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Abstract

We study the one-dimensional normal form of a saddle-node system under the in
uence of additive Gaussian

white noise and a static "bias current" input parameter, a model that can be looked upon as the simplest version

of a type I neuron with stochastic input. This is in contrast with the numerous studies devoted to the noise-driven

leaky integrate-and-�re neuron. We focus on the �ring rate and coeÆcient of variation (CV) of the interspike interval

density, for which scaling relations with respect to the input parameter and noise intensity are derived. Quadrature

formulae for rate and CV are numerically evaluated and compared to numerical simulations of the system and to

various approximation formulae obtained in di�erent limiting cases of the model. We also show that caution must be

used to extend these results to the � neuron model with multiplicative Gaussian white noise. The correspondence

between the �rst passage time statistics for the saddle-node model and the � neuron model is indeed obtained only

in the Stratonovich interpretation of the stochastic � neuron model, while previous results have focused only on the

Ito interpretation. The correct Stratonovich interpretation yields CV's which are still relatively high, although smaller

than in the Ito interpretation; it also produces certain qualitative di�erences, especially at larger noise intensities. Our

analysis provides useful relations for assessing the distance to threshold and the level of synaptic noise in real type I

neurons from their �ring statistics. Extensions and limitations of our analysis for the study of noise-induced �ring in

higher-dimensional type I neuronal models are also discussed.
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1 Introduction

The transition from quiescent to periodic �ring behavior as a bias current increases leads to signi�cant changes in the

dynamics of an excitable system. This transition is characterized by the behavior of the �ring frequency across this

transition. It is possible to divide neurons according to this behavior into type I and type II dynamics. Type I dynamics

exhibit a continuous variation in �ring frequency as a bias parameter (such as an input current) is increased. Dynamically,

such a transition to repetitive �ring is associated with a saddle-node bifurcation. At this bifurcation, a stable and an

unstable �xed point coalesce and disappear, with a stable limit cycle taking their place. In the neural modeling context,

the stable �xed point is associated with the resting potential, while the unstable �xed point (and associated unstable

direction(s) or \unstable manifold" in phase space) is associated with the threshold of the cell. On the other hand, type

II membranes exhibit a �nite non-zero frequency as repetitive �ring begins. Such transitions are associated with Hopf

bifurcations. Some model and experimental systems can exhibit transitions to repetitive �ring via one or the other of

these mechanisms, depending on system parameters.

The relevance of noise-induced �ring in Type I membranes is related to the problem of \large coeÆcients of variation

(CVs)". There has been much e�ort to explain the observed variability in �ring rates in various experimental preparations

and, in fact, much attention devoted to the occurrence of interspike interval histograms (ISIH) with high CVs de�ned as

the ratio of ISIH standard deviation to mean (Wilbur and Rinzel, 1983; Softky and Koch, 1993; Shadlen and Newsome,

1994; Bell et al., 1995; Troyer and Miller, 1997). Gutkin and Ermentrout (1998) have shown using numerical simulations

that large CVs can be obtained from type I dynamics with noise. They used the so-called one-dimensional � neuron

model (Ermentrout, 1996) and compared results from stochastic simulations of this model with those from simulations

of the two-dimensional Morris-Lecar model (Morris and Lecar, 1981; Rinzel and Ermentrout, 1989) that has inspired the

elaboration of the � neuron model. Other researchers (Gang et al., 1993; Rappel and Strogatz, 1994) have also explored

the e�ect of noise on saddle-node bifurcations in a generic dynamical system, while Longtin (1997) has studied the e�ect

of noise on this bifurcation in the Hindmarsh-Rose bursting neuron model and shown how the ISIH's and other �ring

statistics vary with noise strength.

The origin of the high variability seen in certain experiments and in noise-driven models of type I membranes can be

understood from the seminal theoretical work of Sigeti and Horsthemke (1989). They studied how noise can move the

state variable across the unstable �xed point associated with a saddle-node bifurcation. Their analysis was performed on
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a one-dimensional dynamical system known as \the normal form of the saddle-node bifurcation". This system describes

the long-lived dynamics of a (possibly higher-dimensional) system in the vicinity of this bifurcation, all other aspects of

the dynamics having decayed away to zero. More precisely, their analysis was con�ned to the bifurcation point itself,

where the saddle and the node have coalesced into a semi-stable �xed point. In other words, they focused on the normal

form _x = � + x2 with � = 0; they also considered the Adler equation _� = 1� cos �, a variant of this normal form which

agrees with it to second order. In neural terms, that means that the bias current is set right at rheobase.

The analysis of Sigeti and Horsthemke (1989) described how noise pushes solutions over the saddle-node point in terms

of the two �rst moments of the �rst passage time density. While those theoretical/computational studies were carried

out at the bifurcation, our present study aims to explore the vicinity of this bifurcation, thus making it relevant to a

range of experimentally plausible parameters in real neurons. The goal of our paper is to provide analytical insight

into how noise, e.g. of synaptic origin, a�ects the transition to repetitive �ring in type I membranes. We give exact and

simpli�ed approximate expressions for the mean interspike interval (ISI), for the ISI standard deviation, and for coeÆcient

of variation (CV) de�ned as the ratio of standard deviation to mean; these expressions are sought as a function of the

input parameters.

The paper is organized as follows. In section 2.1 we introduce our basic spike generator model, discuss its relation to the

� neuron, and derive some scaling relations for rate and CV with respect to the input parameters. In section 3, we give

exact integral expressions for the �rst two central moments of the interspike interval and derive simple approximations

for various limit cases. The results, i.e. rate and CV as functions of constant input and noise intensity are discussed in

section 4; we also compare results from di�erent versions of the stochastic � model and those from our basic model. In

section 5 our results are summarized and brie
y discussed in a more general context.

2 The model and its basic properties

2.1 Stochastic spike generator model for a type I neuron

Every system that is close to a saddle-node bifurcation will be dominated by the quasi one-dimensional passage through

the region around its �xed point or points. This holds true also for many neurons known as type I neurons and in

particular for neuron models like, for instance, the Morris-Lecar model (Morris and Lecar, 1981). The in
uence of noise
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on such a system is of eminent importance for issues like spike train variability or reliability of signal transmission through

neurons. Moreover, the typical spike train input received by many higher order neurons can be also approximated by

a simple noise process (di�usion approximation, see, for instance, Tuckwell (1988)). The simplest choice for a random

input that still permits an extensive analytical treatment, is an uncorrelated noise, i.e. a white noise1. We allow for a

�nite mean value of the noise that can be looked upon as a separate constant input.

After the usual reduction procedure from the multidimensional dynamics (Ermentrout, 1996; Gutkin and Ermentrout,

1998; Hoppensteadt and Izhikevich, 1997)), the one-dimensional normal form driven by a white noise input reads

_x = � + x2 +
p
2D�(t): (1)

Here time is measured in the typical time scale of the model. The parameterD denotes the noise intensity and the Gaussian

white noise �(t) obeys the correlation function h�(t)�(t + �)i = Æ(�). The parameter � is another input parameter; it is

constant, and can also be thought of as a static or very slowly varying signal. We note that this reduction has assumed

a prior approximation regarding the nature of the noise. If the noise is meant as synaptic input to a cell, this input

modi�es the conductances which multiply the usual "battery" terms (Vrev � V ) in the Hodgkin-Huxley formalism. This

gives rise to multiplicative noise, since the state variable (the voltage) multiplies the noise (the 
uctuating conductance).

The reduction is assumed to take place very near the bifurcation, so that the noise can be made additive (the voltage

is set to a constant in the synaptic battery terms). It is not known generally what e�ect this approximation has on the

dynamics, except right near the bifurcation.

We shall consider in this work a simple spike generator that produces spikes whenever the variable x reaches positive

in�nity. After occurrence of a spike the variable is reset to minus in�nity. The interspike intervals (ISI) are thus

independent realizations of the passage time of variable x from minus to plus in�nity. The presence of the square term

and the white Gaussian noise in eq. (1) ensures that this passage time is �nite (in spite of the in�nite threshold and reset

values) for all values of the input parameter �.

A simulation of the system can, of course, be only performed for �nite initial and threshold points x� and x+, respectively.

1The term \white" refers to the power spectrum of the noise, which is 
at, i.e. contains all frequency (as white light contains all frequencies

of the visible electromagnetic spectrum). A 
at spectrum in turn implies a Æ correlation of the noise (Risken, 1984, see, e.g.), i.e., the process

has no correlations over a �nite time at all.
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Starting at x = x�, the dynamics eq. (1) can be numerically integrated with a suÆciently small time step �t

x(t+�t) = x(t) + ��t+
p
2D�t �t (2)

where the �t values are independent Gaussian random numbers with unit variance (Risken, 1984). The rule for reset and

generation of the i-th �ring time ti is

x(t) = x+ ! ti
:
= t and x(t+) = x�; (3)

i.e., the �ring (spike) times are de�ned as the instants at which x crosses x+; the variable x is reset to x� right after

occurrence of a spike. The points x� and x+ should be chosen suÆciently large and the time step suÆciently small,

such that a further increase or decrease, respectively, does not change the statistics of the measured quantities of interest

signi�cantly. Three example trajectories for di�erent values of � are shown in Fig. 1.
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Figure 1: Trajectories of the model obtained by a simulation of the stochastic di�erential equation eq. (2) with threshold and reset

parameters x� = �100, D = 1, and � = �1; 0; 1 (from top to bottom).

The sequence of �ring times generated by the model (� � � ; ti�1; ti; ti+1; � � �) describes a renewal point process (Cox, 1962),

i.e. subsequent intervals between �ring times, i.e. Ti = ti � ti�1 and Ti+1 = ti+1 � ti are statistically independent

(therefore, we omit in the following the index i). Here, we shall study two basic quantities, namely, the stationary �ring

rate and the coeÆcient of variation.

The stationary �ring rate is given by the inverse of the mean interspike interval hT i (with the brackets standing for an

ensemble average)

r(�;D) =
1

hT i : (4)
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The coeÆcient of variation (CV) is the relative standard deviation of the interspike interval, it is a second order quantity

that measures the variability of spiking and is given by

CV (�;D) =

ph�T 2i
hT i (5)

where h�T 2i = hT 2 � hT i2i stands for the variance.

Before we proceed, we would like to give an instructive mechanical analogy for the dynamics eq. (1). We may associate

a potential with eq. (1) the derivative of which yields the deterministic part of the r.h.s. (the constant has been chosen

to be zero):

V (x) = �x3=3� �x (6)

-2 0 2
x

-4

0

4

V
(x

)

β−1
β=0
β=1

Figure 2: Potential associated with eq. (1) for di�erent values of �.

Depending on the value of � this potential exhibits (1) for � < 0 a minimum and a maximum, (2) for � = 0 a saddle point

or (3) for � > 0 no extrema at all, resulting in quite di�erent statistics of the passage times and thus of the spike train.

In Fig. 2 we show these di�erent shapes that correspond to the following �ring regimes of the type I neuron: (1) � < 0

noise-activated �ring, i.e. the ISI is dominated by the noise-assisted escape from the potential minimum at x = �p� over

the potential barrier at x =
p
�, corresponding to the famous Kramers problem (Kramers, 1940); (2) � = 0 right at the

saddle-node bifurcation, where no �ring occurs without noise but the statistics of interspike intervals (�rst passage time

of particle) is very particular (Sigeti and Horsthemke, 1989); and (3) � > 0 the oscillatory (\running") regime, where the

associated potential has no minimum (\downhill motion").
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2.2 Relation to the � neuron model

The dynamics eq. (1) can be transformed to the so-called � neuron model by the new variable (Ermentrout, 1996)

� = 2 arctan(x) (7)

resulting in a stochastic di�erential equation with multiplicative white noise (i.e., the prefactor of the noise term depends

on the state variable)

_� = (1� cos(�)) + (1 + cos(�))(� +
p
2D�(t)): (8)

For this phase oscillator model, threshold and reset values are at �nite values, namely at �� and �, respectively. The �

model with a white noise input current, however, must be treated with caution. A stochastic di�erential equation with

multiplicative noise is not uniquely determined - it has to be supplemented by an interpretation (so called Ito-Stratonovich

dilemma, see, e.g., Gardiner, 1985). This seems to be paradoxical since the original dynamics eq. (1), which is driven by

additive noise, is non-ambiguous. The resolution of this paradox is given by the fact that the Stratonovich interpretation

is the only interpretation that permits the usual transformation of variables (Gardiner, 1985, p. 100). Since eq. (8)

results from such a transformation (namely, eq. (7)), we have to interpret eq. (8) in Stratonovich's sense. This is also

plausible for another reason: driving currents in real neurons are never white noise but will have a �nite correlation time;

white noise that is thought of as the limit of a \colored" noise with negligible correlation time leads to the Stratonovich

interpretation of a dynamics with multiplicative noise (see, e.g., Risken, 1984, chapter 3.3.3).

In the following, we wish to use a simple Euler integration algorithm (see, e.g., Risken, 1984) which assumes the Ito

interpretation. Thus we must �rst express our Stratonovich stochastic di�erential equation into its corresponding Ito

form. This correspondence preserves the physics of the problem. This Ito equivalent stochastic di�erential equation

eq. (8) has an additional drift term �D sin(�)(1 + cos(�)). The integration scheme analog to eq. (2) then reads

�(t+�t) = �(t) + [(1� cos(�(t))) + (1 + cos(�(t))(� �D sin(�(t)))]�t+
p
2D�t(1 + cos(�(t))�t (9)

where �t are again Gaussian distributed random numbers with unit variance. Note that in (Gutkin and Ermentrout,

1998) the drift term is apparently missing and hence the dynamics has been interpreted in the sense of Ito. This leads to

the following integration scheme

�(t+�t) = �(t) + [(1� cos(�(t))) + �(1 + cos(�(t))]�t+
p
2D�t(1 + cos(�(t))�i; (10)
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which is also the one that could be expected from a straightforward (although inexact) inclusion of Gaussian white noise

in the � neuron dynamics.

Clearly, the di�erence between eq. (10) and eq. (9) vanishes in the weak noise limit since the additional Stratonovich drift

in eq. (9) is proportional to noise intensity D. We will show that simulation of the Stratonovich version indeed yields

the same statistics of interspike intervals as the original dynamics eq. (1) whereas the Ito interpretation eq. (10) of the

� neuron model which was used by Gutkin and Ermentrout (1998) leads to di�erent results in particular at moderate to

large noise intensity.

2.3 Scaling relations

We return now to the original model eq. (1). Therein we have two free parameters � and D. If we properly rescale x and

t it is possible to obtain the same nonlinearities as in eq. (1), except for a new combination of the parameters � and D

(threshold and reset values do not change in any case since they remain at plus and minus in�nity, respectively). This

gives us scaling relations for rate and CV with respect to the input parameters D and �. Moreover, we can eliminate one

of the parameters, although we still have to distinguish between the three di�erent �ring regimes. For � = 0 which has

been treated by Sigeti (1988), i.e., for

_x = x2 +
p
2D�(t): (11)

we choose the new variable and time as

y = x=a; ~t = at (12)

with a arbitrary but positive. This leads to2

_y = y2 +
p
2D=a3�(~t): (13)

With a = D1=3 we can eliminate the noise intensity (Sigeti, 1988). Of course, the moments of ISI will be still rescaled

according to eq. (12), however, the CV which is the relative standard deviation of the ISI, remains the same for all values

of D

CV (� = 0; D) = CV (� = 0; D=a3) ) CV (� = 0; D1) = CV (� = 0; D2): (14)

2Note that �(t=a) =
p
a�(t) which can be seen by considering the correlation function: h�(t=a)�(t0=a)i = Æ([t � t0]=a) = aÆ(t � t0) =

hpa�(t)
p
a�(t0)i.
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The elimination of noise intensity is also possible for � 6= 0. (This fact was also suggested independently by E. Izhikevich,

personal communication). With respect to the approximations we shall derive, it is, however, more convenient to set

a =
pj�j. This yields the following dynamics

_y =
�

j�j + y2 +
q
2D=j�j3=2�(~t) =

8<
:

+1+ y2 +
p
2D=j�j3=2�(~t) ; � > 0

�1 + y2 +
p
2D=j�j3=2�(~t) ; � < 0

(15)

i.e., we obtain the same dynamics with rescaled noise intensity and an input which is either plus or minus one. Thus, to

understand the dynamics of the model, it suÆces to consider the three cases where � = �1 or 0.

Obviously, the new time scale rescales also the moments of the passage time by h ~Tni = j�jn2 hTni. Using this and the

above relations, we �nd the following scaling relations for rate and CV (� 6= 0)

r(�;D) =
p
j�jr(�1; j�j�3=2D) (16)

h�T 2i(�;D) = j�j�1h�T 2i(�1; j�j�3=2D) (17)

CV (�;D) = CV (�1; j�j�3=2D) (18)

where the sign on the right hand side coincides with that of �.

From the �rst equation it can be inferred that for positive input (� > 0) and vanishing noise the rate scales like r � p�.

In the presence of noise an increase in � diminishes the e�ective noise intensity.

The third equation is even more important. The range of possible CV's does not depend on � as long as its sign is �xed.

Plotting the CV as a function of noise intensity results always in the same curve apart from a stretching by j�j�3=2 in

the argument. Furthermore, we see from eq. (18) that the CV in the large noise limit corresponds to the CV at �nite D

but vanishing input, i.e.

lim
D!1

CV (�;D) = lim
D!1

CV (�1; j�j�3=2D)

= lim
�!0

CV (�1; j�j�3=2D) = CV (0; D) (19)

By similar arguments, asymptotic scaling relations for strong noise (or equivalently weak input �) can be derived, given

by

r(�1; D) � A1D
1=3 +B1�D

�1=3 ; D !1 (20)

CV (�1; D) � A2 +B2�D
�2=3 ; D !1: (21)
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In these formulas A1; A2; B1 and B2 denote numerical constants, that will be given below. Small noise intensity will

require higher order terms in � (rate and CV in eq. 20 and eq. (21) diverge for D ! 0 what is not expected from the

biological point of view) and thus the linearity with respect to input depends strongly on the noise level.

3 Exact and approximate expressions for spike rate and CV

3.1 Exact formulae for the �rst two central moments of the interspike interval distribution

The hierarchy of quadrature expressions for the moments of the passage time problem in an arbitrary potential are known

for a long time (Pontryagin et al., 1933). The standard expressions for mean and variance of the �rst passage time

Gardiner (1985) can be somewhat simpli�ed (Lindner, 2002) yielding

hT i =

�
9

D

�1=3
1Z

�1

dx e��x�x
3

xZ
�1

dy e�y+y
3

(22)

h�T 2i =

�
9

D

�2=3
1Z

�1

dx e��x�x
3

1Z
x

dy e��y�y
3

2
4 xZ
�1

dz e�z+z
3

3
5
2

(23)

� =

�
3

D2

�1=3

�

These integrals may be evaluated numerically by standard procedures3. There are, however, a number of cases where

the integrals can be carried out analytically which gives us some additional control over the accuracy of our numerical

integration.

First of all, the mean �rst passage time, i.e. the mean ISI can be expressed by an in�nite sum (Colet et al., 1989) as

follows4

hT i =

�
1

3D

�1=3r
�

3

1X
n=0

(�1)n 2
(2n+1)=3

n!
�

�
2n+ 1

6

� 
�

3

r
3

D2

!n

(24)

Here �(�) denotes the Gamma function (Abramowitz and Stegun, 1970). It should be mentioned that this formula is

especially useful for large noise intensities, whereas in the weak noise limit many terms are required to achieve convergence.

3The in�nite integration boundaries have to replaced by �nite ones that are chosen suÆciently large such that a further increase does not

change the results to within the desired accuracy.
4Note that there are write errors in eqs. (3.6) and (3.7) of (Colet et al., 1989)
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Furthermore, for � = 0 both mean and variance of the ISI can be calculated analytically (see Sigeti, 1988; Sigeti and

Horsthemke, 1989). The result is nice and simple and reads

hT (� = 0)i = [�(1=3)]
2

�
1

3D

�1=3

: (25)

h�T 2(� = 0)i = 1

3
[�(1=3)]

4

�
1

3D

�2=3

=
1

3
hT i2: (26)

The latter equality in eq. (26) implies that, for � = 0, the ratio of variance and mean square of the ISI (and hence also

the CV) is a constant and independent of noise intensity in accordance with eq. (14). Rate and CV of the type I neuron

read in this case

r(� = 0; D) =
1

[�(1=3)]2
(3D)1=3 = 0:201D1=3; CV (� = 0; D) = 1=

p
3 (27)

Since the integral and sum formulas above are not very transparent we shall derive some simpli�cations that apply in

di�erent limit cases: 1) weak noise and positive input (� > 0, oscillatory regime), i.e. limit cycle dynamics weakly

perturbed by noise, 2) weak noise and negative input (� < 0, excitable regime), i.e. excitations are rare and an escape

rate description applies, and 3) weak input or strong noise limit.

3.2 Rate and CV in the oscillatory regime at weak noise

For a strictly monotonously decreasing potential (as in our problem for � > 0), general approximation formulae for the

mean and the variance of the passage time to linear order in D were given by Arecchi and Politi (1980) and yield in our

case

hT i(�1!1) � �=
p
�; (28)

h�T 2i(�1!1) � 3D�

4�5=2
: (29)

There is no linear contribution in D to the mean ISI; the value �=
p
� is clearly the deterministic passage time along the

entire x-axis. This time as well as the variance of the passage time both decrease with increasing �.

For rate and CV we �nd

r �
p
�=�; CV =

r
3D

4�
��3=4 for � � D2=3: (30)

This scaling behavior (independence of mean ISI of D, variance of ISI going as
p
D) resembles that of a perfect integrate-

and-�re (PIF) neuron driven by white noise (see, for instance, Bulsara et al., 1994). Indeed, for weak noise and positive
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input, one may even approximate the PDF of the interspike interval by an inverse Gaussian (i.e. the ISI probability density

function for a perfect integrate-and-�re neuron) - an approach that works rather well and will be presented elsewhere.

3.3 Rate in the excitable regime and weak noise

For � < 0 and weak noise, the passage from minus to plus in�nity is dominated by the escape from the potential minimum

at x� = �p� over the barrier at x+ =
p
�. A standard saddle point approximation of the integral in eq. (22) yields an

exponential �ring rate (Colet et al., 1989)

r =

pj�j
�

exp

�
�4j�j3=2

3D

�
for D � j�j3=2 (31)

which is the Kramers escape rate for the potential eq. (6) in the overdamped case (Kramers, 1940). A similar approxi-

mation of the variance in eq. (23) gives the square of the mean ISI, i.e. such an approach yields a CV of unity equivalent

to the rare-event statistics of a Poisson process.

3.4 Rate and CV in the case of weak input or strong noise

If the input � is weak in amplitude or equivalently the noise intensity is suÆciently strong (j�j � D2=3), we expect that

rate and CV deviate only linearly from the simple expressions in eq. (27).

To �nd this linear expansion for the �ring rate, we keep only the �rst two terms in the sum formula of the mean ISI

eq. (24) and expand the rate with respect to �. This yields after some manipulations

r(� � 1; D) � (3D)1=3

[�(1=3)]2
+

9

8

31=6

�3
[�(2=3)]4 D�1=3 �

= 0:201 D1=3 + 0:147 D�1=3 � (32)

For the CV, the numerical constant, namely the derivative of the CV with respect to �, can be only performed numerically.

We �nd that this derivative is well approximated by 1=4D�2=3, i.e.

CV (� � 1; D) � 1p
3
+

1

4
D�2=3 �

= 0:578 + 0:250 �D�2=3 � (33)

Clearly, eq. (32) and eq. (33) can be not only used in case of a weak input but also regarded as large noise asymptotic.
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4 Results

In the next two sections we discuss rate and coeÆcient of variation as functions of the noise intensity and of the constant

input. In all �gures, lines for � 6= 0 were obtained by numerical evaluation of the quadrature formulae5 eq. (22) and

eq. (23) and insertion into eq. (4) and eq. (5); for � = 0 formula eq. (27) was used. Symbols indicate results of numerical

simulations of the dynamics using reset and absorption points x� = �500, an Euler scheme with �t = 10�3 or �t = 10�4

(latter at large noise intensity). Depending on parameters, up to 105 spikes were used for estimation of the statistics of

the interspike interval. In the left panels of all �gures we compare the numerically evaluated quadrature results and the

numerical simulations - they are in all cases in excellent agreement with each other as it should be. In the right panels

the quadrature results are compared to the various approximations obtained in the previous section.

In the third section we compare rate and CV with simulation results of the � neuron using either the Stratonovich or Ito

interpretation and compare the results to those of Gutkin and Ermentrout (1998).

4.1 Rate and CV as functions of noise intensity

The rate depicted in Fig. 3 behaves at large noise intensity rather independently of the value of �; it is seen to increase

in proportion to D1=3 according to eq. (27). The e�ect of � becomes apparent at small noise intensity, where the rate

(1) saturates if � > 0 (solid line) at the value given by eq. (30), (2) increases like for large noise with a power law for

� = 0 according to eq. (27), or (3) increases following an exponential dependence on inverse noise intensity (Kramers law

eq. (31)) for � < 0.

The approximation eq. (31) for � < 0 is valid only for rather small noise intensity. In contrast, the result from linearization

around � = 0 (eq. (32)) �ts pretty well for moderate to large noise intensity and for both � = 1 or �1. In fact, one may

interpolate between the weak and strong noise approximations without making an appreciable error.

The coeÆcient of variation tends in the strong noise limit to 1=
p
3 as predicted by eq. (19). In the weak noise limit

it decreases either to zero (� > 0) corresponding to a perfectly regular �ring for the oscillatory system in the absence

of noise or tends to one (� < 0), indicating rare spiking with Poisson statistics. The exceptional case � = 0 leads to

CV = 1=
p
3 for all noise intensities. Note that any �nite value of � will lead to one of the other limits if the noise is

5The sum formula eq. (24) showed excellent agreement with the quadrature result, but is not discussed in the following
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Figure 3: Spike rate of neuron vs. noise intensity for the three distinct cases � = �1 or 0. Left: quadrature results compared

to simulations (symbols). Right: quadrature results compared to Kramers rate eq. (31) (dotted line, only for � = �1), and

linearization approximation eq. (32) (thin solid lines).

suÆciently weak. Indeed for vanishing noise, � = 0 can be looked upon as a threshold value, as we will see also later on.
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Figure 4: CoeÆcient of variation vs. noise intensity for the three distinct cases � = �1 or 0. Left: quadrature results compared

to simulations (symbols). Right: quadrature results compared to weak noise expansion for � > 0, i.e., eq. (30) (thin dashed), and

linearization approximation eq. (33) (thin solid lines).

The approximation eq. (30) is shown in Fig. 4 as a dashed line. The \square-root" law describes the true CV up to

D � 0:2 rather well. For a general (positive) value of � the approximation is valid for noise intensities that yield a CV

below 0.25. This can be precisely formulated as a condition between D and �

� >

�
12D

�

�2=3

: (34)

The linearization result shown by thin solid lines in Fig. 4 seems to have an even larger range of validity. For � = �1

one may use the weak-input approximation eq. (33) as a good estimate as long as the CV is below 0.9. For � = 1, the
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approximation coincides with the exact result in line thickness for CVs between 0.5 and 1=
p
3. Via the scaling relation

eq. (18) these estimates can be generalized to arbitrary negative (positive) values of �, respectively since a change in

input rescales only the noise intensity but not the range of CV.

4.2 Rate and CV as functions of the constant input

Since � plays the role of an input, the dependencies of rate and CV upon this parameter are of most interest. We show

these dependencies for di�erent noise intensities, i.e. D = 0:1; 1; or 10 in Fig.5 (rate) and Fig.6 (CV).
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Figure 5: Spike rate of neuron vs. input � for three di�erent noise intensities. Left: quadrature results compared to simulations

(symbols). Right: quadrature results compared to Kramers rate eq. (31) (dotted), linearization approximation eq. (32) (thin solid

lines), and the deterministic rate eq. (30) (thin dashed, only for D = 0:1).

For strong noise, the dependence of the rate on input is rather weak. This can be readily understood: the linear part of

the potential governed by � is of minor importance at large noise, and a potential barrier at negative � is \not seen". The

passage through this region is biased di�usion (governed mainly by the cubic part of the potential that is independent of

�).

Decreasing noise results in an increasing dependence of the rate on input, and for negative � the rate can become arbitrary

low. In the limit of vanishing noise the rate can likewise attain arbitrary low values for positive input - this is one of the

characteristic features of type I neurons (Ermentrout, 1996).

The approximation eq. (31) is shown by dashed lines. While it well describes the data for D = 0:1 it becomes worse with

increasing noise intensity over the range of � shown in Fig. 6. On the contrary, the linearization result agrees best at large

noise intensity - indeed there is no visible di�erence between the quadrature result and the approximation for D = 10. At
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Figure 6: CoeÆcient of variation vs. input � for three di�erent noise intensities. Left: quadrature results compared to simulations

(symbols). Right: quadrature results compared to weak noise expansion for � > 0, i.e., eq. (30) (thin dashed), and linearization

approximation eq. (33) (thin solid lines). The latter coincides with the quadrature result within line thickness for D = 10.

moderate noise intensity (D = 1) the linear behavior is restricted to a much smaller range of �. For small noise intensity

and increasing �, the rate switches very fast from almost zero to a saturation value - a rather nonlinear behavior that is

not well described (or only in a very small range around � = 0) by the linearization approximation eq. (32).

The shape of the CV vs. � curve is almost linear for strong noise (Fig. 6, solid line) as already mentioned by Gutkin and

Ermentrout (1998). Since the quadrature formulae contain always �=D, a linearization of rate and CV with respect to �

is valid for a larger range of � if D is large. Indeed, noise does not only linearize the transfer function (i.e., rate vs input

parameter) but also all other statistical quantities with respect to variations of �. The linear dependence is, however,

changed into a threshold-like dependence for small noise. With a look at the di�erent small noise limits of the CV for

� < 0; � > 0, no other behavior than this threshold behavior is indeed possible.

The approximation according to eq. (30) is shown by thin dashed lines in Fig. 6. It can be used only for the small noise

level D = 0:1 where the CV is below 0.25 and is far o� for larger noise intensities.

4.3 Comparison to simulations of the � neuron model

In section 2.2 we have already derived that the Stratonovich interpretation of the white noise driven � neuron model

eq. (8) is completely equivalent to our basic model eq. (1). That means if we simulate using the scheme eq. (9) we should

exactly obtain the same rate and CV as for the original model. On the contrary, the Ito interpretation of eq. (8) and the

corresponding integration scheme eq. (10) should result in di�erent rate and CV, in particular, at larger noise intensity.

Here we ask whether these di�erences are serious or not. We will compare also to results by Gutkin and Ermentrout
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(1998) who have apparently used the Ito scheme eq. (10) that does not exactly correspond to the original dynamics.
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Figure 7: Firing rate as a function of noise intensity. Theory for the saddle-node system shown by solid lines for di�erent values of

� as indicated; simulation results for the � model in Stratonovich interpretation according to the integration scheme eq. (9) (grey

symbols) and in Ito interpretation according to eq. (10) for � = 1 (dark circles) and for � = �1 (dark squares).

In Fig. 7 the �ring rate is shown as a function of the noise intensity for � = �1 and � = 0. The quadrature result for the

original dynamics eq. (1) is compared to simulation results using the two integration schemes eq. (9) and eq. (10). While

the Stratonovich scheme exactly matches the analytical curves and thereby con�rms our expectation, the rate obtained

by simulating the Ito scheme is below the true rate for moderate to large noise intensities and saturates in the strong

noise limit. Most remarkably, for � = 1 the rate does not seem to depend on noise intensity at all, in marked contrast to

the D1=3 increase of the true rate for strong noise. As expected, both schemes yield the same function in the weak noise

limit where the Stratonovich drift (proportional to noise intensity) becomes negligible.

Fig. 8 shows the CV as a function of noise intensity for the three standard values of �. Here the di�erences between Ito

and Stratonovich interpretations of the � neuron model are more important. The latter yields again perfect agreement

with the theoretical result for the original dynamics. The Ito scheme, in contrast, shows strong deviations for moderate

to large noise intensity. The CV for the oscillatory regime (� = 1) is no longer restricted to (0; 1=
p
3). For both positive

and negative �, the CV is always above the true CV.

Increasing noise even leads to a growth of the CV, such that for � = �1 a minimum in the CV versus noise intensity

curve is seen. Such a minimum is a signature of coherence resonance (Pikovsky and Kurths, 1997) - many excitable (as

opposed to periodically �ring) systems exhibit their most regular spiking (as indicated by a minimal CV) if driven by

a noise with �nite \optimal" intensity. This e�ect is clearly absent for the original dynamics eq. (1). This qualitative

17



di�erence between the Ito and Stratonovich interpretations, in the form of the existence of such a minimum, might be

irrelevant in real type I neurons since the reduction from the multidimensional system to the one-dimensional normal

form becomes somewhat doubtful in the strong noise limit.
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Figure 8: CoeÆcient of variation as a function of noise intensity. Theory for the saddle-node system shown by solid lines for

di�erent values of � as indicated; simulation results for the � model in Stratonovich interpretation according to the integration

scheme eq. (9) (grey symbols) and in Ito interpretation according to eq. (10) for � = 1 (dark circles) and for � = �1 (dark squares).

Gutkin and Ermentrout (1998) showed by means of numerical simulations that the � neuron exhibits (at least for � < 0)

always a high CV close to one. They started as we did with the normal form, derived the equation for the � neuron, but

interpreted this equation apparently in Ito's sense (i.e., integrated eq. (10)). Although their conclusions are qualitatively

correct, we would like to point out a quantitative discrepancy resulting from using the Ito scheme.

In Fig. 6c of (Gutkin and Ermentrout, 1998) the CV is shown as a function of the mean interval, a representation of the

data that is independent of the de�nition of noise intensity (they use a parameter � that is related to the noise intensity

D by � =
p
2D). For a mean ISI ranging from 1 up to 10000, they �nd a CV between 0.75 and 1.1 with a minimal CV

at a small mean ISI (between 1 and 10). Data are pretty noisy, and Gutkin and Ermentrout (1998) do not mention the

apparent minimum of the CV. We may use our data from Fig. 7 and Fig. 8 and also plot a CV vs. mean ISI curve; this is

shown in Fig. 9. Simulating the Ito version of the � model, we recover indeed a high CV and a minimum at a low mean

interval6. In contrast, for the original model of a saddle-node system (theoretical curve, solid line in Fig. 8) as well as for

6We note two discrepancies with the data of Gutkin and Ermentrout (1998): (1) we cannot plot a CV for an interval below hT i = 3:14 since

the rate is limited by the inverse of this value (cf. Fig. 7), whereas in (Gutkin and Ermentrout, 1998) there is one data point for hT i = 1:5;
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Figure 9: CoeÆcient of variation as a function of the mean ISI. Variation of the mean ISI is as in (Gutkin and Ermentrout, 1998)

achieved by changing the noise intensity while keeping �xed � = �1. Theory for the saddle-node system shown by solid line;

simulation results for the � model in Stratonovich interpretation according to the integration scheme eq. (9) (grey) and in Ito

interpretation according to eq. (10) (black).

simulation results from the � model interpreted in Stratonovich's sense we obtain no minimum in the CV and observe

generally a considerable lower CV at small mean intervals. The lower limit is given by the large noise limit of the CV, i.e.

in the excitable regime we have CV > 1=
p
3. In the Stratonovich interpretation of the model as well as in the original

dynamics we can have arbitrary low mean interspike intervals, i.e. arbitrary high �ring rate.

5 Discussion and conclusions

We have considered a simple spike generator model that involves the one-dimensional normal form of a saddle-node

bifurcation and may hence be used to represent a type I neuron. The model seems to be computational simpler than the

equivalent � neuron currently often used in neurocomputational research. Using the spike generator with saddle-node

bifurcation helps, moreover, avoiding the pitfalls associated with using multiplicative white noise as in the � model.

A second advantage of the saddle-node spike generator is that we were able to adopt many useful analytic results for the

passage time problem from the statistical physics literature on a related problem. We discussed the remarkable scaling

behavior of the model, that allows to reduce the number of parameters in the problem. We gave the exact quadrature

(2) the CV we have found in our simulation for � = �1 is always between 0.8 and 1, whereas in (Gutkin and Ermentrout, 1998) this range is

slightly larger (CV 2 (0:75; 1:1)). Either di�erences can be explained by insuÆcient statistics in (Gutkin and Ermentrout, 1998) and possibly

(since there seems to be also a systematic deviation) by a too large time step in the integration procedure. Especially at low mean ISI's (high

noise intensities) we had to use time steps down to �t = 10�4 to achieve independence of the data w.r.t. time step.
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expressions for mean and variance of the ISI and a simple sum formula for the mean ISI. Furthermore, we derived

expressions for simple limiting cases for rate and CV of the model. All results may be useful also for problems involving

networks of type I neurons.

For the problem of high variability of spike trains of cortical neurons one of our conclusions is especially relevant: given

a negative input (� < 0), the CV is restricted to the interval (1=
p
3; 1), it can never be lower than the high noise limit

CV of the model. This stands in marked contrast to the leaky integrate-and-�re model, that can in this regime attain

arbitrary low values of the CV if the input parameter is tuned to a certain small negative value (Lindner, 2002; Lindner

et al., 2002). Although Gutkin and Ermentrout (1998) overestimated the CV with their simulation results, their main

conclusion remains valid: type I neurons stimulated by white Gaussian noise show a high variability for arbitrary but

negative input. Future work will consider a comparison of our results with a two-(or higher-) dimensional dynamics of an

ionic model of a type I neuron, such as Morris-Lecar. We will also consider the theoretical analysis of the phase resetting

curves and the response of the stochastic saddle-node neuron model studied here to periodic and broadband input.
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