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Abstract

The leaky integrate-and-fire (LIF) model is one of the elementary neuronal models that has been widely used to gain
understanding of the behavior of many excitable systems. The sinusoidally forced standard leaky integrate-and-fire model
reproduces the quasiperiodic and phase locked discharge trains observed experimentally in neurons. However, this basic mod
fails to generate chaotic firing, whereas this form of behavior has been observed experimentally. We modify the standard LIF
through the introduction of threshold fatigue responsible for progressive decrease of excitability during high frequency firing,
as observed experimentally. We show that the dynamics of this neuron model under sinusoidal forcing are governed by the
iterates of an annulus map and derive expressions for its two characteristic Lyapunov exponents. Using these exponents, it i
shown that chaotic dynamics are possible for this model, unlike the standard leaky integrate-and-fire model. Chaotic dynamics
occur when memory effects are strong and only under certain forms of threshold fatigue.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Discontinuous dynamical systems are playing an important role in the study of many physical (2% )ea0d
biological systems (e.g. neurotfi84]). There have been recent advances on techniques for analyzing such systems
[21]. Our work examines the dynamics of one such system of relevance to the behavior of excitable systems such
as neurons.

Neurons transform incoming information into trains of action potentials that are transmitted to and processed
by other neurons. An action potential is an “all-or-none” stereotyped response to a stimulus. Typically the action
potential has a much shorter time scale (order of milliseconds) than the other time scales in the neuron (over tens
or hundreds of milliseconds). For this reason, it can be approximated as a delta function in neuronal models.
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One example where this approximation has been widely used is the leaky integrate-and-fire (LIF) model, arguably
the most elementary spiking neuron mof8]. In this model, the membrane voltage is discontinuously reset to a
fixed value once it reaches a certain threshold. Despite its simplicity, this model is able to reproduce a great deal
of known features of real neurons including the all-or-none response and the postdischarge refractoriness. It also
reproduces rectification and phase locking behavior of neurons under sinusoidal f8r8th83] However, it fails
to reproduce some key features observed experimentally in certain neurons like ad@ptatmaihchaotic behavior
under sinusoidal stimulatioi0,19,26]

Analyzing the response of neurons to controlled stimuli has been one of the methods used to determine the
relationship between incoming stimuli and the response they elicit in neurons. Historically, among the various
signals that have been used for this purpose, sinusoidal stimuli have played a prominent role. Such stimuli were first
used as a means to estimate the transfer function of preparations such as stretch receptors, considered as linear blac
boxes (see e.g29]). The same class of stimulation also proved the limitation of the linear approach by revealing
that periodically forced receptors could display substantial non-linearities in the form of rectification and phase
locking [12]. Similar non-linear responses were observed in diverse preparation§3@)geventually opening
the door for the analysis of neuronal behavior from the standpoint of non-linear dynamical systems theory. This in
turn was instrumental in unraveling that the variability in discharge times of sinusoidally forced neurons was not
necessarily due to noise, but could as well be due to chaotic belai6i.

Since these early studies, one direction of investigation has been to determine the basic neuronal properties that
can underlie the various behaviors observed experimentally. One approach to this problem has been to construct
minimal models that present only the basic biologically plausible properties necessary to reproduce a given class
of responses. This approach can be instrumental in determining the contribution of different neuronal properties
in neuronal coding. For instance, the sinusoidally forced standard perfect integrate-and-fire model, one of the
simplest neuronal models, reproduces rectification, but not phase lofddriz0,33] However, by augmenting
this elementary model with a leak current, one obtains the standard leaky integrate-and-fire model that reproduces
both rectification and phase lockirig,30,33]to the input. In this way, the systematic analysis and comparison of
these elementary models, confirmed that, not surprisingly, the firing threshold was responsible for rectification, and
revealed as well that forgetful integration due to the leak current was instrumental for obtaining phase lockings.
However, the standard LIF fails to reproduce more complex dynamics such as chaotic ones. The concern of the
present study is the construction of a minimal model capable of generating chaos by augmenting the standard LIF.

In this paper, we provide a non-linear dynamical analysis of a modified LIF model incorporating threshold
fatigue under sinusoidal forcing. This particular modification is biologically motivdéand has been previ-
ously used with great success to model different classes of nejrretd 3,17,18,23,24,27,28,32,38ht display
adaptation. It has furthermore been shown that threshold fatigue could model very different physiological mecha-
nisms including an ionic current giving rise to adaptati28], synaptic depressioi5], and recurrent inhibition
[11].

The paper is organized as follows. We first present the mod&eation 2 After showing that it is equivalent
to an annulus map, we derive expressions for its Lyapunov exponents by generalizing Coombes’d10¢tbod
evaluate Lyapunov exponents for the standard LIBd&ation 3 Numerical simulations irsection 4demonstrate
that chaotic dynamics are possible. It is known that successive discharge phases of the standard LIF model un-
der sinusoidal (or more generalized periodic) forcing are given by iterates of a monotonically increasing circle
map [19,26,30] (we refer to a circle map as monotonically increasing when any lift associated to it is mono-
tonically increasing, and henceforth cannot give rise to chaotic dynamics. However, no such restrictions exist
for the annulus map which can thus display chaotic dynamics. We further reduce our model to a circle map in
Section 5vhich we show to be non-monotonic for certain paramete&eiction 6and thus can also display chaotic
dynamics.
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2. Themode€

We consider a sinusoidally forced LIF with dynamic threshold given by the following differential equations and
firing rules:

Y rasin i v < s, (1)
dr Ty

ds s =S i 2
i if v(r) < (), (2
vt =vg if (@) = s(), 3
sty =s0+ W[s@), ] if v(@®) = s(), 4)

wherev is the voltages is the thresholdy is a constant input stimulation,andw are the respective amplitude and
angular frequency of the sinusoidal forcing,andz are the time constants for voltage and threshold, respectively,
ands, is the value at which the threshold would stabilize in the absence of firing. Firing occurs when the voltage
reaches the threshold. Following this, the voltage is resebt(Eq. (3) and the threshold is set tqr+) =
so + W[s(9), a], wheresg is a parameter an@ is a positive monotonically increasing function pénda« with
W(s, 0) = 0. The parameter controls the amount of memory in the system. The particular funéfiaised in model
studies can be linear or non-linear as its exact shape is not currently known experimentally and will likely depend on
the specifics of the neuron under study. Typical functidresreW(s, o) = a(s—s,) andW(s, a) = exple(s—s,)]—1
and we will study the impact of the functional form f&@f on the model's dynamics. When= 0, the threshold
is always reset to the valug. The model thus displays no memory and no interspike interval correld8pnas
we increaser, memory effects become more importantés, o) grows with respect teg. Most previous models
useda = 1[7,8,13,23,24,27,28,3%nd the effects of varying on adaptation, ISI statistics, and firing behavior
was explored if9]. The time evolution of the dynamics are graphically illustrateHig 1

We denote by(z, 7,) ands(z, 1, S;” = s(r;})) the voltage and threshold solutions at tintemprised between the
nth andn + 1th discharge times,{ < r < t,+1) and assume, without loss of generality, that= 0. Furthermore,

S, '=s +W(s(t).a)

V(tn)ZS(tn) V(tml):s(tnfl)

n . n+l
t (arb. units)

Fig. 1. The dynamics of the voltaggr) (black line) and the thresholdr) (grey line) in the model given i&gs. (1)—(4) An action potential
occurs when(t) = s(¢). Immediately aftery(rt) = vo while s(t7) = so + W(s(?), ).
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we assume thaiz, > 0 ands, > 0. Given the initial conditions(z,, 7,) = 0 ands(t,, t,, S;7) = S;F, t > t,, and
provided that no firing occurs on the interva),[r], these solutions are given by

th —1t arty .
v(t, ty) = LTy (1 - exp[ . D + I wztz[sm (wt) — wt, cos(wt)]

_aryexplt, — /7]
1+ w272

[sin (wt,) — wt, cos(wt,)], )

sty S) = 5,4+ (S —s) exp(t” - t) . 6)

Ts
The model generates sustained firing if the sequéntef discharge times is unbounded, k,e— oo. A necessary
and sufficient condition for sustained firing is given by

S ()

arty
—_— >
V14 wit?
This condition has already been proven to be necessary and sufficient in the periodically forced stanf26H LIF
We now prove that this condition is necessary and sufficient for sustained firing in the LIF with threshold fatigue.
Condition(7) is obviously sufficient for sustained firing in the LIF with threshold fatigue. In order to establish that
itis also necessary, we need to prove that when it fails, then the LIF with threshold fatigue generates at most a finite
number of discharges. To see this, we remark that the threshold of the LIF with fatigue satisfieat all times,
and regardless of the firing history. Hence, if an input produces at most a finite number of firing in the standard
LIF with constant threshold fixed at, it does necessarily so in the LIF with threshold fatigue. Given that when
condition(7) fails, the standard LIF with constant threshold fixed,dfires at most a finite number of times, the
same must hold for the LIF with threshold fatigue.

Remarkably, this condition does not depend on the initial condition: there are no parameter sets such that for
some initial conditions the firing stops in a finite time while for others it would persist indefinitely. We will assume
that the condition for sustained firing holds throughout the paper.

The continuous-time LIF dynamics are not smooth due to the reset condition, and so the standard theory of
dynamical systems does not apply directly to this model. However, this problem can be overcome by noticing that
the LIF dynamics are in fact equivalent to the iterates of a map of successive firing times, that is to a discrete-time
dynamical system. This formulation can then be used to analyze the dynamics of the LIF. More precisely, the model
described irEqgs. (1)—(4)s equivalent to a two-dimensional annulus nj@p Given thenth discharge time, and
the corresponding postdischarge threstidthen + 1th firing timez,1 is given by

UTy +

tsr = H(tn, SHENf{r 2 £ > 1y, 08, 1) = 58, 10, SO, ®)

and the corresponding postdischarge thresh(oml, tn, S = S;r+1 is given by

def
SF1 = Ha(ta, SO 50+ W(s(tus1. 1, S, ). ©)

A two-dimensional mapH can be defined astf : (t,, S;) — (tyq1 = Hl(tn,S;f),S;Zrl = H(t,, S;})) on
[0, 00) x [s0 + W(sy, @), so + W(Vupper @)], where Vypper = nt, + 2at,/+/1+ w?ts is an upper bound to the

maximum value of the voltag€max = ut, + aty/y/1+ w2
It is convenient to introduce the firing phase a§lil] as

¢,,=2n{%"—int[%]}, (10)

where the int]] denotes the integer part afid= 1/f = 27/w is the forcing period.
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Given thatHi(t + T, S) = T + Hi(t, S) and Hx(t + T, S) = Ho(t, S) for all r and S, the mapH is a lift of the
annulus mag = (H, Hy) on [0, 27) x [so + W(s,, &), so + W(Vupper @)]:

~ 2 T
Hi(¢n, S}) = T <_¢nv S,T) modulo T, (11)
T 2m
~ T
Ha(¢n, S = Hz <—¢>n, S,T) - (12)
2n

For the standard LIF (i.e. whan = 0), the threshold remains constant throughout time, soAhas constant,
and we retrieve the one-dimensional mép that has been used in previous studies of periodically forced LIFs
[19,26,30]

3. Lyapunov exponents of the model

The main purpose of our study is to establish that the modified LIF can exhibit chaotic dynamics. This is done
by establishing that there are regimes in which the model displays sensitive dependence on initial conditions as
indicated by a positive Lyapunov exponent. To this end, we first derive the expression for the Lyapunov exponents
of the model given irEgs. (1)—(4) While both differential equations governing interdischarge dynamics of the
voltage and the threshold are linear, the discontinuous jumps occurring at each discharge introduce non-linearity
in the dynamics of this model. The main step in the derivation of the Lyapunov exponents consists therefore in
evaluating the consequence of these discontinuities on solutions starting from nearby initial conditions.

For smooth continuous-time dynamical systems, Lyapunov exponents can be derived either directly from the
variational equation associated with the continuous-time description of the dynamics or from the variational equa-
tion associated with the discrete-time description of the dynamics through iterates of a Poincaré map (see e.g.
[31]). In the same way, there are two possible standpoints for the evaluation of the Lyapunov exponents of the
non-smooth periodically forced LIF with threshold fatigue. One is to consider the exponents associated with the
annulus map introduced in the previous section, and estimate the growth or decay rates of perturbations of the
postdischarge threshold and phases. The other possibility is to estimate the growth and decay rates of perturba
tions of the postdischarge threshold and voltage that will of course depend on the evolution equations of these
variables. The signs of the Lyapunov exponents do not depend on the method, even though their absolute value
may. For our purpose, which is to determine the existence of chaos, either method is acceptable. We selected th
second one because it proceeds similarly to previous studies of the standft@]LuBing ideas developed for the
study of impact oscillatorf21,25] The derivation and expressions for the Lyapunov exponents are presented in
Appendix A

4. Evidencefor chaotic firing: numerical simulations

In many studies of periodically forced systems, the focus is on the occurrence of particular periodic dynamics
such as phase locking regions, and their organization into Arnold tongues. An illustrative example for the standard
LIF is provided by Keener et gl19]. In our investigation of the dynamics of the sinusoidally forced LIF with fatigue,
we also observed such regimes. However, here, we do not proceed with their description, as our main concern is
not the organization of periodic orbits, but to show that the modified LIF is capable of producing chaos. Therefore,
we limit the presentation of numerical results to examples of chaotic dynamics.
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The numerical simulations of forced LIF model with threshold fatigue were performed as follows. Starting from
to = 0, the analytical solutions(z, 0) ands(z, O, SaL ) with Sg chosen arbitrarily were used to find the firing time
t1 > O that is the smallest solution of

v(t1, to) = (11, f0, S3). (13)
The threshold valuéir immediately after; was computed as
S = so+ explefs(t, to, Sg) — 5]} — L. (14)

The smallest solution of v(z, t1) = s(z, 11, SIL) was then computed. Following this recursive procedure, we obtained
the firing time and threshold sequenc{eﬂ;i’\;l and{Sl.*}fil, respectively forV large. Typically, we tookV to be

greater than 1000. This allowed us to numerically estimate the Lyapunov exponents of the system following the
procedure outlined idppendix A

We have previously explored the influence of the parameten ISI statistics and adaptation displayed by
the model[9]. In order to explore the existence of fatigue-induced chaotic dynamics, we proceeded here with a
systematic analysis of the influence of the parameterd the functioriv on the asymptotic behavior of the model.

Thus, we performed numerical simulations using different valuesaofd different functional forms fo starting
from o« = 0 and incrementing between each simulation.

The observations based upon these systematic numerical investigations carried out for diverse parameter sets cat
be summarized as follows. Far= 0, the leading Lyapunov exponent of the model is either negative or zero. It
does not take on positive values. In fact, simulations suggest that without threshold fatigue, the model behaves in
the same way as the standard [1B] that produces phase locked, quasiperiodic dynamics and strange non-chaotic
behavior. Simulations at low values afproduce similar observations. Asis increased, there may be drastic
qualitative changes in the asymptotic dynamics of the model, in the sense that the leading Lyapunov exponent
becomes positive, while, simultaneously, the discharge phases become irregular and unpredictable. In such cases
simulations of solutions of nearby initial conditions confirm the sensitive dependence on initial conditions, since they
grow rapidly apart with time. We argue that this numerical evidence supports the fact that these regimes correspond
to chaos. These constitute the main numerical evidence for fatigue being capable of producing chaos in neuronal
responses.

Anillustrative example of the results is showrHig. 2, that represents the impact of increasirgn the dynamics
of the systemFig. 2a shows a bifurcation diagram obtained while varying the pararagtehile Fig. 2o shows the
leading Lyapunov exponent of the systéh= max(A, ) for the same range of. The parameter values are chosen
such that forx = 0, the model exhibits periodic phase locking dynamics. This regime alternates with quasiperiodic
behavior as is increased. This is similar to what is seen in the LIF model under sinusoidal f¢i€ihdgiowever,
asc is increased further, chaotic dynamics start appearing as shokig.i2 This illustrates the rich dynamical
behavior exhibited by the model.

The lines in the bifurcation diagram correspond to periodic firing where the interspike intervals take on a finite
number of values. The thick parts correspond to regimes where the interspike interval takes either a countable
but very large number of values, or an uncountable value. Given that in the diagram there are only finitely many
points represented, it is not possible to state whether these regimes correspond to periodic orbits with large periods,
quasiperiodic or chaotic regimes. The leading Lyapunov exponent brings in valuable information in this respect,
as the exponents associated with these regimes are respectively, negative, zero and positive. The ranges of positive
exponents irFFig. 2o suggest that, as expected, there are indeed chaotic regimes within these regions. Besides the
existence of chaog;ig. 2contains valuable information about the scenario leading to such dynamids earied.

The diagram reveals that tangent bifurcations (reat 31) and period doubling cascades can lead to chaotic
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Fig. 2. (a) ISlA, as a function of illustrating the complex dynamics exhibited by our model. Period doubling bifurcations as well as tangent
bifurcations are seen. (b) Largest Lyapunov expotieot the model as a function of. I" is positive for certain values ofindicating sensitivity

to initial conditions and thus chaotic dynamics. Parameter values wete0.0268,7; = 0.8, 7, = 1,a = 0.1732,w = 0.62832,u = 0.25,

so = 0.1. We further used¥(s, @) = exple(s — s,)] — 1. We used 1800 time units worth of data to estimate the Lyapunov exponents for each
value ofa.

dynamics in the model. Our numerical explorations revealed the role of another factor, lbesidédse onset of
chaos.

Sensory neurons adapt in different ways, some faster and more markedly than others. To account for this, we
used different fatigue functiond’ to check how the shape of this function affected the possibility of the onset of
chaos. The simulations showed that this factor could indeed be important in this respect. For instan@é wasen
taken as a linear function, the simulations did not produce chaotic dynamics (not shown), whilgAitheneased
exponentially, such regimes were readily observeid.(2). However, a sigmoidal form oW did yield chaotic
dynamics (not shown). At this point, the simulations do not suffice to rule out the possibility of chaos for the linear
fatigue function, however, they do indicate that, if there are chaotic dynamics for this variant, then they occur in
more restricted parameter ranges than for variants with rapidly incred&ing

In summary, our numerical investigations of the dynamics of the sinusoidally LIF with fatigue showed that this
model, unlike the standard LIF, is capable of producing chaotic dynamics, provided that the fatigue fiinction
increase sufficiently rapidly and that the fatigue parametee large enough. In the following section, we try
to clarify the underlying mechanisms by analyzing a particular regime where the model dynamics can be further
simplified.

5. Approximation with a circle map

To gain deeper understanding of the chaotic dynamics brought about by the patameteeduce the dynamics
to a one-dimensional map. In general, the reduction of the dimension from 2 to 1 is not possible. Such a scheme
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is valid under special conditions, that require extra hypotheses on the parameters. Schematically, the reduction is
possible when the voltage transient dynamics are substantially faster than the evolution of the threshold. In heuristic
terms, this assumption means that, after each discharge, the voltage rapidly reaches its asymptotic oscillatory regime
before crossing the threshold. In this way, we can neglect the transient voltage dynamics following each discharge.
This allows us to focus on only one equation, that of the threshold decay. In this way, we are able to reduce the
model to a single one-dimensional system whose dynamics are captured by a circle map.

5.1. Definition of the reduced model

We first introduce the reduced model’s voltage and threshold as
() =V, + A sin(2t — ¢), (15)
5(t, tn, ST = 5, + (ST — s,) explt, — 1). (16)

In fact Eq. (16)definings is identical toEq. (6)defining the threshold of the full model, so that from this point on
we use the same notatierfwithout the “hat”) for both models.

The successive discharge times and postdischarge thresholds of this model are defined similarly to those of the
full model (Egs. (8) and (9)as

tha1 = Fi(ty, S,;L)d=9fmin{t 1> t, and d(1) = s(t, ty, S;)}, (17)

def
SF1 = Faltn, S)Z 50+ Wis(tni1, t. S, o). (18)

At this stage, the description of the reduced model is through a two-dimensiond mafF, F»). Similarly to the

full model, this map is a lift of a map of the annulus that we denot& bwe show that the dynamics of the iterates

of this map can be derived from those of a one-dimensional circle map. More precisely, the essential difference
between the full and reduced models resides inth&g. (15), unlike v (Eq. (8), does not depend explicitly on

t,. Taking advantage of this, and that,, ¢, 1, Sj_l) = 0(t,), we can rewritéeq. (18)at then — 1th iterate as

St = FIR) € 5o+ W), o), (19)

which can be substituted intéq. (17)to yield a one-dimensional map — f,41:

def
a1 = ft)= Falt, F52(t)). (20)

A necessary and sufficient condition for the existencg.of is
Vi + A > s, (21)

This is similar to conditior(7) stating that the firing is sustained if and only if the maximal voltage is larger than
the resting threshold. Provided this condition is satisfied, we lfeye+ T = f(t + T) for T = 27/£2, so thatf is
the lift associated to a degree-one circle nfagefined a® — 2f(6/2) modulo 2.
In terms of the dynamics on the annulus, the above result shows that (i) the subset of the annulus defined as
C={®S9):S=s0+ W{DWO/2), )} is forward invariant undef (i.e. F(C) c C), (ii) the subset is absorbing
as for any(s, S) in the annulus, we havE&(6, S) € C and (iii) the dynamics of* on C are given by the iterates
of the circle mapf. In other words, the reduced model defined on the annulus can indeed be reduced to a circle
map. The magy is not necessarily onto, so that in the following we make the extra assumption:

V, —s, > AV14+ 22, (22)
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Condition(22) ensures thaf is onto, and furthermore, that the voltage and threshold curves intersect transversally
(cannot be tangent to one another) at any discharge time. This latter condition proves important when considering
the full model as a perturbation of the reduced model. Finally, we also assumg that. + A, so that, even when
adaptationx is set to zero, the reduced model is well defined: all postdischarge thresholds are above the voltage.
This is made necessary because in the reduced model there is no postdischarge voltage reset.

5.2. Pointwise convergence of the full model to the reduced model

Theorem 1. Let the maps H and F be defined as above. Let time be rescaled to the threshold time-scadle,

and setV, = ut,, A = aty//1+ w?t2, 2 = wr,, cos(¢) = 1//1+ w?z2 with ¢ € [0, 7/2]. Ast, — 0, while
holding V;,, A and¢ constantthe map H of the full model converges pointwise to the map F of the reduced model
defined above

Proof. We start with a preliminary remark concerning the interdischarge intervals of the full and reduced models.
We rewrite the voltage of the full model as

v(t/7 t) = f](t/) + g(t/5 t’ "-'v)’ (23)
whereb is given inEq. (15)andg is defined as

/

r—t

gt t, 1) = exp[— ] (Asin(2t—¢)—V,) if 1, >0, (24)

g, t,7y) =0 if 7, =0. (25)

From condition(22), we have thatt — V, < A1+ 22 —V, < —s, < 0, so that, forr, > 0, g(*, 1, 7,) < 0 and
v(@, 1) < v() for all t and¢’. This means that the voltage of the full model is always below that of the reduced
model. A direct consequence of this is that if at tim&he thresholds of both full and reduced models are set to the
same value§ > sg, the reduced model will be the first of the two to fire. In terms of the maps, this translates into
F1(t, S) < Hi(t, S). Denoting byT,, the shortest interspike interval of the reduced modelTj,e= inf { F1(z, S)—¢ :
t >0, S > so}, we see thaf;,, does notdepend an, andt, +1—t, > T, > In[(so+W(s;, ®)—s;)/(Vi+A—5,)] > 0
for any pair of successive discharge tinigs ¢,+1) of the full model (at any value aof,).

Now, we compare in more detail the discharge times of the full and reduced models. The discharge times of both

models are defined by the following implicit relation:
o1, S, 1) st 1, 8) — 0(t) — g(f', 1, 7)) = O. (26)

From the definition ok, settingr, = 0 in this equation corresponds to the reduced model. However, this does not
imply that the above relation is smoothip= 0. In factr, - &' = 1,1, S, t,,) is not continuous at, = 0. This
does not pose a problem in the following, because as reported in the preliminary remark of the previous paragraph
our main interest would be in the rangerof> ¢ + T,,, and therefore bounded away fram= .

We denote byo(z, §,0) = min{t’ > ¢ : &(7,t, S,0) = 0} the discharge time of the reduced model, that is,
O, S,0) = Fi(t, S). Our assumptions on model parameters ensure that fosg, O(t, S, 0) is well defined, and
moreover tha®(s, S, 0) > ¢t + T,,. The map(t’, t,) — g(t', 1, T,) is of classC™ (m times smoothly differentiable)
for any positive integem, on [t + T}, /2, +00) x [0, +00). The same holds far’, 7,) — @, ¢, S, 7,). Moreover,
from condition(22) the partial derivativéd®/9:" does not vanish a(z, S, 0), ¢, S, 0). More precisely

0P 0s
g(@(h S$,0),2,.8,0) = 8—;(@(t, 5,0),1 8 (6, S, 0)), (27)
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tole]
y(@(;, $,0),14,8,0) <5, — Ve + AV1+ 22, (28)

9
57 (6(.5.0.1.5.0) <0. (29)

Given the above conditions, the implicit function theorem yields that there are neighboihaad#’”’ of 7, = 0 and
O(t, S,0) in [0, +00) and | + T;,,/2, +00), such that for each, € U, there is a uniquely defineé(, S, t,) € U’
suchthatb(O(, s, 1), t, 5, T,) = 0. Furthermore, — O(, S, t,) is of classC™ (for any positive integet:) onU.
The above means that the voltage and threshold of the full model cross one another @(#ife,). The
preliminary remark above precludes such intersections at anyrtimech thatt < ¢ < ¢ + T, (in fact, we
must have’ > ¢ + O(z, S,0) > T,,), so that®(, S, t,) is indeed the first crossing between the voltage and the
threshold followingr. In other words we haveé(t, S, 7,) = Hi(t, S). Combining this with®(z, S, 0) = Fi(t, S),
and the smoothness eof — ©(, S, t,) establishes thatl1(¢, S) — Fi(t, S) ast, — 0. Finally, given that
Hy(t, S) = so + W(s(H1(t, S), t, S), @), and Fx(¢, S) = so + W(s(F1(t, S), t, S), @), the pointwise convergence of
H> to F», and henceforth that of the full annulus mApto the reduced annulus mdf at fixed(z, S) ast, — 0
follows suit. O

Corollary 1. The derivatives of H also tend pointwise to those of kas> 0.

Proof. For t, sufficiently small, the mags, S, 7,) — ©(, S, t,) is also of classC™. This completes the
proof. O

5.3. Uniform convergence of the full model to the reduced model

Theorem 2. Let the maps H and F be defined as above. Let time be rescaled to the threshold time-scalg,

and setV, = uty, A = aty//1+ w?t2, 2 = wt,, €0S(¢) = 1/4/1+ w22 with ¢ € [0, 7/2]. Ast, — 0, while
holding V;,, A and¢ constantthe map H of the full model converges uniformly to the map F of the reduced model
defined above

Proof. Fort, > 0, the functiorg introduced inEq. (24)satisfies:
g, t, 1) < g, t,7)) <0 for 7, > 1), (30)
—e TV, 4+ A) < 8O, S, ), 1, 1) < 0. (31)

From the first inequality, we derive that — ©(z, S, t,,) is monotonic increasing, that 8(z, S, 7,) > O(, S, 1)

for 7, > 7. From the second inequalities, we obtain that the crossing @meS, t,) is betweend(z, S, 0) (the
crossing time of the reduced model) and that of the threshold throtgk= d(r) — e~ /% (V, + A). We denote
this latter time a®)(z, S, 7,). Now, under conditiorf22), we have that fot, sufficiently small

Sr— Ve + AV14+ 22+ e /v, + A) <0, (32)
so that:

0< O S, 1) — O, 8,0 < O, S, 1,) — O, S, 0) < b(ty), (33)
where

b(r) e Ve + A) (34)

V48 — AV1+ 22 — e Tu/t(V, + A)’
tends to zero as, — O.
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Thus, we haveédy(z, S) = O(t, S, 1) — Fi1(z, S) = O(t, S, 0) monotonically uniformly ag, — 0 and the right
hand side of inequality33) provides an upper bound for the speed of the convergence. (B3)igve obtain the
following bound for the differences between the thresholds at the discharge times of the reduced and full models:

0 <s[O@, S, 0),t, 8] —s[O S, 1), 1, S] < (Sp — s,) € m[1 — @], (35)

where Sy = so + W(V, + AV1+ 22, «), does not depend ofr, S). This inequality shows thatr, ) —
s[e®, S, 1), t, S] converges uniformly tdz, S) — s[O(t, S, 0), ¢, S] ast, — 0. This yields uniform convergence
of Hy to Fy, as

0< F(t,8) — Ha(t, S) < K(Sy — s,) € In[1 — ™)), (36)

where
ow
K = max a—(s, a):s€[so+ Wi, a),V,+AV1+22]¢.
s

Furthermore, in the same way as fAi to Fy, the convergence aff; to F> is monotonic (i.e.H> increases to
F> ast, — 0) because — W(s, @) is monotonic increasing, — s(¢, t, S) is monotonic decreasing, and
7, — O(t, S, 1,) IS monotonic increasing. This completes the proof of the uniform convergentetofF as
7, = 0. O

We have actually proved a stronger result in that— H|| decreases monotonically to zerogs— 0, where
the|| - || represents the supremum norm €arS) € [0, T] x [so + W(s;, &), Sy].

5.4. Geometrical interpretation of the reduction

We now provide a geometrical interpretation of the above results to show how the annulus map is transformed
into a circle map as, — 0. The annulus map’ of the reduced model maps the whole annulus into the subset
C={@6,95 :8 =s0+ W{(/R),a)} (Section 5.1 The setC is a circle-like subset winding around the “hole”
in the middle of the annulus. Defining(z,) = {6, S) : S = so + W(¥(6/£2), @)} by substitutingv for v in the
definition of C, we obtain another circle-like subset of the annulus that lies “insitléh the sense that at fixed
angled, the radius ofC(z,) is smaller than that of’. In this way, the region, denoted [&(z,) is betweenC(z,)
from inside andC from outside, is itself annulus-like. The annulus nfapf the full model maps the whole annulus
into &(z,). As t, — 0, the lower borde€(z,) of Z(z,) approaches the upper bordeuniformly in (¢, S), so that
the two-dimensional domaiB(z,) shrinks into the one-dimensional graphaccounting for the transformation of
the full model into the reduced model described by the iterates of a circle map.

Finally, to ensure tha#l inherits some of the dynamics &f whenrt, is sufficiently small, we show that partial
derivatives offf with respect ta andsS converge uniformly to the partial derivatives®bfist, — 0. The expressions
for the partial derivatives off; and F; with respect ta andS can be obtained from the implicit function theorem
applied to® (Eqg. (26). The uniform convergence df; to F; together withEq. (31) ensure thabH1/9r and
dH1/dS converge uniformly t@Fy /9t andoFy/9S for (¢, S) € [0, T] x [so+ W(s,, &), Sy] ast, — 0. The uniform
convergence o§H» /0t anddH»/dS to dF>/dt anddF»/aS is obtained in a similar way.

In conclusion, we have thdtF — H|| + |dF — dH| — 0 ast, — 0, where d'(¢, S) and dH(z, S) are linear
operators on the plane defined by the differential& @nd H with the second norm above computed as

|dF —dH| = sup I1dF(z, S) — dH(z, S)||
(t,9)€[0,T] x [s0+ W(sy.a), Sar]
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I@dF@, ) — dH( I = sup  [[(dF(, S) — dH(z, $)) (1, [2)].
max(|ly], [l2])=1

One can thus consider the ma&p associated with the full model as a regular perturbation of the Mas-
sociated with the reduced model. This implies some similarity between the dynamics of the full and reduced
models. For instance if for some paramederF has a hyperbolic fixed point or periodic orbit, then so would

H for sufficiently smallz,. Furthermore, the corresponding fixed point or periodic orbitHofvould be close

to that of F. In general, if the dynamics of the reduced model are structurally stable on the annulus, then for
7, sufficiently small, the dynamics of the full and reduced models would be qualitatively similar. In the same
way, if for someq,, the reduced model undergoes a codimension one bifurcation, one expects to find a similar
bifurcation for a nearbw = «.(z,) for all 7, sufficiently small. For more complex dynamics, our humerical in-
vestigations suggest that the similarity between full and reduced models is also present in the regimes where the
reduced model displays chaotic dynamics (these are identified numerically from the sign of the Lyapunov expo-
nent). The reduction is thus a valid means to investigate the mechanisms underlying chaotic dynamics in the full
model.

5.5. Practical consideration on the approximation with the circle map

The bounds on the distance between the map of the full model and that of the reduced model are given in
Egs. (33) and (36)The key quantity that ensures that these bounds tend to zerp-as 0 is e 7/™. Having
e n/v < ¢ ensures thal F — H|| < ce for some constant that is independent from,. So the condition
for H to be close toF with the precisiorce is verified as soon ag, < —T,, In . We remind thatT}, is the
shortest interdischarge interval for the reduced model, computed over all initial conditions on the annulus, that is,
Ty = inf{F1(t,S) —t:t> 0,8 > 5o+ W(s,, )}. ThusT, is longer than the time required for the threshold
initiated at the lowest threshold levg) + W(s,, «) to reachV, + A, the highest voltage value. In other words, we
have a lower bound fadf,, whichis: 7, > T* = — In[(so + W(s,, @) —s,)/(V, + A —s,)] > 0. The conditiorr, <
—T* In ¢, ensures that the distance betwéeandH is smaller thare. As T* can be computed directly from model
parameters, this relation can be used in practice to obtain an upper bound for the distance between full and reduced
models.

It is possible to improve on this first approximation by limiting the set over which the minimal interdischarge
interval is computed from the full annulus to the $#tr,) (comprised betwee@'(r,) andC). Indeed, as argued
previously, the iteration off sends the annulus into this set, so that one can limit the comparison of the action of
F and H to the setZ(r,). We denote by, this minimal value to distinguish it from the previous one.

The restriction from the annulus t8(z,) increases the lowest admissible threshold frgm+ W(s,, a) to
50+ W(V, — A — e Tn/o(V, + A), ). From this we derive that:

_ _ o Tn/tw _
7 > n so+W(V,—A—¢ (Vo + A),a) — s, - T (o),
Vi+A—s,
where
T () = In | 0 F WV —A- e TVt ) s |
Vi+A—s,

The conditiont, < —T**(1,) In(¢) ensures that o (z,) the map of the reduced model approximates that of
the full model with a precision better than. We haveT**(t,) > T*, so that the new condition reveals that the



150 M.J. Chacron et al./Physica D 192 (2004) 138-160

approximation by the circle map holds to a precisierover a wider range of, than the one derived frofi*. In
this sense, the restriction of the set yields an improvement.

5.6. Lyapunov exponent of the reduced model

We have shown that the reduced model can be described by iterates of a one-dimensional map. Here again, as i
Section 3we can either derive the Lyapunov exponents associated to this map, or, as before, analyze the growth
rate of small perturbations to the model variables. We once again adopt the second approach. The expressions a
presented i\ppendix A

5.7. The mechanism for chaos: relation with non-monotonic circle maps

The reduction of the model is possible only under certain hypotheses on the voltage and threshold time scales
Theoretical arguments suggest that despite these simplifying assumptions, the reduced model can capture the ma
scenarios of transition to chaos observed in the full model. This is verified using numerical simulgigpri:
illustrates the similarity between the two moddigy. 3a shows the bifurcation diagram whitég. 3b shows the
Lyapunov exponent of the reduced model when the paraméteincreased. As ifrig. 2, transitions to chaos in
the reduced model are associated with period doubling and halving cascades as well as tangent bifurcations. In thi
sense, the reduced model reproduces the main scenarios observed for the full model and constitutes a satisfacto
simplification.

The contribution of this reduction is that the dynamics of the one-dimensional model correspond to those of circle
maps, that is, of a well understood class of systems. Therefore, we can take advantage of this, to determine how
the increase in the parametercan lead to chaos. We now study the effects of different functional forms for the
function W on the dynamics exhibited by the model.

0.4+
0.0 MAM
0 vt
£

= -0.4

-0.8 4

T T T T T T T T T 1
30 32 34 36 38 40

(b) a

Fig. 3. (a) ISlA, as a function ot illustrating the complex dynamics displayed by the reduced model. It displays similar dynamics to the full
model. (b) Lyapunov exponeriiyap of the reduced modelimap is positive for certain value af indicative of chaotic dynamics. Parameter
values are the same ashig. 2
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6. The circle map is monotonic for sublinear fatigue, and non-monotonic for sufficiently
supralinear fatigue

In this section, we examine the dependence of the circle map on the rate of increase of the fatigue Winction
Roughly speaking, wheW increases at most linearly, then the map is always one-to-one. Converselyiifies)
increases as’, then the map is non-monotonic fér> 1 large enough. The exact valuefs shown to depend
on the system parameters.

The circle mapf is of degree-one ag(r + 7) = f(1) + nTfor n = 1. Thereforef is one-to-one if and only
if it is monotonic increasing. When this is the case, iterationg ofinnot produce chaos. Using this observation,
we prove that when the threshold fatigiés, «] does not increase rapidly enoughsinchaotic dynamics cannot
occur. The importance of this result is in that it does not depend on model parameters as long as one assumes tha
condition(22) is satisfied, which was the case throughout the reduction procedure. Next, we investigate necessary
conditions for the occurrence of chaos. These depend more explicitly on parameters, in the sense that the minimal
rate of increase o to destroy monotonicity of depends on,, V,., A ands2, and the minimal value af at which
this happens depends on these and

One way to interpret the dynamics of the reduced model is to consider that, after each discharge, the threshold is
reset aty, (1) = so + W(d(2), o) and then decays exponentially until reachingt some time’ > ¢ (v(¢) is defined
in Eq. (15). A necessary condition for a discharge to occur at a tinsethat the threshold crogsfrom above at
t. In other words, the slope of the threshold at the crossing must be smaller than the slope of the voltage. Now, the
slope of the threshold equals— s, which at the time of crossing equals— v. With this, the necessary condition
for a discharge to occur ateads:

sr—d <. (37)

This inequality is satisfied when conditig@2) holds. Hence, it holds for all reduced models considered in this
work, and we assume that it is valid throughout this section as well. In other words, we deal with circle maps that
are onto. This is of prime importance. Indeed, for the sinusoidally forced standard LIF, there are parameter ranges
such that the circle map is hot monotonic. However, in these cases, the map is not onto, and when it is restricted
to its domain, it becomes monotorit9]. Such a restriction is not possible in the situations we consider below
because the map is onto, and the lack of monotonicity cannot be avoided by restricting the domain.

In the degree-one circle maps we consider, chaos cannot occur if the map is monotonic. Therefore a sufficient
condition to exclude chaos is to show that the map is monotonic and, conversely, a necessary condition for the
occurrence of chaos is for the map to be non-monotonic. Equivalently, we can restate these conditions as follows:
a sufficient condition to exclude chaos is that the map be one-to-one and a necessary condition for chaos is the
existence of two pointg < t> in [0, T) with f(#1) = f(¢2). SO we examine first necessary and sufficient conditions
for the map to be one-to-one.

A necessary and sufficient condition for the circle map to be one-to-one is that any threshold-eusve 1o, S)
cross the reset cunig, at a single point. If there is a threshold curve crossipgt two distinct points; < 2 in
[0, T), then we have(t, 11, v;,(t1)) = s(t, t2, i (£2)) for all £, notably at the crossing between the threshold and the
voltaged, so thatf(r1) = f(t2), and the map is not one-to-one. Conversely, when the circle map is not one-to-one,
there are at least two points < t» in [0, T) with f(t1) = f(2). This means that the thresholds> s(z, 1, U5, (t1))
andr — s(t, 12, Dy (t2)) intersect one another as they cross the voltage qurwed(r) at the same point. Now, the
threshold curves being the solutions of the same scalar ordinary differential equation, that they intersect at one point
implies that they represent the same solution. In other waKds;, v, (1)) = s(z, t2, U5 (22)), which shows this
threshold curve intersects the voltage at least two pejrasdr,. This relation shows that when the circle map is
not one-to-one, there is a threshold curve crossjrig at at least two distinct points.
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We can translate these conditions in terms of the derivatives of the voltage and the reset voltage. More precisely,
sufficient condition for the circle map to be one-to-one is that the slope of the threshold on the res&t ilineer
than the slope of, at all crossings. Given that the slope of the threshold at the crossing is giver by= s, — vy,
this conditions reads:

sp— Op < U (38)

In summary, assuming thé@7) holds, inequality(38)is a sufficient condition for the circle map to be one-to-one:
it is a sufficient condition to rule out chaos.

Conversely, a sufficient condition for the map not to be one-to-one is that there exist'senfie, 7) such that
the threshold crosses from beldy at timez*, with derivatives satisfying:

s — Op (%) > 0, (1%). (39)
In fact, at such a point*, the mapf is decreasing, i.ef’(+*) < 0. In this way, the range of such that inequality
(39) holds corresponds to the range wh¢res decreasing. Its lower and upper borders correspond to the extrema
of f. This is why the existence af ensures that the map is no longer monotonic increasing, but also exhibits
monotonic decreasing regions.
We remind that the typical fatigue functions used in this workl&te «) = a(s — s,) andW(s, o) = exp(a(s —

s;)) — 1. Generally, we rewrite the fatigue function@swx (s — s,)) = W(s, ). The functionG is non-decreasing
(i.e. G’ > 0) and satisfie§ (0) = 0. Denotinge = v — s,, then condition(37) translates into:

—u<u, (40)

and the condition$38) and (39hold depending on whether the following quantRyis positive at all times, or
whether there exists$ € [0, 7) such that it is negative:

R = 50— s, + G(owm) + au'G' (au). (42)
6.1. Sufficient condition for the map to be monotonic increasing
Theorem 3. Let W be linear or concave down. Th&n> 0 is always satisfied

Proof. Using inequality(40), the monotonicity oG, and the fact thaiy > s,, we have
R > G(au) — auG (au). (42)

Therefore, a sufficient condition f@& > 0isG (au) > auG (au). Clearly this is satisfied whed is linear. WherG

is concave downg” is decreasing, so tha&t(au) = [5 G'(x) dx > [5" G’(au) dx = auG (au), Which is exactly

the inequality above. In conclusion, we have established that the circle map is one-to-one and hence monotonic
increasing wheny is linear or concave down (referred to as sublinear). O

6.2. Sufficient condition for the map to become non-monotonie farge regardless of model parameters

Theorem 4. Let R be defined as abo@Hx) = exp(x) — 1. Then there exists at least orfeand« such thatR < 0
and thus the circle map f is non-monotanic

Proof. At « = 0, we haveR = so — s, > 0 so that the circle map is monotonic. TherefaRe< 0 may occur
only for « large. Furthermore, examining the termsRifEq. (41) reveals that the first two terms are positive as is
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aG’(au). ThusR can become negative only at a tinfesuch that.'(+*) < 0. So in fact, we examine whether at
some fixed such that:/(r) < O increasingx can rendeR negative. We have thus limited the domairr of

We introduce the following notations:= au, M = s, —sg > 0, andL = —u’(¢) /u(z). Forz such thai//'(r) < O,
we have O< L < Ly < 1with Ly = AQ//(Vy —s,)2 — A2 andL = Ly att such that sir2r — ¢) =
—A/(V, —s,). We definex — i(x) forx > 0 as

i(x) = LxG(x) — G(x) — M. (43)

Then showing thaR < 0 for somer* and« large enough is equivalent to showing th@at) > 0 for x > 0 large
enough withL = —u/(¢*) /u(t*).

For G(x) = exp(x) — 1, we have(x) = exp(x)(Lx — 1) + 1 — M, which is a monotonic increasing function
tending to+o00 asx — +o0. Thus for eachL, there exists a unique® > 0, such thai(x*) = 0 andi(x) > 0
if and only if x > x*. This means that for anysuch that.’(r) < 0, there isa* such that forx > o*, we have
R < 0. a

This establishes that fa¥ exponential, the circle map becomes non-monotoniafarge enough, and that this
holds regardless of the choice of the model parameters as long as cof2®)dmlds. Furthermore, the range of
t where lifts of the circle map are decreasing broadens with cover allr such that.’'(r) < 0, that isz in the
union of (¢ 4+ 7/4 + KT, ¢ + 3T/4 + KT) for all integersk. The two previous analyzes are concerned with the two
extreme situations where, irrespective of parameters (otherathahe map remains either monotonic for all
or conversely, becomes non-monotonic dosufficiently large. The first holds foi linear and sublinear and the
second foW exponential. Here, we examine a class of intermediate supralinear functions. This completes the proof
and sheds light on the transition between the two extreme cases.

6.3. Sufficient condition for the map to become non-monotonie farge depending on model parameters

Theorem 5. Let G be such tha6G (x) — xf = n(x), whereg > 1is a real number and is a smooth function
satisfyingn(x) — 0 andn’(x) — 0asx — +oo. Then the map f is non-monotonic f@targe enough

Proof. In this way, forx large,G is close to a convex monotonic increasing function with a power growthefate
Substituting this intae (Eq. (43) yields

i(x) = (BL — DxP — M — n(x) + Lx' (x). (44)

Given thatg > 1, the first term is the dominating term as-> 400, andSL — 1 determines the sign offor large
x. If B < 1/Ly, we havei < 0, so that for large, the circle map is monotonic increasing. This relation shows
that not only sublinear and linear fatigues lead to monotonic circle maps, but that this also extends to supralinear
fatigues with low power growth rates. Only, in this case, the upper limit growth rate deperdg and therefore
on model parameters. There is not a vgdue 1 such that for all parameters, one would expect to have monotonic
increasing circle maps at all values@f Changing the parameter values modifieg and therefore the limiting
valuepg,, = 1/L,. In other words, for a givep > 1, there will be some parameters that would yield monotonic
circle maps at akly, and other parameters for which the circle map becomes non-monotonic foxlarge

For 8 > B, the functioni becomes positive far large enough and tends #eco asx — +oo. In this case,
for a large enough, the circle map is no longer monotonic. The rangdasfwhich any lift of the circle map is
decreasing depends on the valuedpaind is more restricted than for exponential fatigue, evem as +oc. For
the power growth rate, this asymptotic range is thatsich that. > 1/8, whereas for the exponential fatigue it
isz such thatL > 0. Increasings widens this range towards that of the exponential fatigue. O
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Fig. 4. The circle mag(z) for different values ofr and different functional forms fol. The circle map foW[s, o] = a * (s — s,) ande = 10
(a) ande = 30 (b). The circle map foW[s, o] = exp(a * (s — s,)) — 1 anda = 10 (¢) andx = 30 (d). Other parameter values are the same as
in Fig. 2

6.4. Summary of results

In summary, our analysis focussed on conditions on the growth rate of the fatigue function that would ensure either
monotonic increasing circle maps at al(W sublinear, linear and weakly supralinear power function), or would
lead to a loss of monotonicity far large enoughW strongly supralinear power function and exponential). Chaos
can only occur in the latter case. Numerical simulations confirm that it does forgosneh as the exponential one.

6.5. Examples of circle maps

We end this section by providing several examples of the circle maps for different fatigue furi¢tanmdx. The
left column inFig. 4illustrates the case of linear fatigWé(s, «) = a(s — s,) for @ = 10 and 30 (top and bottom).
The panels of the right column represent the cad& @fith exponentiaW(s, ) = exp(a(s — s,)) — 1 for the same
values ofx. As expected, in all cases the maps are monotonie mnall (upper row). FoW linear, it remains so at
largera, but in the other case, the map develops a local extremum: it is no longer monotonic. The map in the lower
right panel actually leads to chaotic dynamics as sedfign3. We also note that it is possible to obtain chaotic
dynamics for sigmoidal fatigue functions (data not shown).

7. Discussion

The periodically forced standard LIF cannot produce chaotic firing. Variants of this model have been proposed
that overcome this issue. Modifications leading to these variants were not necessarily motivated by biologically
plausible mechanisms. For instance, one approach that renders the LIF capable of exhibiting chaotic dynamics is
to add the periodic modulation to the postdischarge resetting voltage rather than as an injectefl@jri®ath
variants of the LIF have been successful in reproducing the behavior of specific physical, chemical and biological
systemg2,14]. However, our concern was the case of sensory neurons for which the influence of periodic sensory
stimulation is not necessarily limited to postdischarge membrane potential resetting. Different mechanisms may
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underlie the complex behavior of periodically forced neurons. For this reason, our study focussed on a specific
biologically plausible property, namely threshold fatigue.

Our specific purpose in this paper was to show that threshold fatigue can be one source of chaos in neurons.
The mechanism implemented in the model differs from those included in previous variants of the LIF that produce
chaos. It is legitimate to consider whether this difference is merely at the level of the model or whether it has also
implications in terms of the dynamics. In other words, the question is whether the LIF with threshold fatigue presents
the same dynamics as those of other variants of the LIF that display chaos, or whether this model can potentially
exhibit novel dynamics. At this time, this is an open question, however, it is possible to discuss it based upon the
dynamical characteristics of the models.

The dynamics of the periodically forced standard LIF and variants with periodically modulated threshold or
resetting voltage can be described in terms of iterates of circle maps. We showed that a similar description holds for
the LIF with threshold fatigue, when the voltage time scale is substantially smaller than the threshold time scale. The
circle map corresponding to the standard LIF is monotonically increasing, at least when the map is restricted to its
range. This precludes chaotic dynamics. For the modified LIF where the periodic modulation is implemented in the
voltage resetting value, the situation is different. The corresponding circle map is no longer necessarily monotonic: it
is possible to have situations where the map is no longer one-to-one. For these maps the dynamics can[i@haotic

We clarify the relation between the LIF with threshold fatigue and the other LIF variants. It is possible to consider
variants of the LIF, where the periodic modulation is imposed simultaneously on both the postdischarge voltage
and the threshold (see e[@0]). The dynamics of the voltage between successive firings are then supposed to be
exempt of any periodic forcing and follow an exponential function connecting the postdischarge voltage curve to
the threshold curve. Clearly the successive discharge phases of such models are described by iterates of circle maps
When the amplitude of threshold modulation is lower than or equal to that of the postdischarge reset, the circle
map is orientation preserving or can be restricted to a monotonic map. Chaotic dynamics are thus not possible.
Conversely, when it is the modulation amplitude of the postdischarge voltage that is larger, the circle map is not
necessarily monotonic, and the dynamics can be chaotic.

The LIF variant with constant threshold and modulated resetting is the extreme case of this model. The standard
LIF, on the other hand, is similar to the case where both threshold and reset voltage are modulated with the same
amplitude. Our reduction of the LIF with threshold fatigue shows that when the voltage recovery is substantially
faster than the threshold decay, the dynamics of the LIF with threshold fatigue is also similar to the general class of
model described above. In contrast with other LIF models, in our approximation it is the threshold, rather than the
voltage that is reset after each discharge. In the approximated model, the threshold exponentially decays between
two periodic functions (the voltage and its reset value). The parametepresenting threshold fatigue, controls
the ratio of the amplitudes of these functions. Wheis large, the amplitude of the postdischarge reset function
becomes the larger of the two. Thus, the circle map is not necessarily one-to-one in this case and chaotic dynamics
become possible. Although chaotic dynamics were not observed for a linear fatigue function, they were observed
when it was sufficiently non-linear.

The remaining issue is whether in the general case, for arbitrary voltage and threshold time scales, where the
dynamics of the model cannot be reduced to iterates of a circle map, novel dynamics can occur. The dynamics
of circle maps are essentially characterized by their rotation number. When the map is monotonic, the rotation
number is uniquely defined regardless of the initial condition. Rational rotation numbers define the phase locked
regimes and irrational rotation numbers characterize quasiperiodic or strange non-chaotic dynamics. When the
map is no longer one-to-one, the rotation numbers depend on the initial condition and therefore form an interval
(the rotation interval) depending on the initial conditions, and still carry on valuable information about the long
term dynamics of the system. For instance, when the rotation interval is not reduced to a single point, chaos
can occuf6]. So one can wonder whether a quantity similar to the rotation number can also be defined for the
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annulus map associated with the periodically forced LIF with threshold fatigue, and also whether this quantity
would impose similar restrictions on the dynamics of the map. It is possible to provide partial answers to these
guestions.

The annulus map associated with the periodically forced LIF with threshold fatigue is not arbitrary. It is in fact
a twist map of the annuluy®2], because for fixed, the maps — ¢ = Hy(¢, s) (definedEgs. (8) is monotonic
increasing. This is easily understood in biological terms: given two neurons subject to the same periodic stimulation,
and having discharged simultaneously, the one with the lower postdischarge threshold of the two will fire sooner
than the other. This property severely constrains the dynamics of the annulus map, however, it does not reduce
it to that of a circle map. For instance, rotation numbers can be defined for twist circle maps, however, they
do not necessarily form an intervi22], a situation that would be precluded for circle maps. In terms of the
neuronal model, this example indicates that the LIF with threshold fatigue may display dynamics that have no
counter part in other LIF variants that can be analyzed in terms of circle map iterates. In our opinion, this opens
interesting direction for future research. Systematic exploration of the dynamics of the LIF with threshold fatigue,
and its associated twist annulus map should clarify whether indeed neuronal membranes with strong fatigue anc
consequently adaptation properties, may exhibit specific dynamics in response to periodic forcing that do not exist
in non-adapting membranes.

Early experiments performed by Blair and Erlanger in 1930s, were aimed to quantify the all-or-none response
of nerve fiberd5]. These experiments consisted in administering periodic shocks to axons and monitoring their
response. In general, the time interval separating two successive stimuli was set large enough for the nerve tc
completely recover between two shocks. However, controls were run with shorter periods. liptieeeauthors
reported what they referred to as “apparently random appearance of responses” and proposed that development
“phase differences between the rhythmic process of recovery from activity and the development of fatigue” could
be responsible for these complex behavior. It is not possible to confirm with certainty that the dynamics observed
by these authors would fit the present day definition of chaos. Nevertheless, their description remains remarkable
in the sense that they did not attribute the irregularity of the response to noise alone. They explicitly recognized
that another mechanism based upon differences in time scales could be involved. In other words, they seem to hav
been aware that non-random effects could produce apparently random responses in axons. To our knowledge, the:
experimental results are the first evidence that threshold fatigue could lead to complex dynamics in periodically
forced neurons.
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Appendix A.
A.1. Derivation of the Lyapunov exponents of the full model

For the standard LIF, it is only necessary to consider a voltage soluipand a perturbed solutior), (£) with
su(f) = v, (1) —v(2). Itis then possible to derive a recurrence relation between, 1) andsu(z,) keeping only first
order terms and thus to define a Lyapunov expofigit In our case however, we must also consider an unperturbed
threshold solution(r) and a perturbed threshold solution) with 8s(r) = s, (1) — s(r). The essence of the method
is to follow the temporal evolution of both these small perturbations.
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Let us assume that there is a small perturbati®(0) = (5v(0), 8s(0))" (where the superscript T denotes vector
transposition) on an initial conditio& (0) = (v(0), s(0)). If no firing occurs in the time interval [0], then the
initial perturbation evolves to the value:

sxi = [0 = e 0 O _ b sxo) (A1)
“\sson) o es ) \ss) ' '

If there is a single discharge at a timdn [0, 7], then we have:

8X(1) = D;_1 Ay, D1, 5X(0), (A.2)
where
A,:( wo T ) (A3)
=Bt B+

with the matrix entries given by

o — —(vo/ty) + 1+ + a sin(wt) "
"SI/t — A/t — (/) + 1 +a sin(wt)’ :

g, = (sy — s()W'[s(), o] + 50+ W[S({), o] ’ (A.5)
sO[L — (r5/10)] — 8 + g + aty sin(wt)

Ve =Wls@®),el. (A.6)

The matrixA is related to the reset of both voltage and threshold. The derivation of these expressions is given below.
Prior to that, we complete the estimation of the Lyapunov exponents. With the same notations as above, the general

case where there aredischarges attimes8 11 < --- < 1, < tis given by
8X () = Di—4, A1, Dy, —t, 1+ Diy—ty Aty D1, 8X(0). (A.7)

The Lyapunov exponents measure the growth or decay rates of this quantity and are defined as

1 (18Xl
= t'°g<||6X<0)||)' (A8)

Practically, it is convenient to estimate the Lyapunov exponent by starting and ending the computation at discharge
times, that is1 = 0, andr = 7. In this way, the impact of the perturbation is estimated at successive discharge
times, and we have a discrete-time relation insteg8pf(A.7)

85Xy = 3X (1), (Ag)
8Xn - Dtn_tn—lAtn—l st D[2_11A118X(0), (AlO)
8X, = M,8Xo. (A.11)

Then, the two Lyapunov exponents of the model can be defined as

. 1
A= EToo > log(Ay), (A.12)

n

_ 1
p= lim —10g(un). (A.13)

n—
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Fig. 5. lllustration of the method for calculating the Lyapunov exponents of the model givegsin(1)—(4) The unperturbed solutions?)
ands(z) intersect at timeg, while the perturbed solutions, () ands,(¢) intersect at times, + §,. One must track the time evolution of the
perturbationss(r) = s,(r) — s(r) anddv(r) = v, (t) — v(r) in order to compute the Lyapunov exponents as explained in the text.

wherea, andu, are the eigenvalues of the symmetrical maM%Mn. Denotingm, = Dy, ., A;,, We see that
M,, can be computed along the solutionMs, 1 = m, M,, for n > 1 with M1 set to the identity matrix. In this way,
we have a method to estimate numerically the Lyapunov exponents of the system from simulations.

To finish, there remains the derivation of the entries of the mattyi¥Without loss of generality, we present the
analysis in the case of the first discharge at tign@he unperturbed solutionsr) ands(z) intersect at timeg while
the perturbed solutions, () ands, (¢) intersect at timegr1 + 81}. The situation is illustrated iRig. 5.

The goal is to derive an expression fév({r1 + 81}7), ds({t1 + 81} )] as a function of §v(z1), 8s(¢1)] keeping
only first order terms witlds(f) = s,(f) — s(t) anddv(r) = v, (t) — v(?). Attime t, 4 81, we have:

0=s,(t1+81) — vp(tL + 81), 0= 5,(t1) + 815p(t1) — vp(t1) — 810,(11),
0~ 8s(r1) — du(ty) + 81[5(t1) — v(r1)]. (A.14)

Thus the perturbation in the firing tinde is approximately given by
__ 8s(t1) — dv(r1)

() = 5(t1) (A.19)
where we have assumed that the denominator is not zeto=At, + 81)*, we have:
8sl(r1 + 80 F] = 5p[(12 + 81T = s(11 + 811 & 50 + Wlsp(12) + 815 (1), o] — (1) — 815(1))
~ 50+ Wlsp(1), @] + 815, (1) W'lsp(12), o] — s(r) — 815(17)
~ 8s(t)W'[s(t1), o] 4 81{5() W'[s(t1), o] = 3G}, (A.16)
whereW’[s, o] = dW/ds[s, «]. Furthermore, we have:
8ul(t + 8071 = vpl(r1 + 60)T] — vl (11 + 80) 7] & —810()). (A.17)
UsingEgs. (A.15)—(A.17)we get that:
Su[(11 +81) "] = ay du(11) — 0y Ss(12), (A.18)
8s[(t1 + 801 = B dv(t1) + (Bry + 1y)8s(12) (A.19)

with ay,, Bi,, v, giveninEgs. (A.4)—(A.6) This finishes the computation df, .
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A.2. Lyapunov exponent of the reduced model

The reduced model has only one dynamical variable, namely the threshold. The evolution of small threshold
perturbationss at successive discharge times is given by

Sg(tn-i-l) =dy 63(1‘11)’ (A-ZO)

where a calculation similar to the one$®ction 3yields:

dy = {W/[a(rn), o] 4 L0 osr = Dt} + 50 — s & WD), o] } e, (A21)
T3 0(tn) + O(tn)
Finally, the Lyapunov exponent of the reduced model can be defined as
: 1 <
TFmap=lim_ Pa— ; IN|dy|. (A.22)

This equation was used in the numerical results.
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