,
there are at least two pointst1 < t2 in [0, T) with f(t1) = f(t2). This means that the thresholdst → s(t, t1, v̂h(t1))

andt → s(t, t2, v̂h(t2)) intersect one another as they cross the voltage curvet → v̂(t) at the same point. Now, the
threshold curves being the solutions of the same scalar ordinary differential equation, that they intersect at one point
implies that they represent the same solution. In other words,s(t, t1, v̂h(t1)) = s(t, t2, v̂h(t2)), which shows this
threshold curve intersects the voltage at least two pointst1 andt2. This relation shows that when the circle map is
not one-to-one, there is a threshold curve crossingv̂h(t) at at least two distinct points.
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We can translate these conditions in terms of the derivatives of the voltage and the reset voltage. More precisely, a
sufficient condition for the circle map to be one-to-one is that the slope of the threshold on the reset curvev̂h is lower
than the slope of̂vh at all crossings. Given that the slope of the threshold at the crossing is given bysr− s = sr− v̂h,
this conditions reads:

sr − v̂h < v̂
′
h. (38)

In summary, assuming that(37) holds, inequality(38) is a sufficient condition for the circle map to be one-to-one:
it is a sufficient condition to rule out chaos.

Conversely, a sufficient condition for the map not to be one-to-one is that there exist somet∗ ∈ [0, T) such that
the threshold crosses from belowv̂h at timet∗, with derivatives satisfying:

sr − v̂h(t
∗) > v̂′h(t

∗). (39)

In fact, at such a pointt∗, the mapf is decreasing, i.e.f ′(t∗) < 0. In this way, the range oft∗ such that inequality
(39) holds corresponds to the range wheref is decreasing. Its lower and upper borders correspond to the extrema
of f . This is why the existence oft∗ ensures that the map is no longer monotonic increasing, but also exhibits
monotonic decreasing regions.

We remind that the typical fatigue functions used in this work areW(s, α) = α(s− sr) andW(s, α) = exp(α(s−
sr))− 1. Generally, we rewrite the fatigue function asG(α(s − sr)) = W(s, α). The functionG is non-decreasing
(i.e.G′ ≥ 0) and satisfiesG(0) = 0. Denotingu = v̂− sr, then condition(37) translates into:

−u ≤ u′, (40)

and the conditions(38) and (39)hold depending on whether the following quantityR is positive at all times, or
whether there existst∗ ∈ [0, T) such that it is negative:

R = s0 − sr +G(αu)+ αu′G′(αu). (41)

6.1. Sufficient condition for the map to be monotonic increasing

Theorem 3. Let W be linear or concave down. ThenR > 0 is always satisfied.

Proof. Using inequality(40), the monotonicity ofG, and the fact thats0 > sr, we have

R > G(αu)− αuG′(αu). (42)

Therefore, a sufficient condition forR > 0 isG(αu) ≥ αuG′(αu). Clearly this is satisfied whenG is linear. WhenG
is concave down,G′ is decreasing, so thatG(αu) = ∫ αu

0 G′(x)dx ≥ ∫ αu
0 G′(αu)dx = αuG′(αu), which is exactly

the inequality above. In conclusion, we have established that the circle map is one-to-one and hence monotonic
increasing whenW is linear or concave down (referred to as sublinear). �

6.2. Sufficient condition for the map to become non-monotonic forα large regardless of model parameters

Theorem 4. Let R be defined as aboveG(x) = exp(x)− 1. Then there exists at least onet∗ andα such thatR < 0
and thus the circle map f is non-monotonic.

Proof. At α = 0, we haveR = s0 − sr > 0 so that the circle map is monotonic. Therefore,R < 0 may occur
only for α large. Furthermore, examining the terms inR (Eq. (41)) reveals that the first two terms are positive as is
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αG′(αu). ThusR can become negative only at a timet∗ such thatu′(t∗) < 0. So in fact, we examine whether at
some fixedt such thatu′(t) < 0 increasingα can renderR negative. We have thus limited the domain oft.

We introduce the following notations:x = αu,M = sr − s0 > 0, andL = −u′(t)/u(t). Fort such thatu′(t) < 0,
we have 0< L ≤ LM < 1 with LM = AΩ/

√
(Vr − sr)2 − A2 andL = LM at t such that sin(Ωt − φ) =

−A/(Vr − sr). We definex → i(x) for x ≥ 0 as

i(x) = LxG′(x)−G(x)−M. (43)

Then showing thatR < 0 for somet∗ andα large enough is equivalent to showing thati(x) > 0 for x > 0 large
enough withL = −u′(t∗)/u(t∗).

ForG(x) = exp(x) − 1, we havei(x) = exp(x)(Lx − 1) + 1 −M, which is a monotonic increasing function
tending to+∞ asx → +∞. Thus for eachL, there exists a uniquex∗ > 0, such thati(x∗) = 0 andi(x) > 0
if and only if x > x∗. This means that for anyt such thatu′(t) < 0, there isα∗ such that forα > α∗, we have
R < 0. �

This establishes that forW exponential, the circle map becomes non-monotonic forα large enough, and that this
holds regardless of the choice of the model parameters as long as condition(22) holds. Furthermore, the range of
t where lifts of the circle map are decreasing broadens withα to cover allt such thatu′(t) < 0, that ist in the
union of(φ + T/4 + kT, φ + 3T/4 + kT) for all integersk. The two previous analyzes are concerned with the two
extreme situations where, irrespective of parameters (other thanα), the map remains either monotonic for allα,
or conversely, becomes non-monotonic forα sufficiently large. The first holds forW linear and sublinear and the
second forW exponential. Here, we examine a class of intermediate supralinear functions. This completes the proof
and sheds light on the transition between the two extreme cases.

6.3. Sufficient condition for the map to become non-monotonic forα large depending on model parameters

Theorem 5. Let G be such thatG(x) − xβ = η(x), whereβ > 1 is a real number andη is a smooth function
satisfyingη(x) → 0 andη′(x) → 0 asx → +∞. Then the map f is non-monotonic forα large enough.

Proof. In this way, forx large,G is close to a convex monotonic increasing function with a power growth ratexβ.
Substituting this intoi (Eq. (43)) yields

i(x) = (βL− 1)xβ −M − η(x)+ Lxη′(x). (44)

Given thatβ > 1, the first term is the dominating term asx → +∞, andβL− 1 determines the sign ofi for large
x. If β ≤ 1/LM , we havei < 0, so that for largeα, the circle map is monotonic increasing. This relation shows
that not only sublinear and linear fatigues lead to monotonic circle maps, but that this also extends to supralinear
fatigues with low power growth rates. Only, in this case, the upper limit growth rate depends onLM and therefore
on model parameters. There is not a valueβ > 1 such that for all parameters, one would expect to have monotonic
increasing circle maps at all values ofα. Changing the parameter values modifiesLM and therefore the limiting
valueβm = 1/LM . In other words, for a givenβ > 1, there will be some parameters that would yield monotonic
circle maps at allα, and other parameters for which the circle map becomes non-monotonic for largeα.

For β > βm, the functioni becomes positive forx large enough and tends to+∞ asx → +∞. In this case,
for α large enough, the circle map is no longer monotonic. The range oft for which any lift of the circle map is
decreasing depends on the value ofβ, and is more restricted than for exponential fatigue, even asα → +∞. For
the power growth rate, this asymptotic range is that oft such thatL > 1/β, whereas for the exponential fatigue it
is t such thatL > 0. Increasingβ widens this range towards that of the exponential fatigue. �
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Fig. 4. The circle mapf(t) for different values ofα and different functional forms forW . The circle map forW [s, α] = α ∗ (s− sr) andα = 10
(a) andα = 30 (b). The circle map forW [s, α] = exp(α ∗ (s− sr))− 1 andα = 10 (c) andα = 30 (d). Other parameter values are the same as
in Fig. 2.

6.4. Summary of results

In summary, our analysis focussed on conditions on the growth rate of the fatigue function that would ensure either
monotonic increasing circle maps at allα (W sublinear, linear and weakly supralinear power function), or would
lead to a loss of monotonicity forα large enough (W strongly supralinear power function and exponential). Chaos
can only occur in the latter case. Numerical simulations confirm that it does for someW such as the exponential one.

6.5. Examples of circle maps

We end this section by providing several examples of the circle maps for different fatigue functionsW andα. The
left column inFig. 4 illustrates the case of linear fatigueW(s, α) = α(s− sr) for α = 10 and 30 (top and bottom).
The panels of the right column represent the case ofW with exponentialW(s, α) = exp(α(s− sr))− 1 for the same
values ofα. As expected, in all cases the maps are monotonic forα small (upper row). ForW linear, it remains so at
largerα, but in the other case, the map develops a local extremum: it is no longer monotonic. The map in the lower
right panel actually leads to chaotic dynamics as seen inFig. 3. We also note that it is possible to obtain chaotic
dynamics for sigmoidal fatigue functions (data not shown).

7. Discussion

The periodically forced standard LIF cannot produce chaotic firing. Variants of this model have been proposed
that overcome this issue. Modifications leading to these variants were not necessarily motivated by biologically
plausible mechanisms. For instance, one approach that renders the LIF capable of exhibiting chaotic dynamics is
to add the periodic modulation to the postdischarge resetting voltage rather than as an injected current[10]. Such
variants of the LIF have been successful in reproducing the behavior of specific physical, chemical and biological
systems[2,14]. However, our concern was the case of sensory neurons for which the influence of periodic sensory
stimulation is not necessarily limited to postdischarge membrane potential resetting. Different mechanisms may



M.J. Chacron et al. / Physica D 192 (2004) 138–160 155

underlie the complex behavior of periodically forced neurons. For this reason, our study focussed on a specific
biologically plausible property, namely threshold fatigue.

Our specific purpose in this paper was to show that threshold fatigue can be one source of chaos in neurons.
The mechanism implemented in the model differs from those included in previous variants of the LIF that produce
chaos. It is legitimate to consider whether this difference is merely at the level of the model or whether it has also
implications in terms of the dynamics. In other words, the question is whether the LIF with threshold fatigue presents
the same dynamics as those of other variants of the LIF that display chaos, or whether this model can potentially
exhibit novel dynamics. At this time, this is an open question, however, it is possible to discuss it based upon the
dynamical characteristics of the models.

The dynamics of the periodically forced standard LIF and variants with periodically modulated threshold or
resetting voltage can be described in terms of iterates of circle maps. We showed that a similar description holds for
the LIF with threshold fatigue, when the voltage time scale is substantially smaller than the threshold time scale. The
circle map corresponding to the standard LIF is monotonically increasing, at least when the map is restricted to its
range. This precludes chaotic dynamics. For the modified LIF where the periodic modulation is implemented in the
voltage resetting value, the situation is different. The corresponding circle map is no longer necessarily monotonic: it
is possible to have situations where the map is no longer one-to-one. For these maps the dynamics can be chaotic[10].

We clarify the relation between the LIF with threshold fatigue and the other LIF variants. It is possible to consider
variants of the LIF, where the periodic modulation is imposed simultaneously on both the postdischarge voltage
and the threshold (see e.g.[10]). The dynamics of the voltage between successive firings are then supposed to be
exempt of any periodic forcing and follow an exponential function connecting the postdischarge voltage curve to
the threshold curve. Clearly the successive discharge phases of such models are described by iterates of circle maps.
When the amplitude of threshold modulation is lower than or equal to that of the postdischarge reset, the circle
map is orientation preserving or can be restricted to a monotonic map. Chaotic dynamics are thus not possible.
Conversely, when it is the modulation amplitude of the postdischarge voltage that is larger, the circle map is not
necessarily monotonic, and the dynamics can be chaotic.

The LIF variant with constant threshold and modulated resetting is the extreme case of this model. The standard
LIF, on the other hand, is similar to the case where both threshold and reset voltage are modulated with the same
amplitude. Our reduction of the LIF with threshold fatigue shows that when the voltage recovery is substantially
faster than the threshold decay, the dynamics of the LIF with threshold fatigue is also similar to the general class of
model described above. In contrast with other LIF models, in our approximation it is the threshold, rather than the
voltage that is reset after each discharge. In the approximated model, the threshold exponentially decays between
two periodic functions (the voltage and its reset value). The parameterα, representing threshold fatigue, controls
the ratio of the amplitudes of these functions. Whenα is large, the amplitude of the postdischarge reset function
becomes the larger of the two. Thus, the circle map is not necessarily one-to-one in this case and chaotic dynamics
become possible. Although chaotic dynamics were not observed for a linear fatigue function, they were observed
when it was sufficiently non-linear.

The remaining issue is whether in the general case, for arbitrary voltage and threshold time scales, where the
dynamics of the model cannot be reduced to iterates of a circle map, novel dynamics can occur. The dynamics
of circle maps are essentially characterized by their rotation number. When the map is monotonic, the rotation
number is uniquely defined regardless of the initial condition. Rational rotation numbers define the phase locked
regimes and irrational rotation numbers characterize quasiperiodic or strange non-chaotic dynamics. When the
map is no longer one-to-one, the rotation numbers depend on the initial condition and therefore form an interval
(the rotation interval) depending on the initial conditions, and still carry on valuable information about the long
term dynamics of the system. For instance, when the rotation interval is not reduced to a single point, chaos
can occur[6]. So one can wonder whether a quantity similar to the rotation number can also be defined for the
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annulus map associated with the periodically forced LIF with threshold fatigue, and also whether this quantity
would impose similar restrictions on the dynamics of the map. It is possible to provide partial answers to these
questions.

The annulus map associated with the periodically forced LIF with threshold fatigue is not arbitrary. It is in fact
a twist map of the annulus[22], because for fixedt, the maps → t′ = H1(t, s) (definedEqs. (8)) is monotonic
increasing. This is easily understood in biological terms: given two neurons subject to the same periodic stimulation,
and having discharged simultaneously, the one with the lower postdischarge threshold of the two will fire sooner
than the other. This property severely constrains the dynamics of the annulus map, however, it does not reduce
it to that of a circle map. For instance, rotation numbers can be defined for twist circle maps, however, they
do not necessarily form an interval[22], a situation that would be precluded for circle maps. In terms of the
neuronal model, this example indicates that the LIF with threshold fatigue may display dynamics that have no
counter part in other LIF variants that can be analyzed in terms of circle map iterates. In our opinion, this opens
interesting direction for future research. Systematic exploration of the dynamics of the LIF with threshold fatigue,
and its associated twist annulus map should clarify whether indeed neuronal membranes with strong fatigue and
consequently adaptation properties, may exhibit specific dynamics in response to periodic forcing that do not exist
in non-adapting membranes.

Early experiments performed by Blair and Erlanger in 1930s, were aimed to quantify the all-or-none response
of nerve fibers[5]. These experiments consisted in administering periodic shocks to axons and monitoring their
response. In general, the time interval separating two successive stimuli was set large enough for the nerve to
completely recover between two shocks. However, controls were run with shorter periods. In these[5] the authors
reported what they referred to as “apparently random appearance of responses” and proposed that development of
“phase differences between the rhythmic process of recovery from activity and the development of fatigue” could
be responsible for these complex behavior. It is not possible to confirm with certainty that the dynamics observed
by these authors would fit the present day definition of chaos. Nevertheless, their description remains remarkable
in the sense that they did not attribute the irregularity of the response to noise alone. They explicitly recognized
that another mechanism based upon differences in time scales could be involved. In other words, they seem to have
been aware that non-random effects could produce apparently random responses in axons. To our knowledge, these
experimental results are the first evidence that threshold fatigue could lead to complex dynamics in periodically
forced neurons.
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Appendix A.

A.1. Derivation of the Lyapunov exponents of the full model

For the standard LIF, it is only necessary to consider a voltage solutionv(t) and a perturbed solutionvp(t) with
δv(t) ≡ vp(t)−v(t). It is then possible to derive a recurrence relation betweenδv(tn+1) andδv(tn) keeping only first
order terms and thus to define a Lyapunov exponent[10]. In our case however, we must also consider an unperturbed
threshold solutions(t) and a perturbed threshold solutionsp(t) with δs(t) ≡ sp(t)− s(t). The essence of the method
is to follow the temporal evolution of both these small perturbations.
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Let us assume that there is a small perturbationδX(0) = (δv(0), δs(0))T (where the superscript T denotes vector
transposition) on an initial conditionX(0) = (v(0), s(0))T. If no firing occurs in the time interval [0, t], then the
initial perturbation evolves to the value:

δX(t) =
(
δv(t)

δs(t)

)
=
(

e−t/τv 0

0 e−t/τs

)(
δv(0)

δs(0)

)
≡ DtδX(0). (A.1)

If there is a single discharge at a timet1 in [0, t], then we have:

δX(t) = Dt−t1At1Dt1δX(0), (A.2)

where

At =
(
αt −αt

−βt βt + γt

)
(A.3)

with the matrix entries given by

αt = −(v0/τv)+ µ+ a sin(wt)

s(t)[(1/τs)− (1/τv)] − (sr/τs)+ µ+ a sin(wt)
, (A.4)

βt = (sr − s(t))W ′[s(t), α] + s0 +W [s(t), α]

s(t)[1 − (τs/τv)] − sr + µτs + aτs sin(wt)
, (A.5)

γt = W ′[s(t), α]. (A.6)

The matrixA is related to the reset of both voltage and threshold. The derivation of these expressions is given below.
Prior to that, we complete the estimation of the Lyapunov exponents. With the same notations as above, the general
case where there aren discharges at times 0≤ t1 < · · · < tn ≤ t is given by

δX(t) = Dt−tnAtnDtn−tn−1 · · ·Dt2−t1At1Dt1δX(0). (A.7)

The Lyapunov exponents measure the growth or decay rates of this quantity and are defined as

λi = lim
t→+∞

1

t
log

( ‖δX(t)‖
‖δX(0)‖

)
. (A.8)

Practically, it is convenient to estimate the Lyapunov exponent by starting and ending the computation at discharge
times, that ist1 = 0, andt = tn. In this way, the impact of the perturbation is estimated at successive discharge
times, and we have a discrete-time relation instead ofEq. (A.7):

δXn = δX(tn), (A.9)

δXn = Dtn−tn−1Atn−1 · · ·Dt2−t1At1δX(0), (A.10)

δXn ≡ MnδX0. (A.11)

Then, the two Lyapunov exponents of the model can be defined as

λ = lim
n→+∞

1

2n
log(λn), (A.12)

µ = lim
n→+∞

1

2n
log(µn), (A.13)
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Fig. 5. Illustration of the method for calculating the Lyapunov exponents of the model given inEqs. (1)–(4). The unperturbed solutionsv(t)
ands(t) intersect at timestn while the perturbed solutionsvp(t) andsp(t) intersect at timestn + δn. One must track the time evolution of the
perturbationsδs(t) ≡ sp(t)− s(t) andδv(t) = vp(t)− v(t) in order to compute the Lyapunov exponents as explained in the text.

whereλn andµn are the eigenvalues of the symmetrical matrixMT
nMn. Denotingmn = Dtn+1−tnAtn , we see that

Mn can be computed along the solution asMn+1 = mnMn for n ≥ 1 withM1 set to the identity matrix. In this way,
we have a method to estimate numerically the Lyapunov exponents of the system from simulations.

To finish, there remains the derivation of the entries of the matrixAt . Without loss of generality, we present the
analysis in the case of the first discharge at timet1. The unperturbed solutionsv(t) ands(t) intersect at timest1 while
the perturbed solutionsvp(t) andsp(t) intersect at times{t1 + δ1}. The situation is illustrated inFig. 5.

The goal is to derive an expression for [δv({t1 + δ1}+), δs({t1 + δ1}+)] as a function of [δv(t1), δs(t1)] keeping
only first order terms withδs(t) ≡ sp(t)− s(t) andδv(t) ≡ vp(t)− v(t). At time t1 + δ1, we have:

0 = sp(t1 + δ1)− vp(t1 + δ1), 0 ≈ sp(t1)+ δ1ṡp(t1)− vp(t1)− δ1v̇p(t1),

0 ≈ δs(t1)− δv(t1)+ δ1[ṡ(t1)− v̇(t1)]. (A.14)

Thus the perturbation in the firing timeδ1 is approximately given by

δ1 ≈ δs(t1)− δv(t1)

v̇(t1)− ṡ(t1)
, (A.15)

where we have assumed that the denominator is not zero. Att = (t1 + δ1)
+, we have:

δs[(t1 + δ1)
+] = sp[(t1 + δ1)

+] − s[(t1 + δ1)
+] ≈ s0 +W [sp(t1)+ δ1ṡp(t1), α] − s(t+1 )− δ1ṡ(t

+
1 )

≈ s0 +W [sp(t1), α] + δ1ṡp(t1)W
′[sp(t1), α] − s(t+1 )− δ1ṡ(t

+
1 )

≈ δs(t1)W ′[s(t1), α] + δ1{ṡ(t1)W ′[s(t1), α] − ṡ(t+1 )}, (A.16)

whereW ′[s, α] ≡ ∂W/∂s[s, α]. Furthermore, we have:

δv[(t1 + δ1)
+] = vp[(t1 + δ1)

+] − v[(t1 + δ1)
+] ≈ −δ1v̇(t+1 ). (A.17)

UsingEqs. (A.15)–(A.17), we get that:

δv[(t1 + δ1)
+] = αt1δv(t1)− αt1δs(t1), (A.18)

δs[(t1 + δ1)
+] = −βt1δv(t1)+ (βt1 + γt1)δs(t1) (A.19)

with αt1, βt1, γt1 given inEqs. (A.4)–(A.6). This finishes the computation ofAt1.
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A.2. Lyapunov exponent of the reduced model

The reduced model has only one dynamical variable, namely the threshold. The evolution of small threshold
perturbationsδŝ at successive discharge times is given by

δŝ(tn+1) = dnδŝ(tn), (A.20)

where a calculation similar to the one inSection 3yields:

dn =
{
W ′[v̂(tn), α] + W ′[v̂(tn), α]{sr − v̂(tn)} + s0 − sr +W [v̂(tn), α]

τs ˙̂v(tn)+ v̂(tn)

}
e−∆n+1. (A.21)

Finally, the Lyapunov exponent of the reduced model can be defined as

Γmap = lim
n→∞

1

tn − t1

n∑
i=1

ln |dn|. (A.22)

This equation was used in the numerical results.
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