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Abstract
Information theory is playing an increasingly important role in the analysis
of neural data as it can precisely quantify the reliability of stimulus–response
functions. Estimating the mutual information between a neural spike train
and a time varying stimulus is, however, not trivial in practice and requires
assumptions about the specific computations being performed by the neuron
under study. Consequently, estimates of the mutual information depend on
these assumptions and their validity must be ascertained in the particular
physiological context in which experiments are carried out. Here we compare
results obtained using different information measures that make different
assumptions about the neural code (i.e. the way information is being encoded
and decoded) and the stimulus ensemble (i.e. the set of stimuli that the animal
can encounter in nature). Our comparisons are carried out in the context of
spontaneously active neurons. However, some of our results are also applicable
to neurons that are not spontaneously active. We first show conditions under
which a single stimulus provides a good sample of the entire stimulus ensemble.
Furthermore, we use a recently introduced information measure that is based
on the spontaneous activity of the neuron rather than on the stimulus ensemble.
This measure is compared to the Shannon information and it is shown that
the two differ only by a constant. This constant is shown to represent the
information that the neuron’s spontaneous activity transmits about the fact that
no stimulus is present in the animal’s environment. As a consequence, the
mutual information measure based on spontaneous activity is easily applied
to stimuli that mimic those seen in nature, as it does not require a priori
knowledge of the stimulus ensemble. Finally, we consider the effect of noise in
the animal’s environment on information transmission about sensory stimuli.
Our results show that, as expected, such ‘background’ noise will increase the
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trial-to-trial variability of the neural response to repeated presentations of a
stimulus. However, the same background noise can also increase the variability
of the spike train and hence can lead to increased information transfer in
the presence of background noise. Our study emphasizes how different
assumptions can lead to different predictions for the information transmission
of a neuron. Assumptions about the computations being performed by the
system under study as well as the stimulus ensemble and background noise
should therefore be carefully considered when applying information theory.

1. Introduction

Information theory (Shannon 1948a, 1948b, Cover and Thomas 1991) is an increasingly
popular tool to analyse input–output properties of neural systems and characterize neural
coding (Borst and Theunissen 1999, Goychuk 2001). The mutual information rate, I (R, S),
between the neuronal response R and a stimulus S is defined as the reduction in the entropy rate
of the neural response R brought about by the stimulus S. Thus, according to Shannon (1948a,
1948b), we have I (R, S) = H (R) − H (R/S) where H (R) is the entropy rate of the response
and H (R/S) is the entropy rate of the response given the stimulus S. H (R/S) measures the
trial-to-trial variability in the neural response that cannot be accounted for by the stimulus
(Strong et al 1998). In an optimal situation, the trial-to-trial variability is minimized, thus
minimizing H (R/S), and maximizing the mutual information I (R, S). On the other hand,
H (R) measures the uncertainty in the spike train brought about by the stimulus ensemble
(i.e. the set of all stimuli that an animal can encounter in nature): it is also the maximum value
that the mutual information rate I (R, S) can attain. The mutual information rate is usually
expressed in bits s−1 and expresses the capacity of a neuron to discriminate between different
stimuli that are part of the stimulus ensemble per unit time. Thus, if the mutual information
rate is equal to 10 bits s−1, this means that the neuron is able to discriminate between 210

different stimuli from 1 s of neuronal spiking activity.
There are different techniques for estimating bounds to the mutual information rate of

a neuron (see Borst and Theunissen 1999, for a review) and we will now summarize them.
Indirect methods of estimating information transfer such as linear reconstruction have been
used to estimate I (R, S) (Gabbiani 1996, Gabbiani et al 1996, Rieke et al 1996, Gabbiani
and Koch 1998). These methods assume that only certain features of the stimulus are being
encoded by the neuron and thus only give a lower bound estimate for I (Borst and Theunissen
1999). These methods further assume that the stimulus used has Gaussian statistics (Rieke
et al 1995, Gabbiani 1996, Rieke et al 1996, Machens et al 2001). For these reasons, the
mutual information estimate obtained is only a lower bound to the ‘true’ mutual information
rate. However, it has been shown that natural stimuli often do not have Gaussian statistics
(Simoncelli and Olshausen 2001).

Consequently, a direct method proposed by Strong et al (1998) that makes fewer
assumptions on the nature of the neural code has been used to estimate information transfer
by neurons about both artificial and naturalistic stimuli (de Ruyter van Steveninck et al 1997,
Buracas et al 1998, Strong et al 1998, Reinagel and Reid 2000, Fairhall et al 2001, Lewen et al
2001, Nirenberg et al 2001). This direct method requires large amounts of data. Furthermore,
it relies on the assumption that the particular stimulus ‘S’ used provides a good sample of the
entire stimulus ensemble. However, the validity of the assumption should be tested and we
do so for a subset of the stimulus ensemble that is easily characterized. Furthermore, the final
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result obtained by this depends on the binwidth �τ and even diverges as �τ goes to zero.
Thus, certain authors have proposed a different way of estimating mutual information in the
context of single ion channels and rate modulated Poisson processes (Gaspard and Wang 1993,
Goychuk and Hänggi 2000, Goychuk 2001). In these studies, the authors present analytical
results on different information measures. Analytical treatment of complicated neural models
is seldom possible. Furthermore, one must resort to numerical estimation in the case of real
experimental data. We therefore choose to use the information measures proposed by Strong
et al (1998) that unfortunately depend on the partition size but can readily be calculated from
experimental data. We note that information theoretic quantities can also be computed from the
interspike interval sequence (Zador 1998, Steuer et al 2001a, 2001b, Tiesinga 2001). However,
we focus on the information carried by the entire spike train here.

This direct method (Rieke et al 1996, Strong et al 1998) of estimating information transfer
has mostly been applied to neurons that are not spontaneously active. However, many neurons
are known to be spontaneously active (e.g. auditory fibres (Kiang 1965,Köppl 1997), vestibular
afferents (Goldberg and Fernández 1971), neocortical neurons in awake animals (Hubel 1959,
Evarts 1964, Steriade 1978), as well as cerebellar deep nuclear neurons (Aizenman and Linden
1999) and Purkinje cells (Jaeger and Bauer 1994)). Furthermore, it has been proposed that
these neurons must change one or more of their spontaneous discharge properties (e.g. mean,
variance, autocorrelation) in order to encode a stimulus (Ratnam and Nelson 2000, Chacron
et al 2001b, Neiman and Russell 2002).

For this reason, an information measure that uses the entropy rate of the spontaneous
activity of neurons rather than that obtained from an unrepeated stimulus S′ was recently
introduced and applied to the electroreceptors of weakly electric fish (Chacron et al 2001b).
This measure is identical to the information gain or Kullback entropy (Kullback 1959) between
the neural response in the absence of stimulus and the one with stimulus that has been used to
characterize information transfer in neurons (Neiman et al 1996, Goychuk and Hänggi 2000,
Goychuk 2001).

We compare the information rate to the measure described above that is useful in a
situation where no spontaneous activity is seen. This comparison is done in the context of a
spontaneously active neuron. We also extend the measure based on spontaneous activity to
situations in which a signal must be processed in the presence of ambient noise. A classic
example of this is the so-called cocktail-party effect in which one must hear a single speaker
in an acoustically cluttered environment (Cherry 1953).

The main conclusion of our paper is that the rate of information transmission of a neuron not
only depends on the stimuli used but also on the assumptions being made about the stimulus
ensemble. To illustrate this point, our study uses both stimuli with Gaussian statistics to
compare with previous work as well as naturalistic stimuli with non-Gaussian statistics and is
carried out with the gymnotiform weakly electric fish Apteronotus leptorhynchus as a model.

These fish are particularly adept at detecting prey (Nelson and MacIver 1999) and each
other (Heiligenberg et al 1991, Zupanc and Maler 1993, Dulka et al 1995) using their
electrosensory system. They emit a quasi-sinusoidal time varying electric field through their
electric organ discharge (EOD, frequency 600–1000 Hz). P-type electroreceptors on their skin
detect amplitude modulations (AMs) of this field caused by nearby objects or conspecifics
(Bastian 1981, Zakon 1986). These AMs are thus the stimulus to be encoded by these neurons
while the EOD is just a carrier wave. In the absence of AMs, these electroreceptors fire action
potentials in response to the EOD: thus, they are thus active in the absence of a stimulus (Bastian
1981). Electroreceptor action potentials show a phase preference with respect to the EOD
signal but they skip a random number of EOD cycles between each firing. Thus their activity
is considered irregular despite their phase preference with respect to the EOD (CV = 0.5:
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Figure 1. The stimulus ensemble W . Shown are the subset Wgaus of zero-mean Gaussian stimuli
of contrast σ and cutoff frequency fc used in this study, the subset WSAM of all sinusoidal stimuli
with contrast σSAM and fSAM. The ‘no-stimulus’ ensemble W0 is also shown; note that it intersects
WSAM and Wgaus since the cases σ = σSAM = 0 correspond to no stimulus.

Ratnam and Nelson 2000). Consequently, there is a high trial-to-trial variability (i.e. when
looking at consecutive non-overlapping epochs on spiking) in their discharge properties in the
absence of stimulus (i.e. with the EOD alone). However, their activity to repeated presentations
of the same AM stimulus is much more regular (Chacron et al 2001b).

To generate the vast amounts of data necessary for calculating the mutual information rate
for such neurons, we use a simple, accurate and biophysically justified neural model that has
been used to successfully account for many discharge properties of P-type electroreceptors
(Chacron et al 2000, 2001a, 2001b). A full description and biophysical justification of the
model can be found in Chacron et al (2001b). We also used the same parameter values as in
that study.

2. Materials and methods

We first describe in detail the concept of the stimulus ensemble as well as several subsets of
interest. We then discuss the methodology used to calculate the noise entropy rate. Finally, we
present the different information measures we will use as well as the way they were estimated.

2.1. The stimulus ensemble

We use both artificial and naturalistic stimuli in this study. Both are part of the total stimulus
ensemble denoted by W which consists of all stimuli S that the animal can encounter and
is illustrated in figure 1. Each member S of the stimulus ensemble W has an associated
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probability of occurrence P(S). In some cases, these probabilities have been experimentally
measured such as for light contrast in the fly visual system (Laughlin 1981). However, they are
presently unknown for our system. The stimulus ensemble W is in general multi-dimensional
and is hard to fully describe. For these reasons, researchers often concentrate on subsets that
are easier to characterize.

One such subset is the ensemble of filtered Gaussian white noise stimuli that has been
widely used in characterizing the information transfer properties of neurons (Gabbiani et al
1996, Roddey and Jacobs 1996, Wessel et al 1996, Clague et al 1997, Warland et al 1997).
We denote this ensemble by Wgaus. Each member of Wgaus is characterized by two parameters:
its contrast σ and its cutoff frequency fc. The contrast is defined as the standard deviation-to-
mean ratio. All Gaussian stimuli used have a mean equal to the baseline EOD amplitude value
and this value is set to 1 mV. Furthermore, all Gaussian stimuli have a power spectrum that is
constant and positive for frequencies between zero and the fc and zero otherwise (Wessel et al
1996). Since every member of Wgaus is uniquely characterized by the parameters σ and fc,
the set Wgaus is two-dimensional. It is thus easy to fully characterize but, as before mentioned,
natural stimuli seldom display Gaussian statistics.

We now describe a subset of natural stimuli that is easily characterized for our system.
When two weakly electric fish with different EOD frequencies are in proximity of one another,
there is interference producing a beating phenomenon, between the quasi-sinusoidal electric
fields generated by each fish. This interference will cause a sinusoidal amplitude modulation
(SAM) in each fish’s own electric field (Bastian 1981, Heiligenberg et al 1991). The frequency
of this modulation depends on the frequency difference between the two fish and can range
from a few hertz to 400 Hz. We thus used SAMs within the physiological range as natural
stimuli: other natural electrocommunication signals such as chirps (Zupanc and Maler 1993)
are not considered here. We denote by WSAM the set of all such stimuli. Each member of this
set can be described by two parameters: the SAM contrast σSAM and frequency fSAM of the
sinusoid. However, to fully characterize the set WSAM, we would need to know the probability
of natural occurrence of a SAM with contrast σSAM and frequency fSAM in nature for the fish
(this would be an experiment similar to the one performed by Laughlin (1981) for the fly).
Although such data can be acquired, this has to our knowledge not yet been accomplished.
Note that WSAM is but a small subset of W as the latter contains other natural stimuli such as
the chirps mentioned earlier as well as stimuli caused by prey (Nelson and MacIver 1999).

Finally, we discuss the notion of a ‘no-stimulus’ ensemble. We denote this set by W0

because this set contains only one member: a constant stimulus whose value is equal to the
baseline EOD amplitude (i.e. no stimulus). It is easily seen that this set contains all SAM and
Gaussian stimuli with zero contrast. As such, W0 intersects both Wgaus and WSAM (figure 1).

2.2. Estimating the mutual information rate

The calculation of the mutual information rate I (R, S) requires the calculation of both the
response entropy rate averaged over the stimulus ensemble H (R) and the response entropy
rate given the stimulus H (R/S). The estimation of H (R/S) is standard (Strong et al 1998)
and poses no conceptual difficulty. We will describe it first.

2.3. Estimating the entropy rate given the stimulus

Our method is the same as the one used by Strong et al (1998). We assume that the same
stimulus S was repeated many times under identical conditions and that each trial resulted
in a particular spike train representing the neural response R to a particular trial. As before
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Figure 2. (a) Outline of the procedure for turning a spike train into a binary string consisting of
0 and 1. The spikes are represented by vertical bars while time is represented horizontally. The
time axis is then divided into bins of length �τ and each bin is assigned the value 1 if a spike
occurred and zero otherwise. The binary string obtained will of course depend on the bin width
�τ . (b) Outline of the procedure used to calculate the probabilities of occurrence of words w when
the length of these words is one (i.e. 0 and 1). Multiple stimulus presentations will give rise to
multiple spike trains that can be converted into binary data using the procedure outlined above.
The probabilities of occurrence of words of length one are calculated at each bin from all trials.
The final probabilities of occurrence P(w/S) are calculated by averaging the results obtained for
each bin. This procedure is then repeated for words of length two, etc. Note that the windows used
for calculating the probabilities are non-overlapping.

mentioned, the response entropy rate given the stimulus H (R/S) measures the response trial-
to-trial variability to a stimulus.

To estimate H (R/S), we partitioned the spike train into bins of length �τ with �τ smaller
than the minimum interspike interval so that each bin contains at most one spike. A bin is then
assigned the value 0 if no spikes occurred during that bin and 1 otherwise. This procedure
converts a spike train into a binary string and is illustrated in figure 2(a). The alphabet thus
consists of two symbols (0: no spike, and 1: spike) and words consist of binary strings of
various lengths (e.g. ‘010’, ‘00101’).

The choice of �τ is critical and depends on various considerations such as the spike timing
jitter of the particular neuron (i.e. the degree to which the precise timing of action potentials
is important for information transfer). This spike timing jitter can usually be measured by
adding ‘jitter’ (e.g. in the form of Gaussian random variable) to the spike times and looking
at the resulting loss in information (Kreiman et al 2000). On the other hand, one can also
measure it by looking at the precision of spike timing (Mainen and Sejnowski 1995). Another
important factor is the temporal discrimination of postsynaptic neurons (Bender et al 2001):
this usually depends on the properties of the synapse(s) and possible inter-neuron(s) connecting
the neurons in question as well as on the temporal integration properties of the post-synaptic
neurons themselves. In our case, the EOD cycle is a natural time scale since P-receptor afferents
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can fire at most one spike per EOD cycle (Bastian 1981). It is also known that electroreceptor
input onto basilar pyramidal cells results in excitatory postsynaptic potentials whose duration
is barely greater than an EOD cycle (Berman and Maler 1998). We thus take �τ to be around
one EOD cycle. Since we assume an EOD frequency equal to 1000 Hz, one EOD cycle
corresponds to 1 ms.

We mark a particular time t with respect to the stimulus and compute the probabilities of
occurrence across trials of each word ω of length L that begin at t . These probabilities are
denoted by P(w/S, t). The entropy of words of length L is then calculated as (Strong et al
1998)

H (L/S, t) =
∑

w∈�(L)

−P(w|S, t) log2 P(w|S, t) (1)

where �(L) is the set of words of length L (e.g. if L = 2, then �(2) = {01, 10, 00, 11}). The
entropy H (L/S, t) thus denotes the local entropy of words of length L in the time window
(t, t + L). These entropies H (L/S, t) are then averaged across all such windows during the
entire time course of the stimulus. We thus have

H (L/S) = 〈H (L/S, t)〉t (2)

where the angle brackets denote the average over the stimulus time course. This procedure is
illustrated graphically in figure 2(b).

The entropy rate of the spike train given the stimulus is then obtained by Strong et al
(1998):

H (R/S) = lim
L→∞

H (L/S)

L �τ
. (3)

In practice, the entropies H (L/S) calculated from equation (2) underestimate the real value
for large word length L because of undersampling due to the finiteness of the spike train data.
We hence used an extrapolation procedure from Strong et al (1998) to get an estimate of the
entropy rate (Chacron et al 2001b):

H (L/S)

L �τ
= H (R/S) +

C1

L
+

C2

L2
+ · · · (4)

where C1, C2 are constants. To estimate the entropy rate H (R/S), we plot the quantities
H (L)/(L�τ) as a function of 1/L and perform either a linear or quadratic least-squares fit.
The entropy rate H (R/S) is then estimated from the value of the fitted line or parabola at
1/L = 0. An example is given in figure 3. Sometimes, a quadratic fit was better than a linear
one (figure 3(a)). Although we have not verified this directly, we think that the curvature
is due to the ISI correlations displayed by the model (Chacron et al 2001b) that are present
experimentally (Chacron et al 2000). When noise is added to the model, the ISI correlations
disappear (not shown) and the results obtained from a linear fit are not very different than
those obtained from a quadratic fit (figure 3(b)). Thus, linear and quadratic fits can give very
different results for the entropy rates.

We estimated the entropy rate H (R/S) from 1000 trials each lasting 10 s. Note that
such numbers are necessary due to the high firing rates of the electroreceptors we study.
These usually range from 100 to 600 Hz (Ratnam and Nelson 2000). This as well as other
considerations (see above) forces us to take a small bin size �τ . However, for other systems,
a larger �τ can sometimes be taken if the firing rate is lower, and as few as 100 repetitions
can sometimes lead to a good estimate of the response entropy rate given the stimulus (Strong
et al 1998, Reinagel and Reid 2000).

Having discussed our estimation procedure for the response entropy rate H (R/S), we
can now discuss estimation procedures for the entropy rate of the response averaged over the
stimulus ensemble. However, we first start by stating the theoretical definition.
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Figure 3. The entropies H (L/S)/(L �τ) as a function of 1/L . (a) Estimates obtained for the
baseline entropy rate Hspon (i.e. σ = 0 mV). It is seen that a quadratic fit is much better than a
linear one. (b) Estimates obtained for the baseline entropy rate in the presence of background noise
for σ = 0 mV. The estimates obtained from a linear and quadratic fit are much closer in this case.
We used �τ = 1.25 ms.

2.4. Definition of Shannon’s mutual information rate

As before mentioned, the mutual information rate I (R, S) is the difference between the
response entropy rate averaged over the stimulus ensemble H (R) and the response entropy
rate given the stimulus H (R/S). According to probability theory, we have that

P(w, t) =
∑

S∈W (S)

P(w|S, t)P(S) (5)

where P(S) is the probability of occurrence of stimulus S within the stimulus ensemble W and
P(w/S, t) is, as before, the probability of w occurring at time t with respect to the stimulus.
The entropy rate H (R) could then be estimated by using equations (1)–(4) with P(w, t) instead
of P(w/S, t) in equation (1) and H (R) instead of H (R/S) in equations (3) and (4). However,
as mentioned above, the stimulus ensemble W cannot be characterized fully in general and the
probabilities of occurrence of various stimuli P(S) are not known. It thus becomes necessary
to make simplifying assumptions at this point and we now discuss some of them.

2.5. Response entropy rate calculated over the Gaussian stimulus ensemble

It is possible to restrict oneself to an easily characterized subset of the stimulus ensemble W
where the calculation described in the previous paragraph can be undertaken. Such a subset is
the Gaussian stimulus ensemble Wgaus. We shall denote the estimate obtained by Hgaus(R) to
emphasize its dependence on the subset Wgaus.
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As such, we estimated the entropy rate Hgaus(R) in the following way. Gaussian stimuli
of various contrasts σ and cutoff frequencies fc each lasting 10 s were each given 1000
times. The probabilities P(w/S, t) were estimated for each Gaussian stimulus S as for the
calculation of the response entropy rate given the stimulus S. These probabilities were then
averaged using equation (5) with Wgaus instead of W to obtain the probabilities P(w, t). It
was assumed that all stimuli were equiprobable. Equations (1)–(4) with P(w, t) instead
of P(w/S, t) in equation (1) and Hgaus(R) instead of H (R/S) in equations (3) and (4)
were then used to compute Hgaus(R). The mutual information rate can thus be estimated
as Igaus(R, S) = Igaus = Hgaus(R) − H (R/S).

2.6. Mutual information rate calculated from an unrepeated stimulus S

Even averaging over the Gaussian stimulus ensemble can require much more data than are
available. Thus, Strong et al (1998) have proposed that the response entropy rate H (R)

could be estimated from the response entropy rate of the spike train in the presence of an
unrepeated stimulus S. This is based on the assumption that a single member S of the stimulus
ensemble W would provide a good sample of the full stimulus ensemble W . The spike train
entropy rate estimated in this way will of course depends on the particular stimulus S used
and we shall denote it by Hstrong(R). The corresponding mutual information rate is thus
Istrong(R, S) = Istrong = Hstrong(R) − H (R/S).

We presented a long (10 000 s duration) Gaussian stimulus and obtained a spike train that
was converted into a binary sequence as described above. We estimated the probabilities of
occurrence Pstim(w) of words w within the sequence in the following way. The binary sequence
was divided into non-overlapping windows of length L. The probabilities of occurrence of
words of length L were then estimated across these time windows. This allowed us to compute
the entropies Hstrong(L) as

Hstim(L) = −
∑

w∈�(L)

Pstim(w) log2 Pstim(w). (6)

The entropy rate Hstim(R) was then estimated from

Hstim(L)

L �τ
= Hstim(R) +

C1

L
+

C2

L2
+ · · · . (7)

The mutual information rate can then be estimated as Istrong(R, S) = Istrong = Hstrong(R) −
H (R/S). However, this estimate assumes that the stimulus used to compute Hstrong(R)provides
a good sample of the stimulus ensemble W .

2.7. Mutual information calculated from the spontaneous activity of the neuron

We now present an information estimate that does not depend on the stimulus ensemble per se.
It is known that many neurons are spontaneously active and that, in most cases, this spontaneous
activity in vivo is irregular. As such, we have previously used an information measure based on
the entropy rate of the spontaneous activity of such neurons Hspon(R) (Chacron et al 2001b).
To estimate it, one takes a long record (10 000 s in our case) of spontaneous activity that is
then converted into a binary sequence. We then used the same estimation procedure as for
Hstrong(R) except that no stimulus was given.

The difference between the spontaneous response entropy rate Hspon(R) and the response
entropy rate given the stimulus H (R/S) is a measure of information (Kullback 1959). We shall
denote this quantity by Ispon(R) = Ispon = Hspon(R)− H (R/S). However, this quantity is not
a measure of information in the ‘classical’ sense since it does not take into account the stimulus
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ensemble W . Instead, this quantity measures the reduction of the spontaneous response entropy
brought about by a stimulus S. This is based on the assumption that spontaneously active
neurons transmit information about stimuli through a change from their spontaneous activity
(Ratnam and Nelson 2000, Chacron et al 2001b). This measure assumes that the ‘no-stimulus’
ensemble provides a good sample of the full stimulus ensemble W . We now discuss the relation
between Ispon and the Shannon mutual information rate I .

We have

I (R, S) = H (R) − H (R/S)

= H (R) − Hspon(R) + Hspon(R) − H (R/S)

= H (R) − Hspon(R) + Ispon

= C + Ispon. (8)

Thus, the mutual information rate calculated from the spontaneous activity of the neuron
Ispon differs by only a constant C from Shannon’s mutual information rate I (R, S). This
constant C depends on the stimulus ensemble W . Let us assume that no stimulus is given to the
neuron, we then have I (R, S) = C . Thus C represents the information rate that a spontaneously
active neuron transmits about the fact that no stimulus is present in the animal’s environment
and depends only on the stimulus ensemble and on the neuron’s intrinsic properties. It is thus
expected that Ispon and I (R, S) will behave in the same manner when the stimulus S is varied.

Finally, note that all these measures are based on the assumption of a noise-free
environment in which stimulus encoding and decoding is performed.

2.8. Noise in an animal’s environment

We consider the effects of background noise on information transfer. Common sources
of background noise in our system include environmental factors and conspecifics. For
example, lightning is common in these fish’s natural habitat and generates electrical pulses and
oscillations that propagate over hundreds of kilometres through tropical waters (Hopkins 1973).
The lightning pulses interfere with weakly electric fish’s abilities to detect AMs (i.e. stimuli).
Moreover, the fish must detect prey (invertebrates) that may be hiding in root masses (Crampton
1998). The electric image caused by these root masses can be considered noise when the fish
is trying to detect its prey. Finally, two fish might be able to detect each other even when
other fish are close by (Parthridge and Heiligenberg 1980): this is the weakly electric fish
equivalent of the cocktail-party effect discussed above. From the above examples, it is clear
that background noise will be very system dependent. In our study, we assume background
noise to be Gaussian with contrast σ = 0.01 mV and cutoff frequency fc = 50 Hz. These
parameters are fixed throughout. Furthermore, we will assume that the background noise is
additive (i.e. the noise is added to the stimulus).

2.9. Mutual information rate in the presence of noise in the environment

Often, sensory neurons must thus encode and decode stimuli that are perturbed by variable
amounts of noise such as in the cocktail party effect discussed above. We now extend the
measure Ispon to include the effects of background noise. To do so, we must consider the
effects of background noise on both the spontaneous response entropy rate Hspon(R) and on
the response entropy rate given the stimulus H (R/S).

We computed the response entropy rate Hnoise(R) in the same manner as Hstrong(R)

except that background noise was given to the neuron instead of a stimulus. We computed
the response entropy rate given the stimulus in the presence of background noise in the
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Table 1. Summary of the different information measures.

Information
measure Description Stimulus ensemble used Assumptions

Igaus Mutual information rate calcu-
lated over the Gaussian stimu-
lus ensemble W ′

The Gaussian stimulus en-
semble Wgaus

The Gaussian stimulus ensem-
ble provides a good sample of
the total stimulus ensemble W

Istrong Mutual information rate calcu-
lated from a single member S of
the stimulus ensemble

W The stimulus ensemble is well
sampled by the single member
S

Ispon Mutual information rate calcu-
lated from the spontaneous ac-
tivity of a neuron

The ‘no-stimulus’ ensem-
ble W0

The neuron must have suffi-
ciently irregular spontaneously
activity

Inoise Mutual information rate calcu-
lated in the presence of back-
ground noise

The ‘no-stimulus’ ensem-
ble in the presence of back-
ground noise

The background noise must
elicit sufficiently irregular ac-
tivity from the neuron

I In theory: mutual information
rate calculated from the stimu-
lus ensemble W

The full stimulus ensemble
W

In theory: none except that
the stimulus ensemble W is
properly characterized

same manner as the response entropy rate given the stimulus H (R/S). The only difference
is that background noise is added to the stimulus before each trial. We will denote the
estimate obtained by Hnoise(R/S). The mutual information rate can then be estimated as
Inoise(R, S) = Inoise = Hnoise(R) − Hnoise(R/S).

Table 1 summarizes the different information rate estimates we have presented, their
assumptions, and a brief description on their estimation procedure. We will now compare
results obtained using these different estimates.

3. Results

We first present results of calculations of the mutual information rate measures Istrong, Igaus, Ispon

and Inoise using Gaussian stimuli (i.e. the stimuli are part of Wgaus) of various physiologically
relevant contrasts σ and cutoff frequencies fc. The estimates Istrong, Ispon and Inoise are then
compared for naturalistic SAMs of various frequencies.

3.1. The effects of varying the contrast σ

We wish to study the effects of varying the stimulus contrast σ . We thus first keep the cutoff
frequency constant at 100 Hz and compare the different mutual information rate estimates
obtained by varying the stimulus contrast σ . The results are shown in figure 4(a). We see
that the estimates Igaus (the mutual information rate estimated over the Gaussian stimulus
ensemble Wgaus) and Istrong (the mutual information rate estimated from a single stimulus of
Wgaus) are in good agreement for high contrast σ . However, Istrong is less than Igaus as σ

tends to zero. To understand this, let us assume that the stimulus has σ = 0. We then have
that the entropy rate H (R/S) is equal to the response entropy rate Hstrong(R), which in turn
is equal to the spontaneous response entropy rate Hspon(R). As a consequence, the estimate
Istrong = Hstrong(R) − H (R/S) is equal to zero. However, the response entropy rate averaged
over the Gaussian stimulus ensemble Hgaus(R) is not equal to the response entropy rate H (R/S)

when the stimulus S has zero contrast. Hence, we have Igaus = Hgaus(R) − Hspon(R) > 0
when σ = 0.
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Figure 4. Effects of varying the contrast σ . Note the overall decrease in mutual information as
�τ increases. Igaus and Istrong are much higher than Ispon and we have Igaus ≈ Istrong for high
contrasts. We used �τ = 1 ms and fc = 100 Hz. Furthermore, we performed quadratic fits.

Our results thus show that approximating the Gaussian stimulus ensemble averaged
response entropy rate Hgaus(R) by the response entropy rate obtained from a single member of
the stimulus ensemble Hstrong(R) is justified for mid to high contrast σ at this particular cutoff
frequency fc. This is due to the particular nature of the stimulus ensemble Wgaus. Note that a
stimulus S with contrast σ and cutoff frequency fc contains all Gaussian stimuli with lower
contrasts and cutoff frequency. Thus, a member with a high contrast and cutoff frequency
provides a good sample of the stimulus ensemble Wgaus and thus provides a good estimate of
the spike train entropy rate calculated over this subset Wgaus of the stimulus ensemble W .

It is seen that the mutual information rate estimated over the Gaussian stimulus ensemble
Igaus and the mutual information rate estimated over the ‘no-stimulus’ ensemble Ispon differ
by a constant. This is expected from the previous discussion since Igaus = Ispon + C ′ with
C ′ = Hgaus(R) − Hspon(R). The constant C ′ measures how well the neuron can discriminate
the absence of a stimulus from other members of the stimulus ensemble Wgaus. This extra
information is absent from the estimate Igaus when contrast σ = 0 because the entropy rate
Hgaus(R) is estimated from the same stimulus ensemble member S (the ‘no-stimulus’ case)
that is used to estimate the noise entropy rate H (R/S).

Note that the mutual information rate estimated from the spontaneous activity Ispon is
equal to 0 when the stimulus contrast σ = 0 (i.e. no stimulus is present), hence this measure
implies that no information is transmitted by the neuron when no stimulus is present whereas
the measure Igaus implies that information is being transmitted when no stimulus is present
(i.e. about the absence of stimulus). We will return to this point in the discussion.

Finally, we note that the mutual information rate calculated with background noise Inoise

is slightly greater than Ispon for high contrasts but is still lower than Igaus. To understand
this, note that the spike train entropy rate in the presence of background noise Hnoise(R) is
always greater than the spike train entropy rate in the absence of background noise Hspon(R)

(i.e. with spontaneous activity only) because the extra randomness due to background noise
increases the entropy rate. For the same reason, we have that the response entropy rate given
the stimulus in the presence of background noise Hnoise(R/S) is always greater than the noise
entropy rate in the absence of background noise H (R/S). As such, the signal-to-noise ratio
(SNR) (i.e. the ratio of the stimulus contrast to the noise contrast) increases with stimulus
contrast and consequently the noise becomes less and less important. The noise entropy rate
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Figure 5. Effects of varying the binwidth �τ . Shown are the information measures Ispon,
Inoise , Istrong, Igaus as a function of stimulus contrast σ for fc = 100 Hz for �τ = 0.5 ms (a),
�τ = 1.25 ms (b), �τ = 1.5 ms (c), �τ = 2 ms (d). Quadratic fits were performed.

in the presence of background noise Hnoise(R/S) tends towards the noise entropy rate obtained
when no background noise is present H (R/S), hence making the mutual information rate in
the presence of background noise Inoise higher than Ispon.

Note also that Inoise is less than or equal to the mutual information calculated from a
single member of the stimulus ensemble Istrong: this is because the noise entropy rate in the
presence of background noise Hnoise(R/S) is higher than the noise entropy rate obtained in the
absence of background noise H (R/S) thereby making the mutual information rate obtained in
the presence of background noise Inoise lower. Moreover, the spike train entropy rate obtained
from a single member of stimulus ensemble Hstrong(R) is higher than the spike train entropy
rate Hnoise(R) if the stimulus S has higher contrast σ or cutoff frequency f c than the background
noise (note that the two are equal if the stimulus and background noise have the same contrast
σ and cutoff frequency fc).

3.2. Effects of varying the binwidth �τ

The information measures calculated in this paper depend of course on the binwidth �τ . In
this section, we show the effects of varying the binwidth �τ on the results presented in the
previous section. Figures 5(a)–(d) shows the measures Istrong, Igaus, Ispon and Inoise as a function
of stimulus contrast σ for �τ = 0.5, 1.25, 1.5 and 2 ms, respectively. As expected, there is
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and the quantitative variations are less than 7%. We used �τ = 1.25 ms.

an increase in mutual information rate as �τ decreases. However, there are no qualitative
differences with the case �τ = 1 ms presented in figure 4. Our results thus are robust to a
fourfold variation in �τ .

3.3. Effects of linear and quadratic fits

We now show the effects of performing linear versus quadratic fits of the quantities
H (L/S)/(L�τ) versus 1/L as discussed previously (see figure 3). Figure 6 shows the
information measures Istrong, Igaus, Ispon and Inoise as a function of stimulus contrast σ for
�τ = 1.25 ms obtained from quadratic (full symbols) and linear (open symbols) fits of the
entropy rates. Essentially no qualitative difference is observed. Furthermore, there is a less
than 7% difference in each measure computed from the quadratic fits versus linear fits. Similar
results were observed for other �τ values (not shown). Our results are thus robust to either
quadratic or linear fits. As our results are also robust to changes in �τ , we only present results
obtained with �τ = 1 ms and using quadratic fits from now on.

3.4. Gaussian stimuli: effects of varying the cutoff frequency fc

We now keep the contrast σ constant at 0.03 mV and vary the cutoff frequency fc of the
stimulus. Results are shown in figure 7. We note that all four measures increase with fc. This
increase is due to the high-pass filtering characteristics of the electroreceptors we study (Xu
et al 1996) and which are incorporated in the model we use (Chacron et al 2001b, Chacron
2003). The mutual information rate calculated from the Gaussian stimulus ensemble Igaus and
the mutual information rate calculated from a single member of the stimulus ensemble Istrong

agree for high cutoff frequencies fc. This is again due to a particular property of the Gaussian
stimulus subset Wgaus. Because the power spectrum of a stimulus with cutoff frequency fc

contains all frequencies up to fc, the stimulus essentially contains all stimuli with the same
contrast σ with lower cutoff frequencies fc. For this reason, a stimulus with a high cutoff
frequency and a reasonably high contrast σ provides a good sample of the entire stimulus
subset Wgaus. However, our results show that a single Gaussian stimulus with low frequency
content will not provide a good sample of the stimulus ensemble subset Wgaus; consequently,
the mutual information rate transmitted by the neuron will be underestimated if one uses Istrong.
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Figure 7. Information rate measures as a function of cutoff frequency for σ = 0.03 mV. Note
again that Igaus ≈ Istrong for high cutoff frequencies.

Note that the mutual information rate calculated over the Gaussian stimulus ensemble Igaus

again tends towards the constant Hgaus(R) − Hspon(R) as fc goes to zero.
The mutual information rate calculated from the spontaneous activity Ispon is again lower

than the mutual information rate calculated over the Gaussian stimulus ensemble Igaus for the
same reason as above: the measure Ispon only gives us the reduction in the spike train entropy
rate based on the ‘no-stimulus’ ensemble (i.e. spontaneous activity) rather than the reduction
in entropy rate from the Gaussian stimulus ensemble Wgaus. Further, the mutual information
rate obtained in the presence of background noise Inoise is lower than the mutual information
rate Igaus. This is again for the same reasons as above. However, the mutual information rate
in the presence of background noise IN is again higher than the mutual information rate in
the absence of background noise Ispon since the spike train entropy rate on the presence of
background noise Hnoise(R) is always greater than or equal to the spike train entropy rate in the
absence of background noise Hspon(R) with equality only in the limit where the background
noise goes to zero. Due to the aforementioned high-pass filtering characteristics of the neurons
we study, increasing the cutoff frequency of the stimulus fc increases the SNR, and thus the
noise entropy rate in the presence of background noise Hnoise(R/S) tends towards the noise
entropy rate in the absence of background noise H (R/S) because the noise becomes less and
less important.

3.5. Naturalistic stimuli

As before mentioned, the mutual information rates calculated from the spontaneous activity
of the spike train in the absence (Ispon) and presence (Inoise) of background noise easily extend
to naturalistic stimuli as they do not require a priori knowledge of the neuron’s full stimulus
ensemble W . Figure 8(a) shows the measures Ispon and Inoise obtained by varying the SAM
contrast σSAM and for constant SAM frequency fSAM = 100 Hz. We see that in the absence
of background noise, the mutual information rate Ispon increases with SAM contrast. This
is similar to what was obtained for Gaussian stimuli. The mutual information rate Inoise

also increases with stimulus contrast. However, we have Inoise almost equal to Ispon for low
contrasts and Inoise greater than Ispon for higher contrasts σSAM. This occurs for the same
reason as described above with Gaussian stimuli: the SNR increases with contrast σSAM and
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Figure 8. (a) Information measures Ispon and Inoise as a function of SAM contrast for a constant
SAM frequency of 100 Hz. Inoise is greater than Ispon for high contrasts (see text for explanation).
(b) Information measures Ispon and Inoise as a function of SAM frequency for a constant SAM
contrast of 0.03 mV. Note that both information rates exhibit a maximum as a function of SAM
frequency.

the noise entropy rate in the presence of background noise Hnoise(R/S) decreases towards the
noise entropy rate obtained in the absence of background noise H (R/S).

Figure 8(b) shows the measures Ispon and Inoise obtained by varying the SAM frequency
fSAM and keeping the SAM contrast σSAM constant. We note that the mutual information
rate in the presence of background noise Inoise and in the absence of background noise Ispon

are almost equal for low SAM frequencies fSAM but that the difference Inoise–Ispon increases
with fSAM. This is due to the high-pass filtering properties of the electroreceptors reproduced
by our model. Moreover, both measures exhibit a maximum as a function of fSAM. This
can be explained as follows: neurons typically exhibit low-pass filtering characteristics due
to their membrane time constant. However, electroreceptor neurons also exhibit high-pass
filtering characteristics. Thus, it might be expected that the neurons exhibit band-pass filtering
characteristics. A resonance in the mutual information rate as a function of stimulus frequency
fSAM can then be expected (Hutcheon and Yarom 2000). Note however that this resonance
was not seen for Gaussian stimuli. This is partly because one merely adds higher frequency
components to a Gaussian signal by increasing its cutoff frequency fc. On the other hand,
increasing the SAM frequency fSAM shifts the frequency of the unique Fourier component
of the signal, thereby probing the neural response to different frequencies. Figure 8(b) can
thus be thought of as an ‘information tuning curve’ for the neuron. Note that this is different
from looking at the variation in information transfer of Gaussian stimuli by varying the EOD
(i.e. carrier) frequency itself (Longtin and St-Hilaire 2000). This provides another example that
the neuronal response to naturalistic stimuli can be very different to the response to low-passed
filtered Gaussian white noise stimuli (Rieke et al 1995, Lewen et al 2001).
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4. Discussion

4.1. Summary

In this study, we have compared different information measures for different stimulus ensemble
subsets as well as different contrasts, frequencies and bandwidths in the case where the neuron
is spontaneously active. Our results show that different information measures can give us
quantitatively and in some cases qualitatively different results. Our results are robust to changes
in the binwidth used to compute them as well as different extrapolation procedures. However,
results obtained with a particular measure must be interpreted carefully. We now discuss all
four measures and their implications.

4.2. Comparison of Istrong and Igaus

The mutual information rate calculated from a single member S of the stimulus ensemble Istrong

has been used to quantify the information transfer by neurons in the visual system (Strong et al
1998, Reinagel and Reid 2000, Fairhall et al 2001, Lewen et al 2001, Nirenberg et al 2001).
We have shown that this generally agrees well with the measure Igaus obtained by averaging
over a subset of the stimulus ensemble when the subset W ′ was the set of zero-mean Gaussian
stimuli of contrast σ and cutoff frequency fc. However, some of these studies (Lewen et al
2001, Nirenberg et al 2001) used naturalistic stimuli and it remains to be shown whether the
measure Istrong would agree with the mutual information rate computed over the entire stimulus
ensemble W .

A mutual information rate estimate about a stimulus S is only valid when the stimulus
ensemble W is well sampled (Borst and Theunissen 1999). It remains to be shown whether the
subset of all Gaussian stimuli Wgaus studied here provides a good sample of the total stimulus
ensemble W and if so, in which cases. Thus, it is unclear whether the mutual information
rate Igaus calculated over the subset Wgaus would agree with the mutual information rate I
calculated over the stimulus ensemble W . There is evidence that this might not be the case
in sensory neurons as they must be most efficient at coding natural stimuli relevant for the
animal’s survival. Indeed, natural stimuli have been shown to elicit higher information rates
than low-pass filtered Gaussian white noise (Rieke et al 1995, Attias and Schreiner 1998).

4.3. Comparison of Igaus and Ispon

The total stimulus ensemble W is in general multi-dimensional and is not easy to characterize
like Wgaus or WSAM. It is therefore useful to have information measures like Ispon and Inoise that
do not depend on the stimulus ensemble used,but rather depend on the properties of the neurons
under study and on the particular stimulus used only through the noise entropy rate H (R/S).
We have compared the mutual information rate calculated from the spontaneous activity of the
neuron Ispon, which is identical to the Kullback entropy (Kullback 1959) between the response
in the absence of stimulus and the one with a stimulus, to the mutual information rate Igaus

calculated over the Gaussian stimulus ensemble Wgaus and showed that the two had the same
dependence on stimulus contrast and cutoff frequency. The mutual information rate calculated
from spontaneous activity Ispon was shown to be lower than Igaus. This is because the measure
Ispon only measures the reduction in the entropy rate of the spike train from spontaneous activity
Hspon(R) brought about by a stimulus. This difference is perhaps most clearly seen when no
stimulus is present. We then have that Ispon = 0 and Igaus = Hgaus(R) − Hspon(R) > 0. As
mentioned earlier, the quantity Hgaus(R)− Hspon(R) represents the information transmitted by
the neuron about the fact that no stimulus is present in the environment since the ‘no-stimulus’
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case is just another ‘stimulus’ in the stimulus ensemble Wgaus. The two information rates Igaus

and Ispon were shown to differ by the quantity Hgaus(R) − Hspon(R) which has no dependence
on the particular stimulus S used (it only depends of Wgaus). Furthermore, we note that we
have that H (R) − H (R/S) = H (R) − Hspon(R) + Hspon(R) − H (R/S). Thus, we have that
I = H (R) − Hspon(R) + Ispon using the definitions of I and Ispon. Thus, the information rate
calculated from the spontaneous activity of the neuron Ispon differs by only a constant from the
mutual information rate calculated over the full stimulus ensemble I . The two measures will
thus behave in the same manner. The measure Ispon is zero when there is no stimulus and has
the advantage of having no dependence on the stimulus ensemble.

4.4. Conditions of applicability for Ispon

It has been argued that a spontaneously active neuron must change one or more properties of its
spike train in order to signal the presence of a stimulus (Ratnam and Nelson 2000, Chacron et al
2001b). Thus, a change from spontaneous activity might signal the presence of a stimulus for
these neurons. One possible way to look at this change is to calculate the difference between
the entropy rates of the spontaneous activity and the activity in the presence of a stimulus:
this is exactly the information rate Ispon which is also known as the Kullback entropy between
the neural response in the absence of stimulus and the one with stimulus (Kullback 1959).
Such a measure might be applicable to a situation for example in which an animal must detect
a stimulus from the absence of stimuli: this occurs for example when the electric fish must
detect a prey in midstream (Nelson and MacIver 1999) or when an animal detects a sound in
an otherwise silent environment using a spontaneously active auditory afferent.

We now discuss the conditions of applicability of the measure Ispon. Clearly, Ispon cannot
be applied to a neuron that is not spontaneously active. Moreover, it cannot be applied to a
neuron with a very regular spike train (e.g. a stretch receptor). There thus needs to be some
irregularity in the spontaneous activity of the neuron. However, most spontaneously active
neurons have irregular patterns of activity and the trial-to-trial variability decreases when driven
by a stimulus.

4.5. Effects of background noise

In nature, stimuli are often contaminated by unwanted noise. Thus, we have introduced a
simple extension of the measure Ispon that accounts for background noise: Inoise. This measure
could be applied in the context of the aforementioned cocktail party example. Our results show
that, when the stimulus contrast was low, Inoise and Ispon were approximately equal. However,
as stimulus contrast increased, Inoise became higher than Ispon. This was because the spike
train entropy rate in the presence of background noise Hnoise(R) was higher than Hspon(R)

and because the noise entropy rate in the presence of background noise Hnoise(R/S) tended
towards H (R/S) as the signal-to-noise ratio increased. This result might seem surprising at
first. However, we are only calculating the effect of background noise on the spontaneous
activity of a neuron. It has been shown experimentally that an animal could take advantage of
background noise for neural coding prey detection (Levin and Miller 1996, Greenwood et al
2000). The measure Inoise might underlie the means of neural computation used for such a
task. In the electrosensory system, Inoise might be the appropriate measure for the problem
the fish faces when detecting prey in background clutter (e.g. root masses). In the auditory
system, this measure might be appropriate for quantifying the information transmitted by a
spontaneously active neuron about a stimulus in the presence of background noise. However,
we note that this increase might simply be a property of the information measure Ispon or of
the model we use.
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It is important to note that we only considered the case where the background noise was
additive (i.e. the noise was added to the stimulus) and independent of the stimulus. This might
not be the case in every situation (such as noise caused by another fish’s EOD for example).
Furthermore, we assumed that the background noise had a flat power spectrum up to 50 Hz
and had a contrast of 0.01 mV. This will certainly not be true in general. The strength and
frequency content of the background noise will most certainly vary depending on the particular
situation the animal is in.

It is known that there are internal noise sources such as channel and synaptic noise
that contribute to the variability seen in experimental data. Stochastic processes account
for these and other possible noise sources in our model. Such noise sources are responsible
for the irregularity of the spontaneous activity of our model neuron and are present in all our
simulations. As mentioned earlier, some neurons have no or little spontaneous activity. While
Ispon could not be applied to such neurons, Inoise could in principle be applied if the background
noise is sufficiently high so that it might elicit a sufficiently irregular response from that neuron.
The background noise would in this case act as internal noise sources.

4.6. Comparison between Gaussian and natural stimuli

Finally, we discuss the differences between natural and Gaussian stimuli. Unrepeated
presentations of the latter will always elicit a highly variable neural response due to their
high entropy since the Gaussian distribution is the distribution with the highest entropy when
the variance of the distribution is constrained (Cover and Thomas 1991, Rieke et al 1996).
However, natural stimuli seldom obey Gaussian statistics as mentioned earlier. For example,
the SAMs used in our study are not Gaussian. These stimuli have zero entropy as they are
deterministic in nature and contain only a single Fourier component. Thus, it is not practical
to estimate the mutual information rate with Istrong since the entropy rate of the spike train
when stimulated by an unrepeated SAM is actually equal to the noise entropy rate obtained
with that same SAM (i.e. Istrong = 0). The stimulus presented must thus have some irregularity
in order to apply the measure Istrong. The ensemble of SAMs is characterized by the SAM
contrast σSAM and SAM frequency fSAM as well as the probability of occurrence of each SAM.
Although it is much easier to work with the SAM ensemble than the full stimulus ensemble
W , the characterizing of the SAM ensemble would require much work as the probability of
occurrence of each SAM in nature would have to be determined experimentally. However, the
measures IN and Ispon can easily be calculated as they do not depend on the stimulus ensemble.

4.7. An information resonance

By comparing the measures Ispon and Inoise obtained for both low-passed filtered Gaussian
stimuli and the SAMs, we found that the model neuron exhibited a resonance in information
rate when the SAM frequency varied. This resonance can be expected from the combination
of high-pass and low-pass filtering characteristics of the electroreceptor neurons (Hutcheon
and Yarom 2000). It was however only revealed once we used naturalistic stimuli rather than
low-passed filtered Gaussian noise. The reason that low-passed Gaussian noise did not elicit
this resonance is that we are merely adding higher frequency components to the signal as we
increase the cutoff frequency fc. Note however that the resonance might be revealed using
higher cutoff frequencies than the ones used in this study. The responses of a neuron to natural
stimuli can be very different from those to artificial stimuli (Rieke et al 1995, Attias and
Schreiner 1998).
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5. Conclusion

In conclusion, we have shown that different information measures are designed to answer
different questions and thus give different results. Hence, one must thus carefully consider
the measure one uses based on the physiological context. Although the direct method of
calculating mutual information rate makes no assumptions about the neural code (Borst and
Theunissen 1999), the mutual information rate can only be calculated in practice for very
restricted subsets of total stimulus ensemble W . Assumptions must thus be made either in
terms of the stimulus ensemble itself or in terms of calculating the information based on
the no-stimulus ensemble alone. For neurons that exhibit irregular spontaneous activity, Ispon

provides a natural information measure that does not require a complicated stimulus ensemble.
Further, Ispon differs from the Shannon mutual information rate by only a constant: the two
information measures thus behave similarly. The mutual information rate in the presence of
background noise Inoise could also be applied to neurons that are not spontaneously active.
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