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We study the one-dimensional normal form of a saddle-node system un-
der the influence of additive gaussian white noise and a static “bias cur-
rent” input parameter, a model that can be looked upon as the simplest
version of a type I neuron with stochastic input. This is in contrast with
the numerous studies devoted to the noise-driven leaky integrate-and-fire
neuron. We focus on the firing rate and coefficient of variation (CV) of the
interspike interval density, for which scaling relations with respect to the
input parameter and noise intensity are derived. Quadrature formulas for
rate and CV are numerically evaluated and compared to numerical simu-
lations of the system and to various approximation formulas obtained in
different limiting cases of the model. We also show that caution must be
used to extend these results to the � neuron model with multiplicative
gaussian white noise. The correspondence between the first passage time
statistics for the saddle-node model and the � neuron model is obtained
only in the Stratonovich interpretation of the stochastic� neuron model,
while previous results have focused only on the Ito interpretation. The
correct Stratonovich interpretation yields CVs that are still relatively high,
although smaller than in the Ito interpretation; it also produces certain
qualitative differences, especially at larger noise intensities. Our analysis
provides useful relations for assessing the distance to threshold and the
level of synaptic noise in real type I neurons from their firing statistics.
We also briefly discuss the effect of finite boundaries (finite values of
threshold and reset) on the firing statistics.

1 Introduction

The transition from quiescent to periodic firing behavior as a bias cur-
rent increases leads to significant changes in the dynamics of an excitable
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system. This transition is characterized by the behavior of the firing fre-
quency across this transition. It is possible to divide neurons according to
this behavior into type I and type II dynamics (Hodgkin, 1948). Type I dy-
namics exhibit a continuous variation in firing frequency as a bias parame-
ter (such as an input current) is increased. Dynamically, such a transition to
repetitive firing is associated with a saddle-node bifurcation (Rinzel & Er-
mentrout, 1989). At this bifurcation, a stable and an unstable fixed point coa-
lesce and disappear, with a stable limit cycle taking their place. In the neural
modeling context, the stable fixed point is associated with the resting po-
tential, while the unstable fixed point (and associated unstable direction(s)
or “unstable manifold” in phase space) is associated with the threshold of
the cell. Type II membranes exhibit a finite nonzero frequency as repeti-
tive firing begins. Such transitions are associated with Hopf bifurcations.
Some model and experimental systems can exhibit transitions to repeti-
tive firing by one or the other of these mechanisms, depending on system
parameters.

The relevance of noise-induced firing in type I membranes is related to
the problem of large coefficients of variation (CVs). There has been much
effort to explain the observed variability in firing rates in various experimen-
tal preparations, and much attention has been devoted to the occurrence of
interspike interval histograms (ISIH) with high CVs defined as the ratio of
ISIH standard deviation to mean (Wilbur & Rinzel, 1983; Softky & Koch,
1993; Shadlen & Newsome, 1994; Bell, Mainen, Tsodyks, & Sejnowski, 1995;
Troyer & Miller, 1997). Gutkin and Ermentrout (1998) have shown using
numerical simulations that large CVs can be obtained from type I dynamics
with noise. They used the so-called one-dimensional � neuron model (Er-
mentrout, 1996) and compared results from stochastic simulations of this
model with those from simulations of the two-dimensional Morris-Lecar
model (Morris & Lecar, 1981; Rinzel & Ermentrout, 1989) that has inspired
the elaboration of the� neuron model. Other researchers (Gang, Ditzinger,
Ning, & Haken, 1993; Rappel & Strogatz, 1994) have also explored the ef-
fect of noise on saddle-node bifurcations in a generic dynamical system,
while Longtin (1997) has studied the effect of noise on this bifurcation in
the Hindmarsh-Rose bursting neuron model and shown how the ISIHs and
other firing statistics vary with noise strength.

The origin of the high variability seen in certain experiments and in
noise-driven models of type I membranes can be understood from the sem-
inal theoretical work of Sigeti and Horsthemke (1989). They studied how
noise can move the state variable across the unstable fixed point associated
with a saddle-node bifurcation. Their analysis was performed on a one-
dimensional dynamical system known as the normal form of the saddle-
node bifurcation. This system describes the long-lived dynamics of a (pos-
sibly higher-dimensional) system in the vicinity of this bifurcation, all other
aspects of the dynamics having decayed away to zero. More precisely, their
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analysis was confined to the bifurcation point itself, where the saddle and
the node have coalesced into a semistable fixed point. In other words, they
focused on the normal form ẋ = β+ x2 with β = 0; they also considered the
Adler equation θ̇ = 1 − cos θ , a variant of this normal form, which agrees
with it to second order. In neural terms, that means that the bias current is
set right at rheobase.

The analysis of Sigeti and Horsthemke (1989) described how noise pushes
solutions over the saddle-node point in terms of the two first moments of the
first passage time density. While those theoretical and computational studies
were carried out at the bifurcation, our study aims to explore the vicinity
of this bifurcation, thus making it relevant to a range of experimentally
plausible parameters in real neurons. The goal of our article is to provide
analytical insight into how noise, for example, of synaptic origin, affects
the transition to repetitive firing in type I membranes. We give exact and
simplified approximate expressions for the mean interspike interval (ISI),
the ISI standard deviation, and CV defined as the ratio of standard deviation
to mean; these expressions are sought as a function of the input parameters.

The article is organized as follows. In section 2.2, we introduce our basic
spike generator model, discuss its relation to the � neuron, and derive
some scaling relations for rate and CV with respect to the input parameters.
In section 3, we give exact integral expressions for the first two central
moments of the interspike interval and derive simple approximations for
various limit cases. The results, rate and CV as functions of constant input
and noise intensity, are presented in section 4. Here we also compare results
from two different versions of the stochastic � model and those from our
basic model; furthermore, we discuss briefly how the firing statistics change
for finite boundaries in the associated passage time problem. In section 5,
our results are summarized and briefly discussed in a more general context.
Two appendixes contain supplementary material.

2 The Model and Its Basic Properties

2.1 Stochastic Spike Generator Model for a Type I Neuron. Every sys-
tem that is close to a saddle-node bifurcation will be dominated by the
quasi-one-dimensional passage through the region around its fixed point.
This holds true also for many neurons known as type I neurons and in par-
ticular for neuron models like, for instance, the Morris-Lecar model (Morris
& Lecar, 1981). The influence of noise on such a system is of eminent im-
portance for issues like spike train variability and reliability of signal trans-
mission through neurons. Moreover, the typical spike train input received
by many higher-order neurons can be also approximated by a simple noise
process (diffusion approximation; see, for instance, Tuckwell, 1988). The
simplest choice for a random input that still permits an extensive analytical
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treatment is an uncorrelated noise—a white noise.1 We allow for a finite
mean value of the noise that can be looked upon as a separate constant
input.

After the usual reduction procedure from the multidimensional dynam-
ics (Ermentrout, 1996; Gutkin & Ermentrout, 1998; Hoppensteadt & Izhike-
vich, 1997), the one-dimensional normal form driven by a white noise input
reads

ẋ = β + x2 +
√

2Dξ(t). (2.1)

Here, time is measured in the typical timescale of the model. The parameter
D denotes the noise intensity, and the gaussian white noise ξ(t) obeys the
correlation function 〈ξ(t)ξ(t+ τ)〉 = δ(τ ). The parameter β is another input
parameter; it is constant and can also be thought of as a static or very slowly
varying signal. We note that this reduction has assumed a prior approxi-
mation regarding the nature of the noise. If the noise is meant as synaptic
input to a cell, this input modifies the conductances that multiply the usual
“battery” terms (Vrev − V) in the Hodgkin-Huxley formalism. This gives
rise to multiplicative noise, since the state variable (the voltage) multiplies
the noise (the fluctuating conductance). The reduction is assumed to take
place very near the bifurcation, so that the noise can be made additive (the
voltage is set to a constant in the synaptic battery terms). It is not known
generally what effect this approximation has on the dynamics, except right
near the bifurcation.

We consider in this work a simple spike generator that produces spikes
whenever the variable x reaches a threshold value x+. After occurrence of
a spike, the variable is reset to a negative value x−. If not stated otherwise,
these values are chosen to be at plus and minus infinity, respectively. A ver-
sion of this spike generator with finite threshold and reset values (although
possibly with a different kind of input current) is known as the quadratic
integrate-and-fire neuron and has been recently used in studies of neuronal
networks (see, e.g., Latham, Richmond, Nelson, & Nirenberg, 2000; Hansel
& Mato, 2001); here, we discuss the effect of finiteness of x± briefly (see sec-
tion 4.4). The ISIs are obtained from independent realizations of the passage
from x− to x+. The presence of the square term and the white gaussian noise
in equation 2.1 ensures that this passage time is finite (in spite of the possibly
infinite threshold and reset values) for all values of the input parameter β.

A simulation of the system can be performed for only finite initial and
threshold points x− and x+, respectively. Starting at x0 = x−, the dynamics
equation 2.1 can be numerically integrated with a sufficiently small time

1 The term white refers to the power spectrum of the noise, which is flat, that is, con-
tains all frequency (as white light contains all frequencies of the visible electromagnetic
spectrum). A flat spectrum in turn implies a δ correlation of the noise (Risken, 1984). The
process has no correlations over a finite time at all.
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Figure 1: Trajectories of the model obtained by a simulation of the stochastic
differential equation, 2.2, with threshold and reset parameters x± = ±100, D = 1,

t = 10−3, and β = −1, 0, 1 (from top to bottom).

step 
t,

xj+1 = xj + (β + x2
j )
t+

√
2D
t ξj, (2.2)

where xj
.= x(j
t) and the ξj is a sequence of independent gaussian random

numbers with unit variance (Risken, 1984). The rule for reset and generation
of the ith firing time ti is

x(t) = x+ → ti
.= t and x(t+) = x−. (2.3)

The firing (spike) times are defined as the instants at which x crosses x+; the
variable x is reset to x− right after occurrence of a spike. The points x− and x+
should be chosen sufficiently large and the time step sufficiently small such
that a further increase or decrease, respectively, does not change the statistics
of the measured quantities of interest significantly (as mentioned, the effect
of finite x± is studied in section 4.4). Three example trajectories for different
values of β are shown in Figure 1. The sequence of firing times generated
by the model (. . . , ti−1, ti, ti+1, . . .) describes a renewal point process (Cox,
1962); subsequent intervals between firing times, Ti = ti − ti−1 and Ti+1 =
ti+1 − ti, are statistically independent (therefore, we omit in the following
the index i). Here, we study two basic quantities: the stationary firing rate
and the CV.

The stationary firing rate is given by the inverse of the mean interspike
interval 〈T〉 (with the brackets standing for an ensemble average):

r(β,D) = 1
〈T〉 . (2.4)
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Figure 2: Potential associated with equation 2.1 for different values of β.

The CV is the relative standard deviation of the interspike interval; it is
a second-order quantity that measures the variability of spiking and is
given by

CV(β,D) =
√
〈
T2〉
〈T〉 , (2.5)

where 〈
T2〉 = 〈T2 − 〈T〉2〉 stands for the variance.
Before we proceed, we give an instructive mechanical analogy for the

dynamics equation 2.1. We may associate a potential with equation 2.1, the
derivative of which yields the deterministic part of the right-hand side (the
constant of integration has been chosen to be zero):

V(x) = −x3/3− βx. (2.6)

Depending on the value of β, this potential exhibits for β < 0 a minimum
and a maximum, for β = 0 a saddle point, or for β > 0 no extrema at all,
resulting in quite different statistics of the passage times and thus of the
spike train. In Figure 2, we show these different shapes that correspond to the
following firing regimes of the type I neuron: β < 0 noise-activated firing,
that is, the ISI is dominated by the noise-assisted escape from the potential
minimum at x = −√β over the potential barrier at x = √β, corresponding
to the famous Kramers problem (Kramers, 1940); β = 0 right at the saddle-
node bifurcation, where no firing occurs without noise but the statistics of
interspike intervals (first passage time of particle) is very particular (Sigeti
& Horsthemke, 1989); and β > 0 the oscillatory (“running”) regime, where
the associated potential has no minimum (“downhill motion”).
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2.2 Relation to the � Neuron Model. The dynamics equation 2.1 can
be transformed to the so-called � neuron model by the new variable (Er-
mentrout, 1996),

� = 2 arctan(x), (2.7)

resulting in a stochastic differential equation with multiplicative white noise
(i.e., the prefactor of the noise term depends on the state variable),

�̇ = (1− cos(�))+ (1+ cos(�))(β +
√

2Dξ(t)). (2.8)

For this phase oscillator model, threshold and reset values are at finite
values—at −π and π , respectively. The � model with a white noise input
current, however, must be treated with caution. A stochastic differential
equation with multiplicative noise is not uniquely determined; it has to
be supplemented by an interpretation (so-called Ito-Stratonovich dilemma;
see Gardiner, 1985). This seems to be paradoxical since the original dy-
namics equation 2.1, which is driven by additive noise, is nonambiguous.
The resolution of this paradox is given by the fact that the Stratonovich
interpretation is the only interpretation that permits the usual transforma-
tion of variables (Gardiner, 1985). Since equation 2.8 results from such a
transformation (namely, equation 2.7), we have to interpret equation 2.8
in Stratonovich’s sense. This is also plausible for another reason: driving
currents in real neurons are never white noise but will have a finite corre-
lation time; white noise that is thought of as the limit of a “colored” noise
with negligible correlation time leads to the Stratonovich interpretation of
a dynamics with multiplicative noise (see, e.g., Risken, 1984).

In the following, we wish to use a simple Euler integration algorithm
(see, e.g., Risken, 1984), which assumes the Ito interpretation. Thus, we
must first express our Stratonovich stochastic differential equation into its
corresponding Ito form. This correspondence preserves the physics of the
problem. This Ito equivalent stochastic differential equation, 2.8, has an
additional drift term−D sin(�)(1+cos(�)). The integration scheme analog
to equation 2.2 then reads

�j+1 = �j + [(1− cos�j)+ (β −D sin�j)(1+ cos�j)]
t

+
√

2D
t(1+ cos�j)ξj, (2.9)

where ξj is again a sequence of independent gaussian distributed random
numbers with unit variance. Note that in Gutkin and Ermentrout (1998),
the drift term is apparently missing, and hence the dynamics has been in-
terpreted in the sense of Ito. This leads to the following integration scheme,

�j+1 = �j + [(1− cos�j)+ β(1+ cos�j)]
t

+
√

2D
t(1+ cos�j)ξj, (2.10)
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which is also the one that could be expected from a straightforward (al-
though inexact) inclusion of gaussian white noise in the � neuron dy-
namics.

Clearly, the difference between equations 2.10 and 2.9 vanishes in the
weak noise limit since the additional Stratonovich drift in equation 2.9
is proportional to noise intensity D. We will show that simulation of the
Stratonovich version indeed yields the same statistics of interspike inter-
vals as the original dynamics equation, 2.1, whereas the Ito interpretation,
equation 2.10 of the � neuron model, which was used by Gutkin and Er-
mentrout (1998), leads to different results in particular at moderate to large
noise intensity.

2.3 Scaling Relations. We return now to the original model, equa-
tion 2.1. Therein, we have two free parameters, β and D. If we properly
rescale x and t, it is possible to obtain the same nonlinearities as in equa-
tion 2.1, except for a new combination of the parameters β and D (threshold
and reset values do not change in any case since they remain at plus and
minus infinity, respectively). This gives us scaling relations for rate and CV
with respect to the input parameters D and β. Moreover, we can eliminate
one of the parameters, although we still have to distinguish among the three
different firing regimes. For β = 0, which has been treated by Sigeti (1988),
that is, for

ẋ = x2 +
√

2Dξ(t), (2.11)

we choose the new variable and time as

y = x/a, t̃ = at (2.12)

with a arbitrary but positive. This leads to2

ẏ = y2 +
√

2D/a3ξ(t̃). (2.13)

With a = D1/3 we can eliminate the noise intensity (Sigeti, 1988). Of course,
the moments of ISI will be still rescaled according to equation 2.12; however,
the CV, which is the relative standard deviation of the ISI, remains the same
for all values of D:

CV(β = 0,D) = CV(β = 0,D/a3)

⇒ CV(β = 0,D1) = CV(β = 0,D2). (2.14)

2 Note that ξ(t/a) = √aξ(t), which can be seen by considering the correlation function:
〈ξ(t/a)ξ(t′/a)〉 = δ([t− t′]/a) = aδ(t− t′) = 〈√aξ(t)

√
aξ(t′)〉.
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The elimination of noise intensity is also possible for β �= 0. (This fact was
also suggested independently by E. Izhikevich, personal communication.)
With respect to the approximations we shall derive, it is, however, more
convenient to set a = √|β|. This yields the following dynamics:

ẏ = β

|β| + y2 +
√

2D/|β|3/2ξ(t̃)

=
{
+1+ y2 +

√
2D/|β|3/2ξ(t̃), β > 0

−1+ y2 +
√

2D/|β|3/2ξ(t̃), β < 0
. (2.15)

We obtain the same dynamics with rescaled noise intensity and an input
that is either plus or minus one. Thus, to understand the dynamics of the
model, it suffices to consider the three cases where β = ±1 or 0.

Obviously, the new timescale rescales also the moments of the passage

time by 〈T̃n〉 = |β| n2 〈Tn〉. Using this and the above relations, we find the
following scaling relations for rate and CV (β �= 0),

r(β,D) =
√
|β|r(±1, |β|−3/2D) (2.16)

〈
T2〉(β,D) = |β|−1〈
T2〉(±1, |β|−3/2D) (2.17)

CV(β,D) = CV(±1, |β|−3/2D), (2.18)

where the sign on the right-hand side coincides with that of β.
From the first equation, it can be inferred that for positive input (β > 0)

and vanishing noise, the rate scales like r ∼ √β. In the presence of noise, an
increase in β diminishes the effective noise intensity.

The third equation is even more important. The range of possible CVs
does not depend onβ as long as its sign is fixed. Plotting the CV as a function
of noise intensity results always in the same curve apart from a stretching
by |β|−3/2 in the argument. Furthermore, we see from equation 2.18 that the
CV in the large noise limit corresponds to the CV at finite D but vanishing
input,

lim
D→∞

CV(β,D) = lim
D→∞

CV(±1, |β|−3/2D)

= lim
β→0

CV(±1, |β|−3/2D) = CV(0,D). (2.19)

By similar arguments, asymptotic scaling relations for strong noise (or
equivalently weak input β) can be derived, given by

r(±1,D) ≈ A1D1/3 + B1βD−1/3, D→∞ (2.20)

CV(±1,D) ≈ A2 + B2βD−2/3, D→∞. (2.21)
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In these formulas A1,A2,B1, and B2 denote numerical constants, which
will be given below. Small noise intensity will require higher-order terms
in β (rate and CV in equations 2.20 and 2.21 diverge for D → 0, which is
not expected from the biological point of view) and thus the linearity with
respect to input depends strongly on the noise level.

3 Exact and Approximate Expressions for Spike Rate and CV

3.1 Exact Formulas for the First Two Central Moments of the Inter-
spike Interval Distribution. The hierarchy of quadrature expressions for
the moments of the passage time problem in an arbitrary potential have
been known for a long time (Pontryagin, Andronov, & Witt, 1989). The stan-
dard expressions for mean and variance of the first passage time can be
somewhat simplified (see appendix A), yielding

〈T〉 =
(

9
D

)1/3 ∞∫
−∞

dx e−αx−x3

x∫
−∞

dy eαy+y3
(3.1)

〈
T2〉 =
(

9
D

)2/3 ∞∫
−∞

dx e−αx−x3

∞∫
x

dy e−αy−y3


 x∫
−∞

dz eαz+z3




2

(3.2)

α =
(

3
D2

)1/3

β.

These formulas correspond to infinite threshold and reset values x± = ±∞.
The quadratures for the case of finite reset and finite threshold values are
given in the appendix by equations A.1 and A.4. The integrals in equa-
tions 3.1 and 3.2 may be evaluated numerically by standard procedures.3

There are, however, a number of cases where the integrals can be carried
out analytically, which gives us some additional control over the accuracy
of our numerical integration.

First, the mean first passage time (i.e., the mean ISI) can be expressed
by an infinite sum (Colet, San Miguel, Casademunt, & Sancho, 1989) as
follows:4

〈T〉 =
(

1
3D

)1/3√
π

3

∞∑
n=0

(−1)n
2(2n+1)/3

n!
�

(
2n+ 1

6

)(
β

3

√
3

D2

)n

. (3.3)

3 The infinite integration boundaries have to replaced by finite ones that are chosen
sufficiently large such that a further increase does not change the results to within the
desired accuracy.

4 Note that there are write errors in equations 3.6 and 3.7 of Colet et al. (1989).
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Here �(·) denotes the gamma function (Abramowitz & Stegun, 1970). This
formula is especially useful for large noise intensities, whereas in the weak
noise limit, many terms are required to achieve convergence.

Furthermore, for β = 0 both mean and variance of the ISI can be calcu-
lated analytically (see Sigeti, 1988; Sigeti & Horsthemke, 1989). The result is
simple and reads

〈T(β = 0)〉 = [�(1/3)]2
(

1
3D

)1/3

. (3.4)

〈
T2(β = 0)〉 = 1
3

[�(1/3)]4
(

1
3D

)2/3

= 1
3
〈T〉2. (3.5)

The latter equality in equation 3.5 implies that for β = 0, the ratio of vari-
ance and mean square of the ISI (and hence also the CV) is a constant and
independent of noise intensity in accordance with equation 2.14. Rate and
CV of the type I neuron read in this case

r(β = 0,D) = 1
[�(1/3)]2 (3D)1/3 ≈ 0.201D1/3,

CV(β = 0,D) = 1/
√

3. (3.6)

Since the integral and sum formulas above are not very transparent, we shall
derive some simplifications that apply in different limit cases: (1) weak noise
and positive input (β > 0, oscillatory regime), that is, limit cycle dynamics
weakly perturbed by noise; (2) weak noise and negative input (β < 0,
excitable regime), that is, excitations are rare and an escape rate description
applies; and (3) weak input or strong noise limit.

3.2 Rate and CV in the Oscillatory Regime at Weak Noise. For a strictly
monotonously decreasing potential (as in our problem for β > 0), general
approximation formulas for the mean and the variance of the passage time
to linear order in D were given by Arecchi and Politi (1980) and yield in our
case

〈T〉 ≈ π/
√
β, (3.7)

〈
T2〉 ≈ 3Dπ
4β5/2 . (3.8)

There is no linear contribution in D to the mean ISI; the valueπ/
√
β is clearly

the deterministic passage time along the entire x-axis. Both this time and
the variance of the passage time decrease with increasing β.

For rate and CV, we find

r ≈
√
β/π, CV =

√
3D
4π
β−3/4 for β � D2/3. (3.9)
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This scaling behavior (independence of mean ISI of D, variance of ISI going
as
√

D) resembles that of a perfect integrate-and-fire (PIF) neuron driven
by white noise (see, e.g. Bulsara, Lowen, & Rees, 1994). Indeed, for weak
noise and positive input, one may even approximate the ISI probability
density function (PDF) by an inverse gaussian (i.e., the ISI PDF for a perfect
integrate-and-fire neuron)—an approach that works rather well and will be
presented elsewhere.

3.3 Rate in the Excitable Regime and Weak Noise. For β < 0 and weak
noise, the passage from minus to plus infinity is dominated by the escape
from the potential minimum at x− = −

√
β over the barrier at x+ =

√
β. A

standard saddle-point approximation of the integral in equation 3.1 yields
an exponential firing rate (Colet et al., 1989),

r =
√|β|
π

exp
[
−4|β|3/2

3D

]
for D� |β|3/2, (3.10)

which is the Kramers escape rate for the potential equation 2.6 in the over-
damped case (Kramers, 1940). A similar approximation of the variance in
equation 3.2 gives the square of the mean ISI; such an approach yields a CV
of unity equivalent to the rare-event statistics of a Poisson process.

3.4 Rate and CV in the Case of Weak Input or Strong Noise. If the input
β is weak in amplitude or, equivalently, the noise intensity is sufficiently
strong (|β| � D2/3), we expect that rate and CV deviate only linearly from
the simple expressions in equation 3.6.

To find this linear expansion for the firing rate, we keep only the first two
terms in the sum formula of the mean ISI, equation 3.3, and expand the rate
with respect to β. This yields, after some manipulations,

r(β � 1,D) ≈ (3D)1/3

[�(1/3)]2 +
9
8

31/6

π3 [�(2/3)]4D−1/3β

≈ 0.201 D1/3 + 0.147D−1/3β. (3.11)

For the CV, the numerical constant, namely, the derivative of the CV with
respect to β, can be performed only numerically. We find that this derivative
is well approximated by 1/4D−2/3,

CV(β � 1,D) ≈ 1√
3
+ 1

4
D−2/3β

≈ 0.578+ 0.250 ·D−2/3β. (3.12)

Clearly, equations 3.11 and 3.12 can be not only used in case of a weak input
but also regarded as large noise asymptotic.
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4 Results

In the next two sections, we discuss rate and CV as functions of the noise
intensity and the constant input. In all figures, lines for β �= 0 were obtained
by numerical evaluation of the quadrature formulas, 3.1 and 3.2,5 and in-
sertion into equations 2.4 and 2.5; for β = 0 formula equation 3.6 was used.
Symbols indicate results of numerical simulations of the dynamics using
reset and absorption points x± = ±500, a Euler scheme with 
t = 10−3 or

t = 10−4 (the latter at large noise intensity). Depending on parameters,
up to 105 spikes were used for estimation of the statistics of the interspike
interval. In the upper panels of all figures, we compare the numerically
evaluated quadrature results and the numerical simulations. They are in all
cases in excellent agreement with each other, as it should be. In the lower
panels the quadrature results are compared to the various approximations
obtained in the previous section.

In section 4.3 we compare rate and CV with simulation results of the
� neuron using either the Stratonovich or Ito interpretation and compare
the results to those of Gutkin and Ermentrout (1998). The effect of finite
threshold and reset values is discussed in section 4.4.

4.1 Rate and CV as Functions of Noise Intensity. The rate depicted in
Figure 3 behaves at large noise intensity rather independently of the value
of β; it is seen to increase in proportion to D1/3 according to equation 3.6. The
effect of β becomes apparent at small noise intensity, where the rate (1) sat-
urates if β > 0 at the value given by equation 3.9; (2) increases like D1/3 for
β = 0 according to equation 3.6; or (3) increases following an exponential de-
pendence on inverse noise intensity (Kramers law, equation 3.10), for β < 0.

The approximation equation 3.10, for β < 0 (see Figure 3b, dashed line)
is valid only for rather small noise intensity. In contrast, the result from
linearization around β = 0 (see equation 3.11) fits pretty well for moderate
to large noise intensity and for β = 1 or −1. In fact, one may interpolate
between the weak and strong noise approximations without making an
appreciable error.

The CV tends in the strong noise limit to 1/
√

3, as predicted by equa-
tion 2.19. In the weak noise limit, it decreases either to zero (β > 0) cor-
responding to a perfectly regular firing for the oscillatory system in the
absence of noise or tends to one (β < 0), indicating rare spiking with Pois-
son statistics. The exceptional case β = 0 leads to CV = 1/

√
3 for all noise

intensities. Note that any finite value of β will lead to one of the other limits
if the noise is sufficiently weak. Indeed for vanishing noise, β = 0 can be
looked upon as a threshold value, as we will see.

5 The sum formula equation 3.3 showed excellent agreement with the quadrature
result, but is not discussed here.
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Figure 3: Spike rate of neuron versus noise intensity for the three distinct cases
β = ±1 or 0 as indicated. (a) Quadrature results (thin lines) compared to simu-
lations. (b) Quadrature results (thin lines) compared to Kramers rate (see equa-
tion 3.10, dashed line, only for β = −1), and linearization approximation (see
equation 3.11, thick lines).

The approximation equation (3.9) is shown in Figure 4b as a dashed line.
The “square-root” law (CV∼ √D) describes the true CV up to D ≈ 0.2 rather
well. For a general (positive) value of β, the approximation is valid for noise
intensities that yield a CV below 0.25. This can be precisely formulated as a
condition between D and β,

β >

(
12D
π

)2/3

. (4.1)
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Figure 4: Coefficient of variation versus noise intensity for the three distinct
cases β = ±1 or 0 as indicated. (a) Quadrature results compared to simulations.
(b) Quadrature results compared to weak noise expansion (see equation 3.9,
dashed line, only for β = 1), and linearization approximation (see equation 3.12,
thick lines).

The linearization result shown by thick lines in Figure 4b seems to have
an even larger range of validity. For β = −1, one may use the weak-input
approximation equation (3.12) as a good estimate as long as the CV is below
0.9. Forβ = 1, the approximation coincides with the exact result in line thick-
ness for CVs between 0.5 and 1/

√
3. Via the scaling relation equation 2.18,

these estimates can be generalized to arbitrary negative (positive) values of
β, respectively since a change in input rescales only the noise intensity but
not the range of CV.
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Figure 5: Spike rate of neuron versus input β for three different noise intensities
as indicated. (a) Quadrature results compared to simulations. (b) Quadrature
results compared to Kramers rate (see equation 3.10, dashed lines), linearization
approximation (see equation 3.11, dashed-dotted lines), and the deterministic
rate (see equation 3.9, thick line, only for D = 0.1).

4.2 Rate and CV as Functions of the Constant Input. Since β plays the
role of an input, the dependencies of rate and CV on this parameter are of
most interest. We show these dependencies for different noise intensities—
D = 0.1, 1, or 10 in Figure 5 (rate) and Figure 6 (CV).

For strong noise, the dependence of the rate on input (see Figure 5) is
rather weak. This can be readily understood: the linear part of the potential
governed byβ is of minor importance at large noise, and a potential barrier at
negative β is “not seen.” The passage through this region is biased diffusion
(governed mainly by the cubic part of the potential that is independent ofβ).
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Figure 6: Coefficient of variation versus input β for three different noise inten-
sities as indicated. (a) Quadrature results (thin lines) compared to simulations.
(b) Quadrature results (thin lines) compared to weak noise expansion (equa-
tion 3.9, thick lines) and linearization approximation (equation 3.12, dashed
lines). The latter coincides with the quadrature result almost within line thick-
ness for D = 10.

Decreasing noise results in an increasing dependence of the rate on input,
and for negative β, the rate can become arbitrary low. In the limit of vanish-
ing noise, the rate can likewise attain arbitrary low values for positive input.
This is one of the characteristic features of type I neurons (Ermentrout, 1996).

The approximation equation 3.10 is shown in Figure 5 by dashed lines.
Although it well describes the data for D = 0.1, it becomes worse with
increasing noise intensity over the range of β shown in Figure 6b. On the
contrary, the linearization result agrees best at large noise intensity; indeed,
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there is no visible difference between the quadrature result and the approxi-
mation for D = 10. At moderate noise intensity (D = 1), the linear behavior
is restricted to a much smaller range of β. For small noise intensity and
increasing β, the rate switches very fast from almost zero to a saturation
value—a rather nonlinear behavior that is not well described (or only in a
very small range around β = 0) by the linearization approximation equa-
tion 3.11.

The shape of the CV versus β curve is almost linear for strong noise (see
Figure 6, lines for D = 10) as already mentioned by Gutkin and Ermentrout
(1988). Since the quadrature formulas always contain β/D, a linearization
of rate and CV with respect to β is valid for a larger range of β if D is large.
Indeed, noise linearizes not only the transfer function (i.e., rate versus input
parameter) but also all other statistical quantities with respect to variations
of β. The linear dependence is, however, changed into a threshold-like de-
pendence for small noise. With a look at the different small noise limits of
the CV for β < 0, β > 0, no other behavior than this threshold behavior
is indeed possible. The approximation according to equation 3.9 is shown
by thin dashed lines in Figure 6. It can be used only for the small noise
level D = 0.1 where the CV is below 0.25 and is far off for larger noise
intensities.

4.3 Comparison to Simulations of the�Neuron Model. In section 2.2
we derived that the Stratonovich interpretation of the white-noise-driven
� neuron model equation 2.8 is completely equivalent to our basic model,
equation 2.1. That means that if we simulate using the scheme equation 2.9,
we should exactly obtain the same rate and CV as for the original model.
On the contrary, the Ito interpretation of equation 2.8 and the corresponding
integration scheme equation 2.10 should result in different rate and CV, in
particular, at larger noise intensity. Here we ask whether these differences
are serious. We will compare also with results by Gutkin and Ermentrout
(1998), who have apparently used the Ito scheme, equation 2.10, which does
not exactly correspond to the original dynamics.

In Figure 7, the firing rate is shown as a function of the noise intensity for
β = ±1 and β = 0. The quadrature result for the original dynamics equa-
tion 2.1 is compared to simulation results using the two integration schemes,
equations 2.9 and 2.10. While the Stratonovich scheme exactly matches the
analytical curves and thereby confirms our expectation, the rate obtained
by simulating the Ito scheme is below the true rate for moderate to large
noise intensities and saturates in the strong noise limit. Most remarkably,
for β = 1, the rate does not depend on noise intensity at all, in marked
contrast to the D1/3 increase of the true rate for strong noise (in appendix B,
we derive that the mean ISI, and hence the rate, do not depend on D for the
specific input β = 1). As expected, both schemes yield the same function
in the weak noise limit where the Stratonovich drift (proportional to noise
intensity) becomes negligible.
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Figure 7: Firing rate as a function of noise intensity. Theory for the saddle-node
system shown by solid lines for different values of β as indicated; simulation
results for the � model in Stratonovich interpretation according to the integra-
tion scheme, equation 2.9, (gray symbols), and in Ito interpretation according to
equation 2.10 (black symbols).
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Figure 8: Coefficient of variation as a function of noise intensity. Theory for the
saddle-node system shown by solid lines for different values of β as indicated;
simulation results for the � model in Stratonovich interpretation according to
the integration scheme, equation 2.9 (gray symbols) and in Ito interpretation
according to equation 2.10 (black symbols).

Figure 8 shows the CV as a function of noise intensity for the three stan-
dard values of β. Here, the differences between the Ito and Stratonovich
interpretations of the� neuron model are more important. The latter again
yields perfect agreement with the theoretical result for the original dynam-
ics. The Ito scheme, in contrast, shows strong deviations for moderate to
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large noise intensity. The CV for the oscillatory regime (β = 1) is no longer
restricted to (0, 1/

√
3). For both positive and negative β, the CV is always

above the true CV.
Increasing noise even leads to a growth of the CV, such that for β = −1, a

minimum in the CV versus noise intensity curve is seen. Such a minimum is a
signature of coherence resonance (Pikovsky & Kurths, 1997). Many excitable
(as opposed to periodically firing) systems exhibit their most regular spiking
(as indicated by a minimal CV) if driven by a noise with finite “optimal”
intensity. This effect is clearly absent for the original dynamics equation 2.1.
This qualitative difference between the Ito and Stratonovich interpretations,
in the form of the existence of such a minimum, might be irrelevant in real
type I neurons since the reduction from the multidimensional system to the
one-dimensional normal form becomes somewhat doubtful in the strong
noise limit.

Gutkin and Ermentrout (1998) showed by means of numerical simula-
tions that the � neuron exhibits (at least for β < 0) always a high CV, close
to one. They started, as we did, with the normal form, derived the equation
for the� neuron, but interpreted this equation apparently in Ito’s sense (i.e.,
integrated equation 2.10). Although their conclusions are qualitatively cor-
rect, we would like to point out a quantitative discrepancy resulting from
using the Ito scheme.

In Figure 6c of Gutkin and Ermentrout (1998) the CV is shown as a func-
tion of the mean interval, a representation of the data that is independent of
the definition of noise intensity (they use a parameter σ that is related to the
noise intensity D by σ = √2D). For a mean ISI ranging from 1 up to 10,000,
they find a CV between 0.75 and 1.1 with a minimal CV at a small mean
ISI (between 1 and 10). Data are pretty noisy, and Gutkin and Ermentrout
(1998) do not mention the apparent minimum of the CV. We may use our
data from Figures 7 and 8 and also plot a CV versus mean ISI curve; this is
shown in Figure 9. Simulating the Ito version of the � model, we recover
indeed a high CV and a minimum at a low mean interval.6 In contrast, for
the original model of a saddle-node system (theoretical curve, solid line in
Figure 8) as well as for simulation results from the � model interpreted
in Stratonovich’s sense, we obtain no minimum in the CV and observe

6 We note two discrepancies with the data of Gutkin and Ermentrout (1998): (1) We
cannot plot a CV for an interval below 〈T〉 = 3.14 since the rate is limited by the inverse
of this value (cf. Figure 7), whereas in Gutkin and Ermentrout (1998), there is one data
point for 〈T〉 = 1.5. (2) The CV we have found in our simulation for β = −1 is always
between 0.8 and 1, whereas in Gutkin and Ermentrout (1998), this range is slightly larger
(CV ∈ (0.75, 1.1)). Either difference can be explained by insufficient statistics in Gutkin
and Ermentrout (1998) and possibly (since there seems to be also a systematic deviation)
by too large a time step in the integration procedure. Especially at low mean ISIs (high
noise intensities), we had to use time steps down to 
t = 10−4 to achieve independence
of the data with regard to time step.
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Figure 9: Coefficient of variation as a function of the mean ISI. Variation of the
mean ISI is as in Gutkin and Ermentrout (1998), achieved by changing the noise
intensity while keeping fixed β = −1. Theory for the saddle-node system shown
by solid line; simulation results for the � model in Stratonovich interpretation
according to the integration scheme equation 2.9 (gray) and in Ito interpretation
according to equation 2.10 (black).

generally a considerably lower CV at small mean intervals. The lower limit
is given by the large noise limit of the CV; in the excitable regime, we have
CV > 1/

√
3. In the Stratonovich interpretation of the model as well as in

the original dynamics, we can have arbitrary low mean interspike intervals,
that is, arbitrary high firing rate.

4.4 Effect of Finite Threshold and Reset Values. As already mentioned,
the spike generator model, 2.1, together with the reset rule, equation 2.3 has
been used with finite threshold and reset values x+ and x−, respectively,
in studies of neuronal networks (Latham et al., 2000; Hansel & Mato, 2001)
(the spike generator was referred to as quadratic integrate-and-fire neuron
model). This is also the case for our model simulations, as well as in our
numerical evaluation of the quadrature formulas. So it is desirable to know
how a finiteness of the boundaries7 in the first passage problem influences
rate and CV. This is an interesting problem on its own and will be studied
in detail elsewhere.

In short, we can expect the following changes: (1) the scaling relations,
equations 2.16 through 2.18, have to be modified (as they will now include
rescaled values of x+ and x−); (2) significant changes to rate and CV are to

7 Actually, only the threshold point is a boundary (absorbing barrier). The second
boundary (reflecting barrier) is at −∞, so the trajectory started at x− is not prevented
going toward −∞.
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be expected at large noise intensity; (3) as long as the (now finite) region of
passage includes the fixed points of the system, rate and CV will be higher
than for infinite boundaries. To understand the last prediction, it is useful
to think of splitting the passage for the infinite boundaries into three pas-
sage problems: to go (1) from −∞ to a finite value x−, (2) from x− to x+,
and (3) from x+ to ∞. Since we are dealing with a Markov process, these
passages and the moments of their durations are statistically independent.
Now, considering a system with finite boundaries amounts to neglecting
the outside passages 1 and 3. From this picture, it becomes clear that the
mean passage time will be shorter than for infinite boundaries. Further-
more, the passages on the outside are governed by strong forces (recall the
square term in equation 2.1) and are therefore more regular than the pas-
sage through the “inside” region (i.e., the CV of the passage times for the
outside region is expected to be lower than for the passage from x− to x+).
It can be readily shown that this implies a higher variability of the pas-
sage time (or ISI) for the case where the outside passages are not taken into
account.

In Figure 10, we show how rate and CV versus noise intensity change for
different values ofβ if we choose x± = ±2 (this is a rather drastic reduction of
the reset-threshold distance). These curves were obtained using the general
formula, equations A.1 and A.4 from appendix A, together with the potential
equation, 2.6. We compare the modified rate and CV (thick lines) to the old
results for infinite x± (thin lines).

The rate (see Figure 10a) is generally larger for finite x± as expected.
At small noise, the differences with the infinite boundary case are minor.
For D → 0, the rate converges to that with infinite boundaries if β ≤ 0.
However, for β = 1, we see in the small noise limit a difference between the
deterministic rates

√
β/π and

√
β[π − (arctan(x+/

√
β)− arctan(x−/

√
β)]−1

for the cases of infinite and finite threshold and reset points, respectively.
Further, for all β, the deviations are more serious at large noise intensity.
The rate grows for the finite case in proportion to D2/3 (not like D1/3 as
for the case of infinite boundaries). This can be understood by the large-D
asymptotics of the integrals in equation A.1.

The CV shows also a drastic qualitative change in its shape. Generally,
it converges to the CV for infinite boundaries in the low noise limit, but
grows unbounded in the large D limit, in marked contrast to the model
with infinite x±. This growth goes as D1/6 as can be again concluded from
the asymptotics of the integrals in equations A.1 and A.4. We would like
to point out that this holds for all values of β; even for β = 0, where we
had remarkably a constant CV in the case of infinite boundaries, the CV
does increase with increasing noise intensity like D1/6. Most notably, a min-
imum in the CV is observed for β = −1 (coherence resonance; cf. the dis-
cussion in the previous section). Thus, the absence of coherence resonance
(i.e., an finite “optimal” noise intensity) was a consequence of using infinite
boundaries.
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Figure 10: Spike rate of (a) neuron and (b) coefficient of variation versus noise
intensity for three values of β as indicated. Thin lines are quadrature results
as shown before in Figure 3 and Figure 4; thick lines are quadrature results for
finite threshold and reset values, x− = −2 and x+ = 2, respectively.

In general, rate and CV for the finite and infinite cases agree best for neg-
ative β and small noise intensity. Increasing the modulus of threshold and
reset points will improve the agreement, in particular, for small to moderate
noise. This means plotting rate or CV for x± = ±10 and a particular value
of β, curves will be obtained that are in between those for x± = ±2 and
x± = ±∞.

From a computational point of view, large values of x± increase the sim-
ulation time. An estimate of the computation time saved by using x± = ±2
instead of x± = ±500 (i.e., infinite values for practical purposes) can be in-
ferred from the distance between the spike rates for either case in Figure 10;
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at very strong noise, this is about one order of magnitude, whereas at small
to moderate noise intensity, the difference in computation time appears to
be negligible.8

Another question is which kind of threshold and reset conditions is suit-
able with respect to more realistic type I neuron models and, of course, real
type I neurons. This important issue is currently under investigation.

5 Discussion and Conclusions

We have considered a simple spike generator model that involves the one-
dimensional normal form of a saddle-node bifurcation and may be used to
represent a type I neuron. The model seems to be computationally simpler
than the equivalent � neuron often used in neurocomputational research.
Using the spike generator with saddle-node bifurcation helps, moreover, to
avoid the pitfalls associated with using multiplicative white noise as in the
� model.

A second advantage of the saddle-node spike generator is that we were
able to adopt many useful analytic results for the passage time problem
from the statistical physics literature on a related problem. We discussed
the remarkable scaling behavior of the model, which allows reducing the
number of parameters in the problem. We gave the exact quadrature ex-
pressions for mean and variance of the ISI and a simple sum formula for the
mean ISI. Furthermore, we derived expressions for simple limiting cases
for rate and CV of the model. All results may be useful also for problems
involving networks of type I neurons.

For the problem of high variability of spike trains of cortical neurons, one
of our conclusions is especially relevant: given a negative input (β < 0), the
CV is restricted to the interval (1/

√
3, 1). It can never be lower than the high

noise limit CV of the model. This stands in marked contrast to the leaky
integrate-and-fire model, which can in this regime attain arbitrary low val-
ues of the CV if the input parameter is tuned to a certain small negative
value and can be as well arbitrary high for both sub- and suprathreshold in-
put (Lindner, 2002; Lindner, Schimansky-Geier, & Longtin, 2002). Although
Gutkin and Ermentrout (1998) overestimated the CV with their simulation
results, their main conclusion remains valid: type I neurons stimulated by
white gaussian noise show a high variability for arbitrary but negative in-
put. Future work will consider a comparison of our results with a two-(or
higher-) dimensional dynamics of an ionic model of a type I neuron, such as
Morris-Lecar. We will also consider the theoretical analysis of the phase re-
setting curves and the response of the stochastic saddle-node neuron model
studied here to periodic and broadband input.

8 Larger modulus of x± requires also a smaller time step (or an adaptive time step),
which will increase the computation time.
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Appendix A: Derivation of the Quadrature Formulas

The classical formulas for the first two moments of the first passage time
in an arbitrary potential V(x) from x− to x+ with reflecting boundary at
−∞were given by Pontryagin et al. (1933) ( for a more recent reference, see
Anishchenko, Astakhov, Neiman, Vadivasova, & Schimansky-Geier, 2002,
chapter 1.2, equation 1.248)

〈T(x− → x+)〉 = 1
D

x+∫
x−

dx eV(x)/D

x∫
−∞

dy e−V(y)/D, (A.1)

〈T2(x− → x+)〉 = 2
D2

x+∫
x−

dx eV(x)/D

x∫
−∞

dy e−V(y)/D

×
x+∫

y

du eV(u)/D

u∫
−∞

dv e−V(v)/D. (A.2)

The resulting expression for the variance 〈
T2〉 = 〈T2〉 − 〈T〉2 can be sim-
plified by interchanging several times the integration boundaries and the
names of the variables (see, e.g., in Sigeti, 1988, chap. 4, for the potential
equation 2.6 with β = 0 or in Reimann et al., 2002, for the case of a periodic
potential), yielding

〈
T2〉 = 2
D2

x+∫
x−

dx eV(x)/D

x∫
−∞

dz e−V(z)/D
[∫ z

−∞
dy e−V(y)/D

]2

. (A.3)

Another interchange of variables leads to (Lindner, 2002)

〈
T2〉 = 2
D2

x+∫
−∞

dz eV(z)/D
[∫ z

−∞
dy e−V(y)/D

]2

×
x+∫

z

dx �(x− x−)eV(x)/D, (A.4)

(here, �(x) is Heaviside’s step function), a formula that is much easier to
evaluate numerically than the original expressions.

Inserting the potential equation 2.6 into equations A.1 and A.4 with
x± = ±∞ and using new integration variables like x̃ = x/ 3

√
3D, we ob-

tain equations 3.1 and 3.2.
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Appendix B: Mean First Passage Time of the � Neuron in the Ito
Interpretation

In section 4.3 we have seen from the simulation results that the rate of the�
neuron model interpreted in the sense of Ito does not depend on D if β = 1.
Although irrelevant for the saddle-node system (correctly, we have to use
the Stratonovich interpretation of the�model), this is a remarkable finding,
which is analytically proven in the following. The Ito scheme, equation 2.10,
corresponds to the following stochastic differential equation interpreted in
the Stratonovich sense:

�̇ = 1− cos(�)+ (β +D sin(�))

× (1+ cos(�))+
√

2D(1+ cos(�))ξ(t). (B.1)

Here, the additional term +D sin(�) compensates the Stratonovich drift
−D sin(�) in the Stratonovich integration scheme, equation 2.9, and hence
this scheme leads now to what was before the Ito scheme, equation 2.10.
Since we use the Stratonovich interpretation, we can transform equation B.1
back to the old variable x(t) by means of equation 2.7, yielding

ẋ = β + x2 + 2Dx
1+ x2 +

√
2Dξ(t). (B.2)

Hence, interpreting the � neuron model with white noise in the Ito sense
amounts to the introduction of a noise-dependent modification in the po-
tential V(x) given by equation 2.6. The modified potential reads

Ṽ(x) = −x
3
− βx−D ln(1+ x2). (B.3)

Inserting this into the general formula for the mean first passage time yields

〈T〉 = 1
D

∞∫
−∞

dx
exp[−(x3/3+ βx)/D]

1+ x2

×
x∫

−∞
dy (1+ y2) exp[(y3/3+ βy)/D], (B.4)

which for β = 1 can be simplified:

〈T〉 = 1
D

∞∫
−∞

dx
exp[−(x3/3+ x)/D]

1+ x2

x∫
−∞

dy D
d
dy
(exp[(y3/3+ y)/D]),

=
∞∫
−∞

dx
1

1+ x2 = π. (B.5)
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Hence the rate is exactly given by

r = 1/π, (B.6)

as it was also found in the simulations within the numerical accuracy. Note
that for any value β �= 1, the rate is expected to depend on D.
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Madrid, A. (2002). Diffusion in tilted periodic potentials: Enhancement, uni-
versality, and scaling. Phys. Rev. E, 65, 031104.

Rinzel, J., & B. Ermentrout, B. (1989). Analysis of neural excitability and oscil-
lations. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling (p. 251).
Cambridge, MA: MIT Press.

Risken, H. (1984). The Fokker-Planck equation. Berlin: Springer-Verlag.
Shadlen, M. N., & Newsome, W. T. (1994). Noise, neural codes, and cortical

organization. Curr. Op. Neurobiol., 4, 569.
Sigeti, D. (1988). Universal results for the effects of noise on dynamical systems.

Unpublished doctoral dissertation, University of Texas at Austin.
Sigeti, D., & Horsthemke, W. (1989). Pseudo-regular oscillations induced by

external noise. J. Stat. Phys., 54, 1217.
Softky, W. R., & Koch, C. (1993). The highly irregular firing of cortical cells is

inconsistent with temporal integration of random EPSPs. J. Neuronsci., 13,
334.

Troyer, T., & Miller, K. (1997). Physiological gain leads to high ISI variability in
a simple model of a cortical regular spiking cell. Neur. Comp., 9, 971.

Tuckwell, H. C. (1988). Introduction to theoretical neurobiology. Cambridge: Cam-
bridge University Press.

Wilbur, W., & Rinzel, J. (1983). A theoretical basis for large coefficient of variation
and bimodality in neuronal interspike interval distributions. J. Theor. Biol.,
105, 345.

Received October 31, 2002; accepted February 4, 2003.


