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Oscillatory and synchronized neural activities are commonly found in
the brain, and evidence suggests that many of them are caused by global
feedback. Their mechanisms and roles in information processing have
been discussed often using purely feedforward networks or recurrent
networks with constant inputs. On the other hand, real recurrent neural
networks are abundant and continually receive information-rich inputs
from the outside environment or other parts of the brain. We examine how
feedforward networks of spiking neurons with delayed global feedback
process information about temporally changing inputs. We show that the
network behavior is more synchronous as well as more correlated with
and phase-locked to the stimulus when the stimulus frequency is reso-
nant with the inherent frequency of the neuron or that of the network
oscillation generated by the feedback architecture. The two eigenmodes
have distinct dynamical characteristics, which are supported by numeri-
cal simulations and by analytical arguments based on frequency response
and bifurcation theory. This distinction is similar to the class I versus
class II classification of single neurons according to the bifurcation from
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quiescence to periodic firing, and the two modes depend differently on
system parameters. These two mechanisms may be associated with dif-
ferent types of information processing.

1 Introduction

1.1 Oscillations and Synchrony in Feedforward Networks. Oscilla-
tory and synchronous activities of field potentials and neuronal firing are
widely found in various parts of the brain. Accordingly, their functional
roles beyond the classical notion of rate coding have been widely debated.
For example, oscillatory synchrony in the y band around 40 Hz of dis-
tant neurons with nonoverlapping receptive fields may bind features of
the presented stimuli, as supported by the recordings in the visual cortex
(Gray, Konig, Engel, & Singer, 1989; Llinds, Grace, & Yarom, 1991; Sillito,
Jones, Gerstein, & West, 1994; Douglas, Koch, Mahowald, Martin, & Suarez,
1995; Ritz & Sejnowski, 1997; Murphy, Duckett, & Sillito, 1999) and the
olfactory system (Stopfer, Bhagavan, Smith, & Laurent, 1997). Such oscil-
lations are also used by the electric fish for communication between con-
specific (Heiligenberg, 1991). On the other hand, 6 oscillations (8-12 Hz)
in the hippocampus are suspected of giving information on contexts or on
behavioral states to upstream neurons, supplying them with precise tem-
poral structure (Klausberger et al., 2003; Buzsaki & Draguhn, 2004). Model
studies with feedforward networks also support the role for oscillatory syn-
chrony in promoting phase locking of spikes onto external stimuli (Hopfield,
1995; Gerstner, Kempter, van Hemmen, & Wagner, 1996). Precisely timed
spiking is necessary, for example, in auditory sensation, which requires
coincidence detection with high temporal resolution and enhanced relia-
bility of spiking (Gerstner et al., 1996; Hunter, Milton, Thomas, & Cowan,
1998).

The meaning of synchronous firing (oscillatory and nonoscillatory) has
been widely discussed, for example, with the synfire chain models in which
the volleys of synchronous firing are propagated in networks to transmit
and process the inputs (Abeles, 1991). How neural networks encode stimu-
lus information in relation to synchrony and /or asynchrony has particularly
been examined with feedforward networks, which are more amenable to
analyses. In feedforward networks, synchronous and asynchronous states
alternate when the network parameters are modulated (Gerstner & Kistler,
2002; Masuda & Aihara, 2002b, 2003a; van Rossum, Turrigiano, & Nelson,
2002; Nirenberg & Latham, 2003). For a small amount of noise or relatively
homogeneous networks, the likely behavior is synchronous firing, which
may be related to binding or the synfire chain (Abeles, 1991; Diesmann,
Gewaltig, & Aertsen, 1999; Cateau & Fukai, 2001; van Rossum et al., 2002;
Aviel, Mehring, Abeles, & Horn, 2003; Litvak, Sompolinsky, Segev, & Abeles,
2003; Mehring, Hehl, Kubo, Diesmann, & Aertsen, 2003; Reyes, 2003).
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Conversely, large noise or heterogeneity tends to result in asynchronous fir-
ing thatis advantageous for the population firing rate coding of stimuli with
high temporal resolution (Shadlen & Newsome, 1998; Masuda & Aihara,
2002b; van Rossum et al., 2002) and for rapidly responding to stimulus
changes (Gerstner, 2000; Gerstner & Kistler, 2002).

1.2 Feedback Links Oscillations and Synchrony. Although the model
analyses mentioned so far and many others use feedforward architecture,
purely feedforward circuits are rarely found in biological neural networks.
Little is known about how recurrent networks behave in terms of synchrony
and coding in the context of time-dependent inputs. This is the question that
our article addresses. Nervous systems are full of feedback loops ranging
from the level of a small number of neurons (Berman & Maler, 1999; Wilson,
1999) to the level of the brain areas (Damasio, 1989; Llinds et al., 1991; Ritz &
Sejnowski, 1997). Remarkably, in the visual cortex, the inputs relayed from
the global feedback pathway outnumber by far the feedforward ones such
as sensory inputs (Douglas et al., 1995; Billock, 1997).

Accordingly, information processing that is unexpected of feedforward
networks could exist in networks in which the feedforward and feedback
signals are mixed. An apparent role for the global feedback is to enhance
synchrony of the upstream neurons, which are more related to peripheral
nervous system than are the downstream neurons located closer to the cen-
tral nervous system. This enhanced synchrony is found in the thalamocor-
tical pathway (Sillito et al., 1994; Bal, Debay, & Destexhe, 2000), the basal
ganglia (Plenz & Kitai, 1999), and the olfactory system (Stopfer et al., 1997).
In recurrent networks, synchrony is enhanced because the feedback signals
serve as common inputs to the upstream neurons, which generally make
the neurons more synchronous (Knight, 1972; Shadlen & Newsome, 1998;
Gerstner, 2000; Masuda & Aihara, 2002b, 2003b; Aviel et al., 2003; Mehring
et al., 2003). Synchrony probably encodes the stimulus information, for ex-
ample, on the orientation of visual stimuli (Sillito et al., 1994; Douglas et al.,
1995; Murphy et al., 1999). Synchrony accompanied by the fine temporal
structure of spike trains, which is induced by the correlated feedback, may
also be useful in more general spatiotemporal spike codings. Examples in-
clude synfire chains embedded in recurrent neural networks (Aviel et al.,
2003; Mehring et al., 2003), binding of the fragmental stimulus informa-
tion that reverberates in the feedback loops (Damasio, 1989; Billock, 1997;
Buzsdki & Draguhn, 2004), temporal filling in of visual stimuli (Billock,
1997), selective attention (Billock, 1997), and signal restoration (Douglas
et al., 1995). Another important role for global feedback is to induce oscil-
lations with period specified by the loopback time (Wilson, 1999; Doiron,
Chacron, Maler, Longtin, & Bastian, 2003). In summary, oscillations and syn-
chronization are in close relation with each other when both are mediated
by global delayed feedback.
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1.3 Recurrent Nets with Dynamic Inputs. The mechanisms of synchro-
nization and oscillations in recurrent networks have been extensively stud-
ied with models. However, most of them assume constant or simple noisy
external inputs whose information content is limited to a few static quanti-
ties such as the levels of biases and noise (Abeles, 1991; Diesmann et al., 1999;
Brunel & Hakim, 1999; Brunel, 2000; Doiron et al., 2003; Doiron, Lindner,
Longtin, Maler, & Bastian, 2004). Accordingly, how oscillatory synchrony
interacts with external inputs and how the input information is processed
have not been discussed, with few exceptions (Knight, 2000; Gerstner &
Kistler, 2002). Actually, external inputs often have their own timescales and
spatiotemporal structure (Gerstner et al., 1996), and they may interact with
the dynamic properties of neural networks to affect the way in which infor-
mation is processed (Doiron et al., 2003; Chacron, Doiron, Maler, Longtin,
& Bastian, 2003).

In addition, most studies on synchrony and oscillations in neural net-
works have ignored the effects of single neurons, which have their own
timescales of firing according to bias strength and noise level (Knight,
1972; Aihara & Matsumoto, 1982; Llinas et al., 1991; Longtin, 1995, 2000;
Izhikevich, Desai, Walcott, & Hoppensteadt, 2003; Buzsdki & Draguhn,
2004). When the eigenfrequency of a single neuron is resonant with the
input frequency, signal amplification and better performance of the cod-
ing happen in both the subthreshold and suprathreshold regimes (Knight,
1972, 2000; Hunter et al., 1998; Longtin & St-Hilaire, 2000; Longtin, 2000;
Gerstner & Kistler, 2002; Lindner & Schimansky-Geier, 2002; Masuda &
Aihara, 2003c). Then it is possible that three timescales, each originating
from the global feedback, the single-neuron property, or the inputs, coexist
and interact in one neural system. The distinction between resonant and
nonresonant behaviors is particularly important in this respect.

1.4 Outline of Our Letter. Our focus in this letter is on analyzing infor-
mation processing of temporally changing inputs by noisy spiking neural
networks with global feedback. To this end, we use inputs with temporal
structure, mostly sinusoidal inputs. The reason for this choice is twofold.
One s that sinusoidal waves are established as standard tools for dynamical
systems, as represented by transfer functions and resonance analysis. The
second is that animals often receive natural sinusoidal-like inputs. For exam-
ple, pure tone auditory inputs are sinusoidal waves, and they are processed
frequency-wise in auditory pathways (Gerstner et al., 1996). Electrosensory
systems of weakly electric fish also receive periodic inputs for communica-
tion (Heiligenberg, 1991). Regular respiratory rhythm also affects dynamics
and functions of olfactory systems (Fontanini, Spano, & Bower, 2003). We
ignore spatial features of signals and networks, which is another interesting
topic (van Rossum et al., 2002; Doiron et al., 2003, 2004); thus our networks
have homogeneous coupling structure.
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In section 2, we introduce the network model with two layers of neurons
with spiking dynamics. In section 3, we examine how synchrony, oscilla-
tions, and asynchrony are determined by the strength of the global feedback.
Section 4 is devoted to the numerical analysis of how the frequency informa-
tion in inputs is processed by the network in relation to resonances between
different time constants. We analyze the resonance phenomena with the use
of the dynamical model for population activity (Gerstner, 2000; Gerstner &
Kistler, 2002) in section 5. Accordingly, two complementary calculations are
presented: linear analysis based on gain functions in the frequency domain
in section 6 and nonlinear analysis based on the bifurcation theory in sec-
tion 7. In section 8, we discuss differences in the functional consequences
of the single-neuron dynamics and those of the global feedback loops, with
possible relevance to experiments.

2 Model

2.1 Dynamical Equations. The feedforward neural network with global
feedback that we use in this letter is schematically shown in Figure 1. The
network contains two layers, Aand B, of noisy leaky integrate-and-fire (LIF)
neurons (Knight, 1972; Gerstner & Kistler, 2002) with the membrane time
constant 7,, = 20.0 ms. It is supposed to model two mutually connected
regions of the brain, such as two different layers in a columnar structure,
a thalamocortical loop, or interacting excitatory and inhibitory thalamic
nuclei. Layer A consists of 77 = 250 neurons that receive common external
inputs. The downstream layer B has 1, = 30 neurons, each of which receives
feedforward spike inputs from 7} = 75 randomly chosen neurons in layer
A. Every neuron in layer B transmits spike trains back to all the neurons
in layer A, modeling a global feedback loop. It provides correlated inputs

layer A layer B
—

Jas

U U

Jaa Jea Jes

Figure 1: Architecture of the feedforward neural network with global feedback.
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that tend to induce synchrony, which will be investigated in section 3. Each
layerisalsosupplied with someintralayer excitatory coupling. However, we
focus on global feedback instead of analyzing effects of intralayer feedback.
Accordingly, the corresponding coupling constants (J44 in equation 2.1 and
J B in equation 2.2) are set rather arbitrarily at small values.

We use spatially homogeneous time-dependent external inputs I(#).
Although we exclusively use suprathreshold inputs, qualitatively similar
results are expected for noisy subthreshold inputs based on single-cell mod-
eling studies (Longtin & St-Hilaire, 2000; Longtin, 2000).

Let us denote the membrane potential of the ith neuron in layer A (resp.
B) by va; (resp. vp,;) and assume that each neuron has a threshold equal
to 1. Upon firing, the membrane potentials are instantaneously reset to the
resting potential 0, and the neurons restart integrating inputs. Then the
dynamics of the whole network follows the stochastic delay differential
equations written by

dvai &
VT ; X]: Jand(t — Tasr; —tan)

12
+ ) > Tpa 8t — Tirj — t84)
=17

—vai)+ 1) +684:(1), 1 <i<m) 2.1)
= 3 2 8~ Ty
+ 22 T 8t — Tpi; — T8B)
=1
—vg,i(t) +6&p,(1), (1 <i <m), (2.2)

where § is the delta function that approximates the interaction via action
potentials, t = T4 ; (resp. Tg, ;) is the jth firing time of the i’th neuron in
layer A(resp. B), and §; is the set of neurons in layer Athat project synapses
onto the ith neuron in layer B. The coupling within each layer has the
spike amplitude | 14 = [pp = 0.005 and the propagation delay 144 = 133 =
2.0 ms. The feedforward coupling is assumed to have strength ] 45 = 0.5
and to be instantaneous (t4g = 0). The global feedback has a delay 34 and
strength Jpa. Finally, the terms with £ represent dynamical white gaussian
noise with amplitude 6 and are independent for all the neurons. We use
the Euler-Maruyama integration scheme to numerically explore the system
(Risken, 1984). We add independent white gaussian variables with variance
o2 to the membrane potentials every At = 0.02ms (6 = o+/At). The results
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in the following sections do not depend qualitatively on the parameter
values.

2.2 Rationale for Model Formulation. Let us comment on the ratio-
nality and the limits of the assumptions. The instantaneous feedforward
coupling is not realistic. However, this assumption is not essential because
only lengths of feedback loops, namely, t4g + T4, Ta4, and tpp, matter for
the resonance phenomena that turn out to be functionally important. This
point is verified in section 6 with equations 6.8 and B.3.

Regarding the individuality of synapses, synaptic time delays from a
specific subpopulation to another should be homogeneous enough for input
coding supported by synchrony. This requirement is common to a body of
work on the possibility of stable emergence of synchrony even with realistic
conductance-based LIF neurons (Diesmann et al., 1999; Brunel, 2000; Doiron
etal., 2003; Mehring et al., 2003). Therefore, we confine ourselves to the case
in which the propagation delay is entirely homogeneous.

Another remark is that we set the intralayer propagation delays, or t44
and 733, small compared to interlayer ones, or tg4, which are of the order of
10 ms in later sections. Biologically, delays in corticocortical horizontal con-
nections are often long (Gilbert & Wiesel, 1983; Bringuier, Chavane, Glaeser,
& Frégnac, 1999). Our focus is not on this type of networks, but on explain-
ing other systems where effects of organized global feedback with relatively
long delays are prominent. Examples include thalamic excitatory-inhibitory
loops and thalamocortical loops (Destexhe & Sejnowski, 2003) and elec-
trosensory systems (Heiligenberg, 1991). We could apply our results to, for
example, corticocortical networks with slow intralayer interaction since val-
ues of t44 or Tgp turn out to set oscillation frequencies of our interest, as
will be later suggested by equation 6.8. However, this analogy is valid only
when delays are more or less homogeneous and connections are statistically
random, as mentioned above. These conditions are often violated particu-
larly in view that horizontal coupling is not random but spatially organized
(Gilbert & Wiesel, 1983; Bringuier et al., 1999; Mehring et al., 2003).

Last, with regard to the characteristics of noise, our independent white
gaussian noise sources set the part of spontaneous activity independent for
all the neurons, such as fluctuations at individual synapses due to stochastic
synaptic releases. In reality, some parts of the fluctuations are spatially corre-
lated because of shared synaptic inputs (Abeles, 1991; Shadlen & Newsome,
1998). To take into account the degree of input correlation is well beyond
the scope of this work. However, based on the related results (Doiron et al.,
2004), we anticipate that input correlation enhances the degree of synchrony,
which is a key to efficiently encoding sinusoidal inputs.

2.3 Measures of Synchrony and Correlation. We introduce measures to
evaluate the following coding properties: (1) the performance of the popu-
lation rate coding, (2) the degree of synchrony, and (3) the frequency profile
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of population firing rates. The last one is closely related to phase locking
and temporal spike coding (Longtin, 1995; Gerstner et al., 1996) and also
useful in evaluating the bandpass property in section 4. We measure prop-
erty (1) by corr, which is defined to be the cross-correlation function between
the temporally discretized versions of the inputs {s;(i)} and the population
firing rates {s,(i)} (Masuda & Aihara, 2002b, 2003a). These time series are
defined by

51(i) = l/ I(t)dt, (2.3)
@i

w -Dw

and

sp(i) = the number of spikes from layer A observed for t € [(i — Dw, iw),

24)

where w is the width of the observation bin. We remark that in the limit
of w — 0, n; should tend to oo, and with the proper normalization, s,(i) is
the instantaneous firing probability of a neuron in layer A. The measure for
property (2) is given by Burkitt and Clark (2001) and Masuda and Aihara

(2002b):

Stronger synchrony gives a larger value of 7, and r is normalized in [0, 1].
Finally, the standard power spectrum of {s,(i)} is used to evaluate prop-
erty (3). These measures are averaged over five trials, and each is calculated
from the spike trains for the duration of 40 spikes from a single neuron.

ny

Z e27rivA,j(t)

=1

r =

3 Effects of Global Feedback on Synchrony

As a preliminary step for understanding how the network deals with tem-
porally structured inputs, we first apply correlated noisy inputs and explore
the effects of global feedback on population rate coding and synchrony. We
use inputs generated by the Ornstein-Uhlenbeck process 7(t) whose dynam-
ics are represented by

I(t)=1o + Cn(), (CAY)

d
“ou Z(f) ——n(®) + £, (3.2)
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Figure 2: (A) Degree of synchrony (r, solid lines) and performance of the pop-
ulation rate coding (corr, dotted lines) in layers A (thick lines) and B (thin lines)
when the strength of global feedback is varied. (B) Mean firing rates of single
neurons in layer A (thick line) and ones in layer B (thin line). Examples of raster
plots of excitatory neurons (lower traces) and inhibitory neurons (upper traces)
are also shown for (C) /g4 = 0and (D) Jpa = —0.25. (E, F) The normalized pop-
ulation firing rates A(t) for the population of excitatory neurons (thick lines) and
that of inhibitory neurons (thin lines), calculated with bin width 4 ms. E and F
correspond to C and D, respectively.

where £(t) is a white gaussian process with standard deviation 1, Iy = 1.4
is the input bias, C =5 is the strength of input modulation, and 7oy is
assumed to be 10 ms. We also set w = 2.5 ms in equation 2.3, tg4 = 30.0 ms,
and o = 0.08.

The degree of synchrony and the performance of the population rate
coding are shown in Figure 2A as functions of the feedback strength. In the
purely feedforward situation with Jg4 = 0, less synchrony and larger val-
ues of corr are observed compared with when Jpa < 0. As Jpa tends more
negative, the synchronous mode is first seen. Then as it increases toward
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zero, asynchrony with high resolution of the population rate code gradually
appears (Masuda & Aihara, 2002b, 2003a; van Rossum et al., 2002; Litvak
et al., 2003). A more negative feedback gain provides the neurons in layer
A with more correlated inputs in the form of common spike trains from
layer B. Then layer A is forced to synchronize more strongly (Damasio,
1989; Sillito et al., 1994; Murphy et al., 1999; Doiron et al., 2003; Masuda
& Aihara, 2003a), and the enhanced synchrony in turn supplies more cor-
related feedforward inputs to layer B to induce synchrony there as well
(Abeles, 1991; Diesmann et al., 1999; Cateau & Fukai, 2001; van Rossum
et al.,, 2002; Masuda & Aihara, 2003a; Litvak et al., 2003; Reyes, 2003). The
results are consistent with the general tendency that reduced firing rates
reinforce synchrony in recurrent networks (Brunel & Hakim, 1999; Burkitt
& Clark, 2001), since the negative global feedback in our network obviously
decreases firing rates. Figures 2C (for Jga = 0) and 2D (for Jpa = —0.25)
show example raster plots of 111 = 250 neurons in layer A (lower traces) and
1, = 30 neurons in layer B. These figures, together with the time-dependent
firing rates shown in Figures 2E and 2F corresponding to Figures 2C and
2D, respectively, support that there is a transition between synchronous and
asynchronous regimes as explained above. At the same time, oscillatory ac-
tivities, which are our interest, are evident, particularly in the presence of
delayed feedback (see Figure 2D). What mechanisms underlie such oscilla-
tions and how oscillations are related to information coding are examined
in sections 4, 6, and 7. As a remark, the use of Jg4 < 0 can obscure the bio-
logical sense of the neurons in layer B, because they send inhibitory spikes
to layer A and excitatory spikes to layer B. However, the results are quali-
tatively the same even if the coupling within layer B is inhibitory (data not
shown).

The observables from layer B roughly approximate those from layer A
for all Jpa since the dynamics in layer B is correlated to that in layer A
(Brunel, 2000; Laing & Longtin, 2003; see Figure 2). This is consistent with
experimental evidence in, for example, the visual system (Billock, 1997) and
the hippocampus (Klausberger et al., 2003). More precisely, the amount of
information on I(¢) in layer B is limited by that in layer A. Consequently, in
layer B, larger r and smaller corr than in layer A are always observed. For
this reason, we do not show corr and r of layer B in the following figures.

Figure 2A indicates that for Jp4 > 0, significant synchrony is not estab-
lished. This is so even though synchrony is expected at higher Jpa, which
produces more correlated input to layer A Noise is amplified through the
positive feedback loop, and Figure 2B shows that firing rates are drastically
increased as a function of Jp4. The combined effects give rise to a tendency
toward asynchrony (Brunel & Hakim, 1999; Burkitt & Clark, 2001), which
seems to override the synchronizing effect of the correlated inputs. In con-
trast to the switching between the synchronous mode and the population
rate code mode obtained for negative feedback, corr decreases and r does
not robustly increase as Jpa goes positive large. As mentioned, the positive
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feedback elicits autonomous autocatalytic reverberation even after external
inputs are removed. Then firing rates just saturate at large values so that
the network behavior is almost ignorant of the input information, deterio-
rating the population rate coding (Douglas et al., 1995). This consequence
is also likely for more elaborated conductance-based neuron models and
real neurons since saturating effects with monotonic frequency-input (f-I)
curves are observed in these cases as well (H6 & Destexhe, 2000; Chance,
Abbott, & Reyes, 2002). Although nonmonotonic f-I relations because of
conductance dynamics (Kuhn, Aertsen, & Rotter, 2004) possibly change our
conclusions, we concentrate on more conventional cases. To put all the cases
of Jpa together, the purely feedforward architecture with Jg4 = 0 naturally
maximizes corr since corr measures the performance of the simplest task of
mimicking inputs.

Although signal amplification and maintenance of high firing rates are
achieved by positive feedback loops (Douglas et al., 1995), positive feedback
is often harmful (e.g., seizure), and it is also inefficient in terms of the con-
sumed power (Knight, 2000). Positive feedback must be used in more local
or specific manners. For example, it may activate certain parts of a network
for particular functions to be turned on, or for a specific aspect of stimuli to
be magnified, as suggested by the experiments in the electric fish circuitry
(Berman & Maler, 1999).

4 Bandpass Filtering of Dynamic Inputs

In this section, we investigate how the interplay of various factors with
different timescales influences information processing. To this end, let the
external inputs be the sinusoidal waveforms represented by

I(t) = Ip + C sin(27 fexst), 4.1)

where Iy and C are the bias and the amplitude of modulation, respectively.
The relevance of sinusoidal inputs to biological neural systems has been
explained in section 1. We vary w in equations 2.3 and 2.4 according to
w = 100/ fext ms so that the resolution of discretizing I(t) into {s1(i)} is inde-
pendent of the timescale.

As to the modulation strength, there is always competition between fe.;
and inherent stochastic dynamics of single neurons (Longtin, 1995) or that
of networks, as we will see. Obviously, corr increases with C at first, mean-
ing that stronger modulation more easily facilitates better population rate
coding with some, but not perfect, phase locking (Burkitt & Clark, 2001). If
C is even stronger, corr degrades to some extent because of almost perfect
phase locking, which disregards the detailed temporal structure of I(¢). In
these situations, the contribution of the neural network dynamics is negli-
gible, and abundant results for single neurons or neural networks without
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Figure 3: (A, B) The degree of synchrony (r, solid lines) and the performance of
the population rate coding (corr, dotted lines) of layer A. (C, D) Power spectra
of the population firing rates of layer A. For clarity, only the values of power
more than 100 are plotted. We set Iy = 1.4 and 734 = 30.0 ms. The dependence
on feyt is examined for Jps = 0 (A, C) and Jpa = —0.25 (B, D).

global feedback support that firing times are regulated by the peaks of ex-
ternal inputs without regard to network interactions (Gerstner et al., 1996;
Longtin & St-Hilaire, 2000; Masuda & Aihara, 2003b). However, here we
examine the regime in which the dynamics are not so strongly entrained by
inputs. We set C = 0.10, which is small compared with values of I; used in
sections 4.1 and 4.2.

4.1 Effects of Global Feedback

4.1.1 Feedforward Only First, a purely feedforward architecture is con-
trasted with one with global feedback, with which we are concerned. We
set tga = 30 ms, Iy = 1.4, and o = 0.07. The coding profiles of layer A de-
pendent on fey are shown in Figure 3A for g4 = 0. Compared with the case
in which Jpa = —0.25 (see Figure 3B), the level of synchrony is lower and
corr is larger for most of the range of the input frequency. This agrees with
the results in section 3. However, peaks of corr and r appear simultaneously
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Figure 4: Schematic figure showing how fext, fueuron, and fyet are set when the
feedback loop is (A) absent and (B) present.

at fo =42 Hz and its harmonics. Generally, spiking neurons have inher-
ent output frequencies for a constant input (Knight, 1972, 2000; Rinzel
& Ermentrout, 1998; Wilson, 1999; Lindner & Schimansky-Geier, 2002;
Izhikevich et al., 2003). With the values of 7,, and Iy given above, each
LIF neuron in open loop has the characteristic resonant frequency freuron
(see Figure 4A), which is about 42 Hz. Better phase locking and better pop-
ulation rate coding of inputs are realized when f,y; is approximately equal
to fuewron OF its harmonics (Knight, 1972, 2000; Hunter et al., 1998; Longtin,
2000; Klausberger et al., 2003; Buzsaki & Draguhn, 2004). Figure 3 can also be
regarded as an inverted tuning curve showing the input amplitudes neces-
sary to achieve a certain level of corr. The resonant regimes require just small
input amplitudes for locking, population rate coding with high resolution,
and presumably synchrony.

The simultaneous increase in corr and r in the resonant scheme seems
contradictory to the trade-off between synchrony and efficiency in popu-
lation rate coding realized by asynchrony. However, what happens is the
locking of spikes onto the peaks of I(t). Even if the neurons fire only around
the peaks of I(t), firing rates approximate the sinusoidal inputs well enough
to result in large corr. At the same time, the phase locking leads to synchro-
nization, which yields r even larger than the case of sinusoidally modu-
lated firing rates. The power spectra of the population firing rates of layer
A are shown in Figure 3C for changing f..:. We verify that oscillations are
enhanced around the resonant frequencies. This is consistent with the fact
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that an oscillation of population activities always accompanies some degree
of synchrony (Brunel, 2000).

On the other hand, Figure 3C indicates that the effect of f.; and that of
fueuron ON the output frequency compete with each other in nonresonant sit-
uations, resulting in relatively irregular and asynchronous firing. However,
asynchrony in this case does not mean efficient population rate coding (see
Figure 3A). Firing times are not entirely locked to the stimulus peaks but
determined as a compromise between the input and the intrinsic neuronal-
network dynamics. Accordingly, the purely feedforward networks filter
away the temporal information on nonresonant inputs. This mechanism
of bandpass filtering is commonly found in suprathreshold and subthresh-
old regimes (Knight, 1972, 2000; Longtin & St-Hilaire, 2000; Longtin, 2000;
Lindner & Schimansky-Geier, 2002).

4.1.2 Negative Feedback. Let us discuss dynamics of networks with neg-
ative global feedback. Analytical results based on analog neurons (Marcus
& Westervelt, 1989; Longtin, 1991; Giannakopoulos & Zapp, 1999; Wilson,
1999; Laing & Longtin, 2003) and neural populations with exact threshold
dynamics (Brunel & Hakim, 1999; Brunel, 2000) show that another inherent
frequency appears via the Hopf bifurcation as —Ja or tg4 increases. This
new frequency fy is introduced by the delayed global feedback loop, as
schematically shown in Figure 4B. The coding profiles for Jp4 = —0.25 are
shown in Figures 3B and 3D. With this ]p4, a limit cycle corresponding to
the oscillatory population firing rates exists, and the network has two char-
acteristic frequencies, fyeuron = 40 Hz and fes = 15 Hz. We note that fycur0n
is smaller than the purely feedforward case because of the net negative feed-
back inputs to layer A (Douglas et al., 1995). We observe in Figure 3B larger
values of corrand r near fext = fuet, as wellasnear foxt = fueuron- Also, corris
raised near the harmonics of fjeuron. Figure 3D supports the notion that the
enhanced synchrony and the better population rate coding are accompa-
nied by reinforced regular oscillations and phase locking around resonant
frequencies. For nonresonant inputs, the peaks in corr, r, and the power
spectra disappear as a result of competition between fext, fueuron, and fer.

The coexistence of two characteristic frequencies fyer and fyeuron can be
understood with an analysis of the population firing rates depending on the
parameter [p4. Here we explain it qualitatively; more detailed analyses on
the Hopf bifurcation are provided in section 7. Let us suppose for simplicity
that I(f) is a constant bias plus some noise and that ]z decreases from 0. At
low | ] pal, constant firing rates corresponding to totally asynchronous popu-
lation activities are the stable fixed points, if intralayer coupling is ignored.
However, the neurons fire more or less synchronously even at this stage
because of nonzero Jpa. Therefore, the constant firing rates can be inter-
preted as somewhat synchronous firing with output frequency freuron (see
Figure 4A). Past the Hopf bifurcation point, fueuon changes continuously



Coding of Temporally Varying Signals 2153

fout (H2) fout (H2)

Figure 5: Dependence of corr on Jpa and fey with (A) g4 =20.0 ms and
(B) 184 = 30.0 ms. We set Iy = 1.4. Brighter points correspond to larger values
of corr.

and begins to oscillate in time at the eigenmode corresponding to fy.: (see
Figure 4B).

The inverse of the resonant frequency f is approximated by twice the
loopback time: 2tp4 = 60 = 1/0.017 ms since the feedforward synaptic de-
lay and the response time of the neural populations (Knight, 1972; Gerstner
& Kistler, 2002) are much smaller than 4 in our framework and many oth-
ers. This agrees with the analytical calculations in section 6 based on linear
response theory and is intuitively understood as follows (Brunel & Hakim,
1999). In response to increasing firing rates in layer A, strong negative feed-
back reverberates into layer Aapproximately after tp4. Then the firing rates
in layer A decrease to make layer B less activated. The strong inhibition
in layer Aimposed by the negative feedback is removed after another 34,
which completes one round. This is numerically confirmed (Doiron et al.,
2003; Maex & De Schutter, 2003), and theoretical results also guarantee that
1/ fnet falls somewhere in [2tp4, 4134l depending on situations (Brunel &
Hakim, 1999; Giannakopoulos & Zapp, 1999; Laing & Longtin, 2003; Doiron
et al., 2004).

Next, we examine the influence of Jg4 on input filtering more system-
atically. The values of corr for various values of Jp4 and f.y are shown
in Figures 5A and 5B for tp4 =20 ms and tp4 = 30 ms, respectively. We
have set Iy = 1.4 and o = 0.02. Since the dynamical states are kept more or
less synchronous and r does not give us as much information as corr does,
we show only the values of corr in Figure 5 and later in Figure 6. Black
and white regions correspond to corr = 0 and corr = 1, respectively. Near
JBa = 0, only feedforward filtering is in operation, and it is broadly tuned.
Although it has a lowpass property whose cutoff frequency is specified by
the membrane constant, the bandpass cutoff is not seen in the numerical
results because the cutoff frequency is very high. Near [g4 = —0.05, oscil-
latory network dynamics begin to be observed, presumably corresponding
to the Hopf bifurcation assessed with o = 0. Then, only the inputs whose
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fot (H2) fon (H2)

Figure 6: Dependence of corr on Iy and f.+ with (A) g4 =20.0 ms and
(B) 784 = 30.0 ms. We set Jpa = —0.25. Brighter points correspond to larger
values of corr.

fext’s are resonant with fyet Or freuron are readily transmitted, and this feed-
back bandpass filtering is sharply tuned. As expected, f,.; changes from
approximately 25 Hz to 15 Hz as we vary tpa from 20 ms to 30 ms. For
positive Jpa, oscillatory synchrony is actually difficult to build up, as we
mentioned above. Analytical results also suggest that population firing rates
do not oscillate but are constant for small but positive Jp4 (Knight, 2000;
Laing & Longtin, 2003). On the other hand, the peaks associated with fyeyron
and its harmonics persist up to a larger positive [pa = 0.15, where fyeuron =
55 (resp. 65) Hz in Figure 5A (resp. Figure 5B). Both fe; and fyeuron increase
in Jpa. However, fyeuon is more sensitive to Jpa, since Jpa directly affects
the level of effective bias (Maex & De Schutter, 2003). Another point is that
corr generally decreases as |[pa| increases, consistent with Figure 2A.

4.2 Effects of Input Bias. In addition to the principal oscillatory com-
ponent of inputs, an input bias is perpetually subject to changes. With
JBa = —0.25 and o = 0.03 fixed, values of corr for varying Iy and f.y; are
numerically calculated. Figures 6A and 6B correspond to g4 = 20 ms and
784 = 30 ms, respectively. The neuronal frequency fyeuron is identified by the
brighter regions with larger corr, which mark the resonance between f,y
and fueuron. In Figures 6A and 6B, they are relatively bright oblique regions
touching fex+ = 50 Hz at I = 2.0. Similarly, resonant peaks corresponding
to fue are those touching f. = 25 (resp. 15) Hz at Iy = 2.0 in Figure 6A
(resp. Figure 6B). Also some harmonics of fyeuron and fyer are observed as
oblique bands. At first sight, fyeuron increases with Iy in a smooth manner.
This property, also suggested in section 4.1, is reminiscent of the property
of class I neurons (also called type I membranes) or of LIF neurons (Knight,
1972; Rinzel & Ermentrout, 1998; Masuda & Aihara, 2002a). In contrast, the
peak associated with f,,s does not move that much, because the frequency of
the network oscillation caused by the Hopf bifurcation is rather insensitive
to the bias, even well beyond the bifurcation point (Rinzel & Ermentrout,
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1998; Masuda & Aihara, 2002a; Izhikevich et al., 2003). These results agree
with the analytical results in section 6 and are discussed in more detail in
section 8.

In summary, there are two oscillation periods. The intrinsic neuron
timescale fyeuron is susceptible to Iy and Jga, whereas the intrinsic network
timescale f,; depends much on 74 and to some extent on [pa. The latter
oscillation is observed only when negative feedback is large enough. When
the input timescale f.; matches either fyeuron OT fyet, both input-output
correlation and network synchrony increase, and the network bandpasses
sinusoidal inputs.

5 Spike Response Model

To take a closer look at the mechanism of bandpass filtering, we introduce
the description on population activities based on a simplified spike response
model (SRM) (Gerstner & Kistler, 2002). The SRM is equipped with realistic
features of neurons such as spiking mechanisms, stochasticity, and refrac-
tory periods. At the same time, it allows exact treatments of delay-induced
synchronous network oscillations and oscillations of single neurons. Based
on the SRM, we derive linear frequency response functions in section 6
and bifurcation diagrams in section 7. In this section, we briefly explain the
formulations necessary for sections 6 and 7. However, we move the math-
ematical details to appendix A since the calculations are basically the same
as those in Gerstner and Kistler (2002). Our novel point is the consideration
of delayed feedback. For complete derivation, also refer to Doiron (2004).

Let us assume a single-layered recurrent network with feedback delay ;.
This reduction from the network with two layers is justified for a moment
by the mathematical fact that the dynamics of layer B is enslaved by that
of layer A in the sense that their firing rates are locked with a phase lag
(Brunel, 2000; Laing & Longtin, 2003; Doiron et al., 2003, 2004).

After some calculations as shown in appendix A, we obtain a delay differ-
ential system involving the effective input potential #(t) and the population
firing rate A(f):

h(t) = /Ooe_s/f’" X (] /oo Goy VAt —s — g —1)dr' + I(t — s)) ds, (5.1)
0 —00

and

ol
A = 1y = SO 5.2)

Here | is the uniform feedback gain, 7, is the absolutely refractory period,
Gs, (r') is the noise kernel to account for the stochasticity in the dynamics,
and f givenin equation A.10 in appendix A implements a stochastic spiking
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mechanism with threshold. We remark that we now use the letter Afor pop-
ulation activity, not to be confused with a layer label. Equation 5.2 dictates
that a firing rate is determined by monotonic nonlinear function of k(). In
turn, h(t) comprises the filtered versions of the neural activity reverberating
with delays and the external input. The lowpass filtering stems from the
membrane time constant of the single neuron, namely, 7.

6 Resonance Conditions Based on Linear Response Theory

In this section, we derive the linear response function in the frequency do-
main to examine the resonance conditions. We again follow the previous
work (Knight, 1972, 2000; Gerstner, 2000; Gerstner & Kistler, 2002) except
that we take into account the delayed feedback. This analysis is qualified
because in section 4, we worked out the numerical simulations with the
weak input modulation.

For the inputs given in equation 4.1 with small C, let the population firing
rates be

Alt) = A+ AA®), 6.1)

where Ais the mean firing rate. For simplicity, we set 7, = 0 in this section.
We also apply the deterministic firing rule without long memory, by replac-
ing h(t) with h(t|f) in equation A.9 and assuming 8 — oc in equation A.10.
Instead, we introduce the reset noise (Gerstner, 2000; Gerstner & Kistler,
2002), which is more mathematically tractable for the purpose of deriving
frequency response functions. The reset noise causes the jitter in the reset
time in the form of the gaussian distribution with variance o3. Then, in
terms of &, the dynamical equation for the population firing rates linearized
around the stationary rate A becomes

AAW) = / T G DAL — Ty — r)dr

A

R0

<h/(t) — e To/m /oo Go, W' (t — Tp — r)dr) , (6.2)

where Tj is the backward interspike interval that is almost equal to an inter-
spike interval 1/ fyeuron, and v'(9) > 01is the rate of increase in the membrane
potential v at the threshold v = 6, which we assume to be constant (Gerstner
& Kistler, 2002). By applying the Fourier transform to equations 5.1 and 6.2,
we obtain the following equations for the radial frequency w # 0:

7 Tm 5 —iwty A #
h(w) = TTion (J G (@)e™ "™ Alw) + [ (), (6.3)
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Alw) =Gy, () Alw)e T 4

v'(0) (il’(a)) — e To/m—ieh C;oz (w)il'(w)) , (6.4)

where the Fourier transform of a function is denoted by putting " The
Fourier transform of the gaussian distribution is given by

2, 2
o) = exp (-" 2“’ ) . 6.5)

Combining equations 6.3 to 6.5, we derive the frequency response function
in the following form:

Alw) . AF (v) C
@) - 00 /(1 —exp (— > —la)To>

AF (w) —alza)z .
2@ J exp ( 5~ la)rd> ), (6.6)
where
: 2 2
A oty B T _ E
F(w) = Trior. o <1 exp ( 5 iwTy Tm)) . 6.7)

We then ignore the term A/v'(9) in the numerator, which is independent of
, and define the effective coupling strength by | = ] A/v'(6).

Figure 7 shows the gain function calculated as the absolute value of
equation 6.6 for some parameter sets. In the resonant situations, e **% or
Je~i®™ are more or less maximized to make the denominator of equation 6.6
small (Knight, 2000; Gerstner & Kistler, 2002). The change in Ty mainly af-
fects the second term of the denominator, whereas 734 and [p4 influence
the third term. For (Ty, ], 1) = (25 ms, —0.5, 30 ms), the response gain
(solid lines in Figure 7) actually has three peaks: at fu; = (27y)~! = 18 Hz,
Freuron = TO’1 =40 Hz, and 2 fyeuon (also see Figure 4B). Figure 7A shows
that if we remove the global feedback, the peak at f,,: vanishes with little
influence on the peaks at fyeuron and 2 fyeuron (also see Figure 4A). With | <0
present, only the former peak shifts as we change 7, as shown in Figure 7B.
By contrast, Figure 7C shows that the latter peaks mainly move as we vary
To, which is sensitive to the input bias. As a remark, the nonlinear bifur-
cation theory in section 7 and others (Marcus & Westervelt, 1989; Longtin,
1991; Giannakopoulos & Zapp, 1999; Wilson, 1999) claims that the feedback
delay must be large enough to produce a Hopf bifurcation with the net-
work oscillation. This is not covered by the linear theory developed here.
On the other hand, the resonant peak at f,,; may be identified even in the
subthreshold regime due to noise.



2158 N. Masuda, B. Doiron, A. Longtin, and K. Aihara

120

gain
gain

0 20 4 6 8 0 20 40 6 8
output freq (Hz) output freq (Hz)

C
120

80

gain

0 20 4 6 8
output freq (Hz)

Figure 7: The gain functions for Ty = 25 ms, Jo =0.5, ; = 30 ms (solid lines in
(A), (B), and (C)) compared with Ty =25 ms, Jo =0, 1; = 30ms (dotted line in A),
To =25ms, Jo = 0.5, 7; = 40 ms (dotted line in B), and Ty = 20 ms, ] = 0.5,
7; = 30 ms (dotted line in C). We set o7 = 8.0 and o, = 4.0.

We are in a position to explicitly take two layers into account. For sim-
plicity, the intralayer coupling is ignored. After similar calculations that
are detailed in appendix B, we end up with the frequency response function
equation B.3. Essential points suggested by the denominator of equation B.3
are that fyeur0n does not change with the consideration of two layers and that
fuet is modified to 2(tvap + 754) "%, which is again twice the loopback time.
More generally, we deal with the frequency response of N assemblies in
appendix B. With these assemblies denoted by 1, 2, ..., N, the resonance
frequency for a negative feedback loop of chain length k is given by

1

fnet = s
2 (fmpz + Topps T F Tﬂkm)

(6.8)

where {p1, ..., px} is an ordered subset of {1, 2, ..., N}.

On the other hand, f,.; associated with a positive loop is not likely to be
observed because the Hopf bifurcation points, which mark the emergence
of oscillations (see section 7), are not crossed and positive feedback usu-
ally introduces instability (Knight, 2000). In reality, a pair of layers is not
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necessarily interconnected, and the parameters differ for each loop. Among
them, the contribution of the feedback loops with small z,,,, + 7,0, + ... +
T, and negative large effective gains (] p,p,J pps - - - ] pepr in appendix B)
relative to other loops dominates the summation in equation B.8. Only these
loops effectively affect the bandpass properties. If the contribution of the
feedback loops to the denominator is small relative to one of the single-
neuron dynamics (1 — G,,e*“™)N in equation B.8), feuron = 1/ Ty is the only
effective resonant frequency, and the network property is of feedforward or
single-neuron nature.

To summarize, a feedback delay potentially sets an oscillation period
distinct from one associated with a single-neuron oscillation. Actual ap-
pearance of the oscillation depends on whether the network has passed a
Hopf bifurcation point, which is the topic of section 7.

7 Hopf Bifurcations in Network Activity

In this section, we show how a network oscillation occurs via a supercriti-
cal Hopf bifurcation in population activity. In biological terms, our results
qualitatively clarify which network configuration accommodates oscilla-
tions that underlie enhanced coding of periodic inputs, as discovered in
section 4. Theoretically, we characterize how oscillations emerge in the SRM
supplied with a delayed feedback. This bifurcation is set by both the single-
cell excitability and the network feedback strength. The nonlinear analysis
developed here complements the linear analysis in section 6. We set | <0
to discuss the emergence of stable synchronous and oscillatory firing pre-
sented in section 4.

With the limit 01 — 0 and 0, — 0, we can transform equation 5.1 into the
following scalar delay differential equation (Gerstner & Kistler, 2002):

fm% = —h(t) + ] Att — ) + I(D). 7.1

The advantage of these approximations and transformations is that the sys-
tem given by equations 5.2 and 7.1 is more tractable than the original system
of equations A.3 and A.7 in appendix A.

We give a dynamical system analysis of equations 5.2 and 7.1. To this
end, we consider only the autonomous network and set I(t) = Iy. Inserting
equation 5.2 in equation 7.1 and performing the transformation 1 — (h —
Ip)/6 and t — t/1,, gives the nondimensionalized system:

D _ o+ T3l — 201, 72)

dt

where the new dimensionless parameters are defined by | = J /01, and
%3 = 14/tu. The population activity A(t) is now determined by g[h(t)] with
g given in equation 5.2, but 7, and f(t) are replaced by % = 1,/1, and
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Figure 8: Hopf bifurcation in population dynamics. We integrate equation 7.2
with an Euler approximation scheme with a time step of 107°. The parameters
are setat 7, = 0.3, 8 = 1, and 1y = 1. (A) The bifurcation set I" defines a curve
of supercritical Hopf bifurcations in the [ /I, parameter space. Equations C.1
and C.13 are solved using a bisection root-finding algorithm with a tolerance
of 107°. The curve I' computed for 7; = 1 partitions the parameter space into
stable and unstable regimes, as labeled. (B) The Hopf bifurcation curve in the
J /T4 parameter space with Iy = 6. (C) Bifurcation diagram for A(t) with I, as
a bifurcation parameter and | = —3. Solid lines and dashed lines represent
stable and unstable fixed points, respectively. Open circles are the minimum and
maximum of the oscillatory solution for A(t) born out of the Hopf bifurcations.

f(t) = 7, explB(h(t) + Ty — 1)], respectively. We have set B = g6, Iy = o/,
and %) = 10/t

In appendix C, we analyze equation 7.2 by numerically solving the tran-
scendental characteristic equation caused by the delayed feedback. As a re-
sult, | /I parameter space is partitioned into schemes. Figure 8A shows that
the parameter space is divided into the stable regime where stationary firing
rates are stable and the unstable regime where firing rates oscillate. The Hopf
bifurcation occurs on the boundary curve denoted by I'. As | varies, there
is apparently only one Hopf bifurcation for a fixed Iy (Marcus & Westervelt,
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1989; Longtin, 1991; Brunel & Hakim, 1999; Brunel, 2000; Giannakopoulos
& Zapp, 1999; Gerstner, 2000; Gerstner & Kistler, 2002; Laing & Longtin,
2003). Then an oscillation occurs for the negative feedback strength larger
than a threshold. Actually, the situations of Figures 2C, 2E, 3A, 3C, and 4A
correspond to the stable region in Figure 8A, whereas those of Figures 2D,
2F, 3B, 3D, and 4B correspond to the unstable region.

However, as Iy grows, a stable network oscillation develops (Brunel &
Hakim, 1999) and then is lost through a reverse Hopf bifurcation, which is
also shown in the bifurcation diagram of A(t) in Figure 8C. This is intuitively
understood from the saturation of inhibitory feedback for large I, caused by
the nature of g(h). When inhibitory strength is saturated, large inputs can
overtake any delay-induced oscillatory behavior. Figure 8B shows delay-
induced instability in our population dynamics, consistent with other de-
layed dynamical systems (Marcus & Westervelt, 1989; Longtin, 1991; Brunel
& Hakim, 1999; Giannakopoulos & Zapp, 1999; Wilson, 1999; Gerstner &
Kistler, 2002). When ] is larger negative, an oscillation begins with a smaller
value of 7; as t; increases.

In summary, larger —] and t; with moderate I are more in favor of
network oscillations. Although oscillations can occur in a lot of ways in
dynamical systems theory, the one here is through a Hopf bifurcation. Limit
cycles that emerge from a Hopf bifurcation have rather stiff f,,; compared
with ones via, for example, a saddle-node bifurcation (Rinzel & Ermentrout,
1998). Such a rigid oscillation allows a strong resonance with a sinusoidal
input to improve coding, as prominent in section 4. Effects of the type of
bifurcation on coding performance are discussed in section 8.2.

8 Discussion

8.1 Relation to Experiments. Oscillatory synchrony is widely found
on a diversity of relative timescales in various neural systems. In this sec-
tion, we relate our results to experimental and relevant numerical results,
particularly on sensory systems. Let us discuss neural systems separately
according to the relative timescale foxt/ freuron-

Respiration provides external inputs with fe =1 Hz < freuron. Oscil-
latory rhythm in olfactory systems can be locked to periodic respiratory
inputs when they are present (Fontanini et al., 2003). Since oscillations are
found even in the absence of inputs (Fontanini et al., 2003), olfactory systems
are equipped with mechanisms to produce rhythms presumably owing to
recurrent loops. Slow oscillations with frequency near f.y; are enhanced by
respiration. Then built-in f,.; may be close to actual respiration frequencies
to enhance coding of general periodicinputs whose fe.; is close to respiration
frequency. However, we note that much faster y oscillations are ubiquitous
in olfactory systems as well (Stopfer et al., 1997). In this case, inputs with
larger fex; may be relevant.



2162 N. Masuda, B. Doiron, A. Longtin, and K. Aihara

Similarly, hippocampal 6 oscillations fall in this category if we consider
that hippocampal neurons sense spike inputs or local field potentials from
the 6 rhythm as effective slow inputs. Such oscillatory field potentials may
be caused by global feedback (Buzsaki & Draguhn, 2004). There, neurons
typically fire more than once in a stimulus cycle around a specific phase
of the periodic stimulus (Klausberger et al., 2003), reminiscent of the rela-
tion fext < fueuron. The time constants associated with the intrinsic single
neuronal dynamics are not important. Spike trains on top of 6 oscillations
are advantageous in accurate population rate coding. In addition, a sub-
population of neurons with these phase-locked spike trains may constitute
a cell assembly for specific information processing (Buzsdki & Draguhn,
2004). The aforementioned results on olfactory systems are suggestive of
the relation between fey; and fy,.t, whereas those on the hippocampus par-
ticularly relate f. and fueuron. They may be complementary to each other
for understanding the interaction of the three timescales.

The other extreme fext > fueuron is found in auditory systems that are per-
petually subject to sound inputs with high frequency (Gerstner et al., 1996).
Electrosensory systems of weakly electric fish receive communication sig-
nals with relatively high frequency as well (Heiligenberg, 1991). These sys-
tems actually receive periodic forcing from the environments, hence directly
fitting our framework. When feyt > fieuron, €ach neuron fires only sporadi-
cally with respect to the stimulus timescale. In the context of rate coding, a
single neuron cannot encode these fast inputs. A population of neurons is
called for to realize accurate rate coding (Shadlen & Newsome, 1998; Kistler
& De Zeeuw, 2002; Masuda & Aihara, 2002b, 2003a; van Rossum et al., 2002).
The fast input signals perhaps stem from some feedback loops with short
delays. In this case, fueuron < fret holds, as actually found in inferior olive
neurons (Kistler & De Zeeuw, 2002) and in electrosensory networks (Doiron
et al., 2003). Although we have mostly assumed fyeuron > frer in our analy-
ses, the results can be extended to the case of fyeuron < fner without difficulty
(Brunel & Hakim, 1999; Brunel, 2000).

Let us mention that superposition of different inputs can cause much
smaller effective f.;. For example, the electric fish interact by emitting
amplitude-modulated electric fields into the water. Then oscillatory fields
from many fish with various frequencies (several hundred cycles per sec-
ond) are superposed (Heiligenberg, 1991). As a result, effective inputs to
the fish are beating oscillations whose effective fey; is, for example, the dif-
ference between two original f.y. The fish may select the slow oscillatory
components resonant with its fy,.; and/or fyeuron, possibly serving to identify
specific individuals.

In visual systems, oscillatory field potentials with y frequency (20-80 Hz)
are ubiquitous and considered to be functionally relevant (Gray et al., 1989;
Sillito et al., 1994; Ritz & Sejnowski, 1997; Murphy et al., 1999). Such os-
cillations do not originate from external visual inputs with y frequency;
effective fext OF fext/ freuron in this context seems unclear. Instead, they are
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likely to be introduced by global feedback loops in the visual pathways
such as thalamocortical networks (Sillito et al., 1994; Murphy et al., 1999;
Destexhe & Sejnowski, 2003; Buzsaki & Draguhn, 2004). Then, in the sense
of increased corr and r, the network is ready to select external inputs with
frequency fext = fuet, where fy is in the y band.

Asa general note, regular activities such as 6 and y oscillations are widely
found in the brain. Consequently, chains of resonant signals may be prop-
agated in neural networks, without allowing interference or participation
of nonresonant signals (Izhikevich et al., 2003). If interspike intervals are
sufficiently regular within each spike packet corresponding to one stimu-
lus peak, as is the case for regular bursting, the coding performance of the
network is also responsive to inputs fulfilling fext = freuron-

8.2 Difference in Two Types of Resonance. We have looked at the inter-
play between three characteristic frequencies— fueuron, fret, and fex—which
are dependent, respectively, on the structure of intrinsic neural dynam-
ics, network architecture, and the stimulus. When f, is close to fyeuron OF
its harmonics, oscillatory population firing rates read out fyeuon €ven for
small signal amplitude. In this situation, the population rate coding with
high temporal resolution, synchrony, regular oscillations, and strong but
imperfect phase locking are realized at the same time. The magnitudes of
JBa, I, and also of 7, mainly influence fyeuron. Stated in another way, the
bandpass filtering associated with fyeuron is more adaptive in response to
changes in Iy. This type of resonance is the same as that for single neurons
(Knight, 1972, 2000; Hunter et al., 1998; Longtin, 2000; Klausberger et al.,
2003).

When fey is close to fy, oscillatory firing rates read out fy;. As shown
in section 8, the Hopf bifurcation occurs with bifurcation parameter Jps
becoming more negative or tg4 becoming larger. The resonant frequency fyet
depends on tp4 and Jp4 (Marcus & Westervelt, 1989; Longtin, 1991; Brunel
& Hakim, 1999; Giannakopoulos & Zapp, 1999; Wilson, 1999; Brunel, 2000;
Gerstner, 2000; Laing & Longtin, 2003; Mehring et al., 2003; Doiron et al.,
2004), but it is more robust against bias changes than are single-neuron
oscillations.

To illustrate the inherent difference between single-neuron oscillations
and network oscillations, let us first deal with a classification scheme of
single-neuron dynamics. For single neurons, Hopf bifurcations can under-
lie the emergence of intrinsic oscillatory firing by class Il neurons (also called
type Il membranes) such as the Hodgkin-Huxley neurons. Oscillatory class
IIneurons have fyeu0n relatively robust against changes in parameters such
as Ip. Consequently, they have bandpass properties, as our feedback net-
works do. Furthermore, they have other related functions, such as the rate
coding of amplitude-modulated signals superposed on sinusoidal carriers
(Longtin & St-Hilaire, 2000; Masuda & Aihara, 2003c).
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On the other hand, class I neurons are essentially integrators or coinci-
dence detectors and have distinct dynamical characteristics from those of
class II neurons (Rinzel & Ermentrout, 1998; Wilson, 1999). The LIF neurons,
which we have used, behave similarly to class I neurons, and their oscil-
lations with frequency fpeuron are not robust. Actually, resonant peaks are
extinguished for an increased level of noise (¢ = 0.10) more easily than the
resonant peaks at fy,+ and its harmonics (results not shown). Accordingly,
such stable oscillations of class II neurons could be naturally associated
with oscillatory activities abundant in experiments, as reviewed in section 1.
However, there is an essential problem in these arguments in favor of active
roles for class Il neurons; most neurons in the mammalian brain, including
pyramidal neurons and inhibitory interneurons, seem to be class I (Wilson,
1999) except, for example, some intrinsic oscillators in the frontal cortex of
the guinea pig (Llinds et al., 1991) and some neurons similar to the squid
giant neurons modeled by Hodgkin and Huxley (Aihara & Matsumoto,
1982).

Nevertheless, we find that class II properties persist at a network level.
Networks with global feedback, or even those with local feedback whose de-
lay islong enough to avoid inhibitory afterpotentials and refractory periods,
have filtering as well as other properties of a single class II neuron. Further-
more, networks with global feedback have adaptive parameters such as Jpa
related to learning. For example, the global feedback strength of the electric
fish can be modulated even in a short time (Berman & Maler, 1999), possibly
shifting f.: as well as freuron-

More generally, the feedback current gain Jga used here should even-
tually be replaced by a feedback conductance that is voltage dependent
and plastic (Douglas et al., 1995). This will likely endow neural networks
with richer properties. Chains of these coherent oscillatory signals can also
stably transmit from assemblies to assemblies (Knight, 2000; Masuda &
Aihara, 2003c; Izhikevich et al., 2003). These functions are likely to be asso-
ciated with the class II properties of network oscillations as well as those of
single-neuron oscillations.

To summarize, synchrony, which is presumably relevant to informa-
tion processing such as binding, normally yields decreased performance
in the sense of rate coding (Masuda & Aihara, 2002b, 2003a; van Rossum
et al., 2002; Litvak et al., 2003). However, in addition to the case in which
fext = fueuron, this law is violated when the delayed feedback creates f,.; and
fext is close to fyet. In these resonant situations, inputs are maximally trans-
mitted with sharp tuning, synchrony, oscillations, and reliable rate codes.
A final remark is that we have started with the SRM with realistic synaptic
time courses. However, we have then restricted the models to current-input
regimes for simplicity. Conductance-based synapses add another timescale
that at least quantitatively changes dependence of fyeur0n and fyer on other
parameters (H0 & Destexhe, 2000; Chance et al., 2002). They can even yield
a nonmonotonic relation between fy.r0n and the input bias (Kuhn et al.,
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2004), which may modify our results even qualitatively. A whole new study
with different ratios of synaptic timescales is warranted for future work.

Appendix A: SRM for Neural Populations with Delayed Feedback

In this appendix, we explain the SRM model for neural populations with
delayed feedback based on Gerstner and Kistler (2002) and Doiron (2004).

Let the population consist of n SRM neurons where the membrane po-
tential of the ith neuron before next firing is given by

vi(t) = ni(t — ) + hi (D), (A1)

where { is the last firing time. In equation A.1, n;(t) is a suitable refractory
function, and h;(t|f) is the component of the membrane potential with f
given, which is due to external inputs to the neuron. Equation A.1 is sup-
plemented with a spiking rule: the jth spike time of neuroni, or T; ;, is given
by the jth time t such that v;(t) = 6, where 6 represents the threshold value
of membrane potential where generally nonlinear ionic currents produce
action potentials. Typically, n;(t — ) is sufficiently negative for small t — f
so as to effectively reset the membrane potential after spike discharge. With
T;,j, the population activity A(t) is written by

l n
Aty =—3 % 8¢t =T)). (A2)
i=1 j

The actual population dynamics is a stochastic process because of various
noise sources, such as the dynamical noise in equations 2.1 and 2.2. We first
introduce noise caused by the jitter in the global feedback delay (Knight,
2000). It has the form of the gaussian distribution with variance of. We
denote the gaussian distribution with mean 0 and standard deviation o7 by
Gs,, and then the effective input potential defined by /;(t) in the presence of
global feedback with delay t; is given by the following integral equation:

hi(h)=]; /-oo €i(s) /oo G VAt —s — g —r')dr'ds
0 —00
+ / TGO L — s)ds, (A3)
0

where J; denotes the feedback gain for the ith postsynaptic neuron.
Equation A.3 separates h;(t) into two parts. An external input I;(t) is con-
volved with a linear response kernel «;(s). Network interactions are also
expressed whereby the population activity A(f) is convolved with a re-
sponse kernel €;(s), which models both a synaptic and membrane response.
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Since we consider homogeneous neural networks, weset J; = ], n;(t) = n(t),
€(t) =€), k;i(t) = k(t),and I;(t) = I(t). All these conditions set our network
to be a globally coupled network of identical neurons driven by a common
stimulus. In the case of LIF neurons with its time course of the synap-
tic current given by the delta function, the response kernels are given by
e(t) = k(t) = 7,;'e”"/™ (t > 0), and the input potentials are connected by the
relation

h(t[E) = h(t) — h(F) exp <—t — t) . (A.4)

Tm

Also using equation A.1, we obtain

h(t) = /ooe‘s/’”’ <] /oc Go@NAt —s — g —1)dr' + 1t — s)) ds,
0 —00

(A.5)

which is equation 5.1, and

t—t
o) =n(t — D + / e/
0
X <] /oc GoNVAt —s — g —r)dr' + I(t — s)) ds. (A.6)

For sufficiently simple model neurons without adaptive or bursting prop-
erties, such as the LIF neurons, the conservation law,

t
Alt) = / Py (tD) AD)dE, (A7)

oo

holds in the limit # — oco. In equation A.7, P,(t|f) is the probability that
a neuron with an input potential h(t) fires at time t > f. We supplement
equation A.7 with the normalization condition:

t
/ SHHADAE =1, (A8)

where S(t|f) is the survivor function defined as the probability that a neuron
does not emit a spike during the time interval (7, t). Equation A.8 simply
states that all neurons have fired at least once over their history (—oo, t).
Approximating the neuronal dynamics as a renewal process (Cox & Lewis,
1966), we can relate the interval distribution P, (t|f) to the hazard function
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fIh(®)] by

Py(t)) = fIR(DIS(EE)

t
= flh(H)] exp <— /f f [h(ﬂ)]dt/). (A9)

The hazard function f[h(#)] may be conceived as a time-dependent firing
probability; that is, a single cell emits a spike during the interval (¢, t + At)
with probability f[h(f)]At. Equations 5.1 and A.7, in conjunction with an
appropriate choice of P,(t|f), n(t — F), and f[h(t)], give a system of integral
equations that determines network activities.

To derive a manageable delay differential system, we model a generally
stochastic firing mechanism by adopting a noisy spike threshold. It is imple-
mented by combining a standard spike escape rate and the hazard function
in the form

)] = Tlexp B0D — 0)). (A10)
0

Here B characterizes the threshold fluctuations. When g — oo, f is the
Heaviside function centered at 6, providing a deterministic firing rule. In
contrast, 8 — 0 corresponds to a uniform and completely random firing
probability of 1/ for all 1. Next we choose our refractory function to be

2 ) (A.11)
0, (=7 +1)

R oo, (F<t<t+D
n(t—1 = { .
meaning that the absolute refractory period is t.. The relative refractory

period is not explicitly considered. Noting P, (t|f) = 0forf <t < f+ 1., we
derive from equations A.7, A.8, A9, and A.11

t
Alt) = flh()] [1 — / A(t/)dt/} = glh(D]. (A.12)
t—1,

This is the Wilson-Cowan equation (Wilson, 1999) for a population of neu-
rons with only absolute refractoriness. If we further assume that both I(f)
and A(t) vary on timescales much slower than z,, we can use a coarse grain-
ing of time to approximate equation A.12 as

_ fll
A = T o O]~ glh()], (A.13)

which is equation 5.2.
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Appendix B: Frequency Response Functions of Layered Networks with
Feedback

Let us assume that two layers Aand B are connected with delays 745 and
784 and that the same value of T is shared by layers Aand B. The firing rate
of layer A and that of B represented by Ax(t) = As+ AAAH) and Ap(t) =
Ag + AAg(D), respectively, satisfy

e Auf
Ap=Coy Age T 4 FTpaGy e ™ A + ,?9) (B.1)

Ap =G,, Age™T0 + FT apG,e7'™8 Ay, (B.2)

where ] ap = J ap Ap/v'(0) and ] ga = Jpa Aa/v'(0) are the effective coupling
strengths, and w is omitted when possible. With equations B.1 and B.2, the
frequency response function of layer Ais written by

Ay _ %(1 - gAazefino) B3)
T B (1 - gAaze_ino)z - ﬁzTABTBAlee_iw(TAB-FTBA) ' ’
Let us next consider N assemblies labeled 1, 2, ..., N. The transpose, the

unit matrix of size ! N and the firing rate of the ith assembly are denoted by
T, E,and A;(t) = A; + AA;(t), respectively. We have

A~ 4 A ff

A=g, e 0T A 4 ]—"g(71 XA + ,(9) (B.4)
where

A=A, A4, ..., A7, (B.5)

i=d,0,...,07, (B.6)

and Xis an N x N matrix whose diagonal elements are zero and nondiag-
onal elements X;; (1 <i,j < N,i # j) are given by

=T jie . (B7)

Using equation B.4, the denominator of the frequency response function,
which characterizes the resonant frequencies, can be expressed as follows:
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det ((1 - e ™) E — FG,, X)

N
= (1- nge—ino)N +> (- Gaze—iwﬂ))N_k

k=2
Z sign((p102 ... o))
(p102-.-0x)
5 (_1)kﬁkQ§17plpszzp3 . Tpkm e*iw(fﬁlﬂ2+792ﬂ3+4..+fﬁk/31)
. . \N—k
= (1= Goe™™)" =3 (1= Gppe™)
k=2
Z jaldels T T T e 110 TTpppst - Top ) (B.8)
o1 p1p2) p2p3 ) prp1 ’ .
(p1p2--Pk)

where the summations are over all the possible k cycles (p102 ... px) out
of {1,2,..., N}, and we have used the fact that the sign of a k cycle as a
permutation is equal to (—1)¥~1. If the coupling is weak enough to prohibit
equation B.8 from being negative, minimization of each term of the last
summation in equation B.8 leads to equation 6.8, namely,

1

fret = (B.9)
T2 (Torpe + Toops + -+ o)
for a negative k cycle:
Tmpszzm . ~Tpkm <0. (B.10)

Appendix C: Bifurcation Analysis of Network Activity

In this appendix, we present the bifurcation analysis of equation 7.2. Here-
after we drop ~ to simplify notation. Fixed points of equation 7.2, which
are denoted by /¥, are given by the roots of the following transcendental
equation:

= Jg(r). 1)

Because of the form of g, equation C.1 admits just one real root for all
values of B, 1, 7, > 0 and | < 0. Linearizing about the fixed point yields
the following local dynamics:

% = —h(t) + Dh(t — 1), “
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where

p=7 % ] Bexp(BUr* + I — D)o

dh [ - (vo + 7 exp(B(h* + Ip — )2 (C.3)

Substituting the ansatz h(t) = hoe', where hy is a constant, into equation C.2
yields the characteristic equation:

A+1— De™*™ =0. (C4)
Substitution of A =a +ib (4, b € R) into equation C.4 gives

a = De ™" cos(tzb) — 1, (C.5)
b= —De ™" sin(t;b). (C.6)

By considering the case when a = 0, we have from equations C.5 and C.6

1= Dcost;b, (C7)

b=vD?>—-1. (C8

Since b € R, we have |D| > 1. The set of equations C.7 and C.8 admits a
countably infinite number of solutions given by

1 1
by=— [arccos —+ Zﬂk] , (C.9)
T Dy
Dy =,/b? +1, (C.10)
withk =0, 1,2, ....Foreachk, we have a pair of conjugate eigenvalues A, =

+iby that lie on the imaginary axis. We show that for each k, the dynamical
system represented by equation 7.2 is at a Hopf bifurcation.

The Hopf bifurcation theorem for delayed systems is similar to the
case for systems without delay (Hale & Lunel, 1993). In order for a sys-
tem to be at a Hopf bifurcation, we require (1) 2 =0, (2) by # 0, and (3)
j—gk la=0 # 0. Condition 1 is satisfied by the assumption, and condition 2 fol-
lows by substituting | Dx| > 1 into equation C.9. To examine condition 3, we
differentiate equations C.5 and C.6, rearrange terms, and seta = 0, to obtain

da B cos t4bx + T Dy
d Dy 2=0 - 2Dyt cos by + ‘L'gD,% + 1

(C11m
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Let us suppose the converse of condition 3, that is, ;—gk|n:0 = 0. Then
equation C.11 results in

cos Tsby + 13 Dy = 0. (C.12)

Combining equations C.9 and C.12 yields t; = —1/D? < 0, which is a con-
tradiction. Therefore, dd_lgk|a:0 # 0. This argument holds true for all k =
0,1,2,....

Consequently, equation 7.2 admits a countably infinite number of Hopf
bifurcations that are characterized by a sequence of D: {Dy, Dy, D5, .. .}.
However, we are interested only in the case where h* changes stability.
Starting with D for which every A satisfying equation C.4 has negative
real parts, loss of stability occurs when two conjugate eigenvalues cross
the imaginary axis as D goes through D; for some k. We focus on D = Dy
where h* actually changes stability (Giannakopoulos & Zapp, 1999). By
substituting by taken from equation C.9 into equation C.10, we obtain the
transcendental equation to determine Dy:

1
arccos - = 14y/1— D3. (C.13)

0

Given 14, B, 10, and 7., equations C.1 and C.13 determine the set of values
I' ={J, Io} for which the system represented by equation 7.2 is at a Hopf
bifurcation. The ] /I parameter space is partitioned into the stable regime
and the unstable or oscillatory regime by I'. Using standard root-finding
methods, we solve equations C.1 and C.13 and plot the curve I" in Figure 8A.

Center manifold reduction and normal form calculation for retarded
functional differential systems are possible (Faria & Magalhées, 1995). How-
ever, such an analysis is beyond the scope of this article. Nevertheless, it has
been performed for a general class of retarded functional difference equa-
tions of which equation 7.2 is an example (Giannakopoulos & Zapp, 1999).
Then the coefficient of the third-order term in the normal form of the Hopf
bifurcation is generally derived. This coefficient determines the criticality
of the bifurcation, namely, whether the bifurcation is subcritical or super-
critical. Application of this expression to equation 7.2 shows that the Hopf
bifurcation is supercritical for all values of (Io, |, ;) that constitute I', dis-
allowing any bistability (results not shown).
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