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Periodically driven nonlinear oscillators can exhibit a form of phase locking in which a well-defined
feature of the motion occurs near a preferred phase of the stimulus, but a random number of stimulus
cycles are skipped between its occurrences. This feature may be an action potential, or another
crossing by a state variable of some specific value. This behavior can also occur when no apparent
external periodic forcing is present. The phase preference is then measured with respect to a time
scale internal to the system. Models of these behaviors are bneﬂy reviewed, and new mechanisms
are presented that involve the coupling of noise to the equations of motion. Qur study investigates
such stochastic phase locking near bifurcations commonly présent in models of biological
oscillators: (1} a supercritical and (2) a subcritical Hopf bifurcation, and, under autonomous
conditions, near (3) a saddle-node bifurcation, and (4) chaotic behavior. Our results complement
previous studies of aperiodic phase locking in which noise perturbs deterministic phase-locked
motion. In our study however, we emphasize how noise can induce a stochastic phase-locked motion
that does not have a similar deterministic counterpart. Although our study focuses on models. of
excitable and bursiing neurons, our results ‘are applicable to other oscillators, such as those discussed
in the respiratory and cardiac Hteratures. © 1995 American Institute of Physics.

. INTRODUCTION

Biological oscillators exhibit a variety of dynamical be-
haviors that can be accessed experimentally through changes
in the physicochemical parameters describing their internal
and external environments, The oscillation may be endoge-
neous to the system, such as for a pacemaker cell. The sys-
tem may be normally quiescent, but excitable: if sufficiently
perturbed, it will become activated and then return to its
resting state. The system may exhibit bursting, in which pe-
riods of activity, such as neural firing or the secretion of
insulin from pancreanc beta cells, alternate with periods of
quiescence. The same system may exhibit all these behaviors
in different parameter ranges. Periodic forcing causes a com-
petition between time scales of the system proper and that of
the stimulation. Simple or complex phase-locked motion, or
chaotic motion can then ensue. The mathematical models for
these systems undergo bifurcations as parameters are varied,
and one can associate these qualitative changes in motion
with those observed experimentally. Further, in the context
of dynamical diseases, bifurcations can correlate with the
onset of pathology. The goal of these comparisons between
data and models is to help build mathematical models with
better predictive capabilities. This is possible because certain
behaviors and bifurcations are characteristic signatures of
certain kinds of nonlinearities.

Noise is traditionally seen as a nuisance that blurs or
smears out known patterns of behavior, We like to think that,
were the noise to disappear, the predictable pure pattern
would be restored. While it is true that this can happen, it is
also true that noise can move bifurcation points, or induce
dynamical behaviors with no deterministic counterpart.
These noise-induced transitions' are especially important
near bifurcation points, Noise is often present in large
amounts in physiological systems, but even in minute
amounts it can significantly alter the observed behaviors
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. (on Vﬂ Tt is nseful then to view noise sources as 1mnm‘tant

dynamical components that must be appropriately coupled to
the other equations of motion. Further, the characteristics of
noise such as probability density, intensity, and bandwidth
must be viewed as parameters on equal footmg with the de-
terministic parameters of the system.

The present study discusses mechanisms by which noise
can produce stochastic phase locking in autonomous and pe-
riodically forced systems. This pattein is found in the vicin-
ity of bifurcations where different dynamical behaviors co-
exist, as well as of bifurcations where they do not coexist.
Bifurcation points and multistability are crucial concepts of
dynamical diseases, thus the relevance of our study to this
topic. Each mechanism studied here is found to have its own
signature in the distribution of times between the events of
interest. Other signatures, such as those associated with the
return maps of interevent times, will be discussed elsewhere.
We illustrate our findings on various neuron models in the
vicinity of bifurcations commonly found in models of bio-
logical oscillators.

A. Stochastic phase locking or “skipping”

Many types of neurons exhibit stochastic phase locking
or ““skipping.” Figure 1 is one p0351b1e simulation of the
behavior of a skipping neuron using the F1tzhugh Nagumo
model (FHN) in the excitable regime (see Sec. III). The
membrane voltage oscillates in response to a periodic cur-
rent. Broadband noise is also driving this system. Near the
peak of this noisy osc111at10n actlon potentials or “spikes”
are sometimes seen. The neuron may skip an integer number
of cycles of the oscillation before spiking again. The multi-
modal histogram of interspike intervals (ISIH), seen in Fig.
1(B), is a characteristic signature of skipping. Because of the
phase preference, the interspike intervals (ISIs} are grouped
at integer multiples of the oscillation period T,. The ISIH
also contains information on the amplitude and frequency of
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FIG. 1. Time seties {upper panel) from low-frequency forcing of the

Fitzhugh—Nagumo equation with periodic and stochastic forcing [Eqs. (1)-
(3)]. The noiseless solution is a fixed point; an increase in by brings on a
limit cycle through a superceitical Hopf bifurcation. The ISIH peaks (lower
panel) are at integer multiples of the driving period. Parameters are @ =0.5,
b=0.12, d=1.0, r=0.1, §=0.75, and =0.005. Solutions for all the figures
were obtained using a fixed step fourth-order Runge—Kuita method. The
integration time step here is 0.005; 1000 steps were discarded -as transients.
A spike is counted when the positive going sclution crosses the threshold
value of 0.5. The ISIH was constructed from five rezlizations of 5X10° time
steps.

the oscillation.? The peak widths are proportional to the
noise intensity D). The rate of decay of the peak heights
depends sensitively on £ and the forcing amplitude. Also,
when this amplitude increases, the 1SIs get shorter, since the
voltage spends more time near the spiking threshold during
each stimulus cycle. The first peak in the ISIH is not always
the highest, nor is it necessarily present, especially if the
frequency is high (see Fig. 2). Spike generation is, in fact,
determined by the amount and duration of the depolarization
produced at the axon hillock.

Origins of skipping may be arbitrarily divided into two
categories: autonomous and nonautonomous. The nonauto-
nomous case applies when there is pericdic forcing. This has
been reported in a variety of systems, such as auditory
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fibers,”* mammalian mechanoreceptor afferents,” visual cor-
tical neurons,® and crayfish mechanoreceptors.” When the
driving frequency is not too high, the peaks of these ISIHs
are “tunable,” lining up at the integer multiples of the driv-
ing period. In the autonomous case, there is no obvious ex-
ternal periodic forcing, aithough firings may be synchronized
to an internal (autonomous) oscillation of the membrane po--
tential. Examples include shark multimodal sensory cells®
and neurons in the cat lateral geniculate nucleus.” All these
ISIHs are robust features of the neurons under nonpathologi-
cal conditions.

Various forms of stochastic phase locking are also seen
in the populations of cells involved in the generation of the

cardiac and respiratory rhythms, especially in diseased states
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chanical ventilation, the number of phrenic bursts per venti-
lator cycle can alternate randomly between one and two. This
would produce a histogram of intervals between phrenic
bursts, with one peak at half the pump period and another at
the pump period. The mechanisms studied in this paper may
shed more light on such behaviors.

In our study, the stimulus and noise are modeled as cur-
rents that cause voltage fluctuations. Our results can be un-
derstood by knowing how the noiseless system bifurcates
when a constant bias current increases. In the case of FHN
(Sec. ITI), there is a supercritical Hopf bifurcation at a current
value Iy, beyond which the neuron fires repetitively. If the
total bias current is not constant, but rather fluctuates due to
periodic and stochastic forcing then there exist time intervals
during which the total bias exceeds /. Thus, depending on
the activation rate constants and the distance between the
voltage and the spiking threshold when /> Iy, the excitable
s system can produce one or more spikes. '

In Sec. II we review earlier modeling studies of skipping
behavior. In Sec. III we study skipping in the FHN model
near a supercritical Hopf bifurcation, and examine the tun-
ability of the ISIH. In Sec. IV we look at skipping near the
subcritical Hopf bifurcation in the Morris—Lecar equations.
Skipping without periodic forcing is studied in the autono-
mous Hindmarsh—-Rose medel in Sec. V. Skipping in the
vicinity of a period-doubling route to chaos is studied in the
Plant model of slow-wave bursting in Sec. VL. In Sec. VII we
briefly discuss the relevance of stochastic resonance (SR)
when skipping is present, The paper concludes in Sec. VIIL

Il. PREVIOUS MODELS OF SKIPPING

A simple model for skipping is simply the convelution
of a Gaussian process, which accounts for the width of the
peaks, and of a discrete Poisson process, which accounts for
the skipping. To our knowledge, the earliest model of skip-
ping is the integrate-and-fire (IF) model of Gerstein and
Mandelbrot.* It accounted for the skipping response of pri-
mary auditory neurons to ““clicks” of sound (short pulses of
broadband noise). In this model, the periodic stimulus modu-
lates the bias of the random walk of the voltage toward the
threshold. Deletion models'® have also been proposed for
multimodal ISIHs such as those of Ref. 9. These models are
based on the effect of individual synaptic events, and tend to
produce multimodal ISIHs whose structure degrades with in-
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creasing ISI. Glass er al!! have reported that a simple IF
oscillator with periodic input and noise can have patterns
with irregular skipped beats. Descriptions of skipping based
on stochastic point processes (in which there are no dynami-
cal variables) can be found, in the context of auditory data, in
Ref. 13. Dynamical modeling of skipping in auditory neu-
rons has been done using stochastic Fitzhugh— Nagumo
equatlonst4 and stochastic Hodgkin—Huxley-type equa-
tions.!> Modeling of skipping in the context of bistability,
exdtabﬂny, and stochastic resonance (see Sec. VII) has been
reported in Refs. 16-18, and 2.

Skipping can occur in completely deterministic models
as well, when the dynamics are chaotic. This is the case for
the forced Duffing equation.'® The histogram of times be-
tween successive crossings from a given well to the other
well in this double-well motion exhibits peaks near but not
exactly at intéger multiples of the driving period. The align-
ment with the multiples of T, gets better at larger ISIs. This
is probably due to inertia and finite damping, since with in-
finite damping the peaks do line up.2 While this example is
not a good model for an excitable neuron, it indicates what to
expect when a bistable neural system with higher-order dy-
namics is periodically forced.

lll. THE FITZHUGH-NAGUMO EQUATIONS AND
TUNABILITY

The skipping neuron can often be “tuned” to the exter-
nal frenuen.cv This is illustrated in Fig. 1, which is a simu-

lation of the stochastic Fitzhugh—Nagumo model19 in the ex-
citable regime:

dv
e —=v(v—a){l—v)—w-+ n(t),

2 (1)
dw o
?l?=v—dw-(b+r sin St), 2)
= AN, (3)

where (&(£))=0 and {(£(£)&(s))=2D 8(t—s). We chose the
exponentially correlated Ornstein—Uhlenbeck process (i)
for the noise throughout this paper, because its variance DA
and correlation time Tc=}\"1 can be controlled. 'The power
spectrum of 7{¢) is flat up to the cutoff frequency A. The
ISIHs are constructed from many different realizations of the
stochastic process in Eqgs. (1) ( } (using a different seed for
each realization). Equations (1)—{(2) are taken from Ref. 19,
in which the periodic forcing is on the slow variable. The
ensuing behavior is qualitatively similar to that obtained by
forcing the fast variable if the frequency is less than the
relaxation rate of the fast variable e.

The periodic forcing alone cannot produce spikes for the
parameters in Fig. 1. If the bias & were increased, the model
would bifurcate to a limit cycle of period 0.77 through a
supercritical Hopf bifurcation. The effect of this limit cycle
can already be seen with low-frequency forcing, as in Fig.
1{A), where two spikes ride one of the crests of the low-
frequency modulation around the fixed point. Such multiple
firings produce the peak at small ISIs. At higher forcing fre-
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FIG. 2. Effect of phase locking on tunability: high-frequency forcing near a
supereritical Hopf bifurcation. Multimedal ISIHs from the numerical inte-
gration of the FHN system with periodic and stochastic forcing [Eqs. (1)}~
(3)]. The simulation parameters are as in Fig. 1, except for r and 8. The left
panels, for a forcing amplitude r=0.2 characterize the noise-induced limit
cycle. The right panels, for »=0.22, characterize the perturbed limit cycle,
which has period 1.675 s when D=0. This is twice the forcihg period of
0.837 s (8=7.5), i.e, the solution is a 2:1 phase locking. The model is also
tunable, but the first peak is supprcssed at low nmse

quencies, the time scale of the limit cycle and that of the
forcing can compete, leading to phase-locked spiking
solutions."**!3 Note that phase-locked solutions can also
arise even if the nonforced system is excitable.” Figure 2
shows two sets of ISIHs as the noise is increased. The fre-
quency is ten times greater than in Fig. 1. The deterministic
motion underlying the right panels is a 2:1 phase-locked so-
lution (one spike for every two cycles of the stimulus), while
that underlying the left panels is a fixed point modulated by
the small periodic forcing (i.e., no spiking). With noise, there
is not much difference between these sub- and superthresh-
old cases, except at zero noise, where the former gives an
empty ISTH and the latter a sharp peak at the period [.675 of
the 2:1 phase-locked solution (not shown).

IV. MORRIS-LECAR EQUATIONS

The Morris~Lecar equations (see Ref. 21) are a hybrid

Af tha Tadal-in_Havlay and FHN aanatinne Wea ctndy tha
01 e NUUERII—UAICY dill DUy Lualivis, wwe study e

behavior, with stochastic and periodic forcing, of the fast
voltage variable v(¢) in the vicinity of a subcritical Hopf
bifurcation, where a fixed pomt and limit cycle (repetitive
firing) coexist. Without noise (D=0) and periodic forcing
(r=0), v(t) goes to the fixed point or travels along the limit
cycle, depending on the initial conditions. With .D>0, the
behaviors shown in Figs. 3(B)-3(D) do not depend on the
initial conditions. Rather than choose a low fréquency, for
which the behavior is similar to that in Fig. 1, we focus on
the vicinity of the phase-locked regime. For r=0.015 and
D=0, the motion is phase locked with a very large period
[Fig. 3(A)]. The presence of noise [Figs. 3(B}-3(C)] deletes
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FIG. 3. Subthreshold forcing near a subcritical Hopf bifurcation: time series and ISIHs for the Morris—Lecar equations, The current 7=0.25 is chosen, such
that, in the absence of periodic and stochastic forcing, a limit cycle LC1 (repetitive firing) and a fixed point coexist. (A) A periodic phase-locked solution of
high period (perhaps chaotic} when D =0 for forcing amplitude r=0.015 and angular frequency §=0.2 {period is 31.4). (B)~(C) ISIH and time series for the
same parameters as in (A), but D=107*, The ISIH is multimodal, with peaks at integer multiples of 31.4. The small peak at 20.9 corresponds to the period
of the limit cycle LC1. (D) Here r=0.01 and =0.4 (forcing period 15.7). The underlying noiseless motion is a 5:3 solution of period 78.5. The peaks at 17.1,
30.15,43.2, and 58.3 are near the multiples of 15.7, but appear perturbed by LC1. Parametess are as in Ref. 21: v =~0.01, 5,=0.15, v,=0, v,=03, g, = .1,
£x=20,2,=0.5, vg=—07,v,=-0.5, and $=2. Integration time step is 0.05, 7.=0.01, and the spiking threshold is 0.1. Integration involves 100 realizations

of 220 000 time steps for 8=0.2 and 50 realizations for §=0.4.

some spikes and induces others, the result being the familiar
multimodal ISIH with peaks at multiples of the driving pe-
riod Ty, There is also another peak in the flank of the T
peak, due to the presence of the limit cycle. In other words,
sometimes the forcing brings this system into its limit cycle
behavior, which may then impose its own time scale on the
spiking. When r=0.01, the noiseless motion is a small
modulation of the fixed point at the same frequency (; the
ISIH with noise is like Fig. 3(B) but the limit cycle peak is
more prominent and the perturbed phase-locked motion less
prominent (not shown). If the frequency is then doubled [Fig.
3(D)], tunability is more degraded, presumably due to close-
ness of the limit cycle and forcing periods. '

V. HINDMARSH--ROSE MODEL OF BURSTING

In this and the next section, we investigate how skipping
can arise in the presence of noise, but without periodic
stimulation. This possibility is examined in one of many
models of bursting neurons: the Hindmarsh—Rose model:*

dx 5 )

o, Sy—ax +bx*+I—z+ n(e), (4)
dy

—(E=c—dx2—y, (3)
dz

i rls{x—x*)—z]. {6)

This model is studied with stochastic forcing of the fast vari-
able x(r). A transition from one to three singular points oc-
curs through a saddle-node bifurcation as I increases. At the
same time, the system goes from fixed point to bursting to
pacemaker activity. Bursting occurs for a given 7 because the
adaptation current z causes a modulation of the nullclines,
such that either one or three singular points coexist. The
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FIG. 4. Skipping near a saddle-node bifurcation in the Hindmarsh~Rose madel Egs. (4}-(6) of bursting behavior, Here there is only stochastic forcing. With
D=0, the solution is a fixed point with complex eigenvalues having a negative real part. This explains the small oscillations seen (when D>0) between the
larger waves. (A)—~(B) Time series and corresponding ISIH for the noise level D=dnz=7.5X 1074, (C)—(D) The same as in (A)—(B), but D=2.5X107%, The
peaks are at integer multiples of the period of the nearby deterministic bursting pattern. For large D, counts are concentrated in the first mode. The counts in
the first bins are due to the short ISIs inside the bursts. The maximum of these bins is indicated above the panel. Parameters are a=1.0, b=3, c =1, d=35,s=4,
r=0.001, I=1,25, and x*=-16, The integration time step is 0.05, and the spike threshold is 1.0. Five realizations of 5.5X10% time steps were used to

construct the ISIHs.

skipping patierns seen in Fig. 4 are possible when I is set at
a value near but below that for the onset of bursting. The
noise induces skipping between active and quiescent phases
of the bursting pattern. Since the induced behavior is burst-
ing, multiple spikes appear on top of each wave that has
reached the threshold. The small oscillations seen between
the bursts are a consequence of the complex eigenvalues
with negative real part characterizing the behavior around the
fixed point near —1.4. An increase in noise concentrates the
probability into the first bins. This autonomous system thus
behaves in many ways like the periodically driven systems
above.

VI. PLANT’S “SLOW-WAVE BURSTER” MODEL

Chaos can appear in models for bursting cells. In the
chaotic regime, the ISIs are distributed continuously rather
than discretely. A bit of noise can smooth out the ISIH struc-
ture into a multimodal ISIH. This is illustrated here in Plant’s
model® for slow-wave bursting, originally proposed to ex-
plain the firing behavior of the R-15 pacemaker neuron of
Aplysia. Its autonomous five-dimensional dynamics are sig-
nificantly more complicated than the other models studied up
to now in this paper. The equations and parameters used can
be found in Ref. 23. Again, the fast variable is forced by 2

CHAOS, Vol. 5, No. 1, 1995
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FIG. 5. Stochastic forcing near a chaotic regime: skipping in the Plant model of slow-wave bursting. Stochastic forcing with D=7.5%107% is present. (A)~(B)
Time series and ISIH for the applied current /,,,-0.06. When D=0, the solution is a period-doubled version of a solution having only one spike per burst.
When D>0, the ISIH peaks are at integer multiples of the slow-wave underlying the bursting behavior. (C}-(D) The same as (A)—(B), but Lopp=0.07. The
noiseless solution here appears chaotic to the accuracy of our simulation (in double precision). Again the ISIH is multimodal, as in {B). Notice the counts in

TOY, !

the first bins, cotresponding as in Fig. 4 to the I8Is in the brief active phases induced by the noise. Parameters are as in Ref. 23; 7,=0.1, and the spike
threshold is 10. Ten realizations of 4% 10° integration steps {minus 5 10* transient steps) were used, with a time step of 0.5.

bias current and noise. The bursting mechanism here is dif-
ferent from that of the Hindmarsh—Rose model. But these
systems are similar in that they can exhibit simple limit cycle
motion, the time scale of which governs the skipping. Skip-
ping can arise when the parameters are chosen such that the
motion belongs to a period-doubling route to chaos. For
L4pp=0.06 and D=0, the ISIH has two close sharp peaks
characteristic of the first period-doubled solution, As D in-
creases (not shown), the peaks broaden, then merge; then
peaks at integer multiples of this peak appear, and the num-
ber of short ISIs increases. At higher values of D, the prob-
ability bunches up into the first peak {which is also wider).
This beavhior is similar to that of the noisy FHN system with
low-frequency forcing, when the underlying deterministic
behavior is a limit cycle {(i.e., as in Fig. 1, but with a larger
value of b). We find also that if /,,, changes to 0.07, skipping

is again seen, but the peaks are wider. Abrupt transitions to

other ISIHs can be seen as 7,,, increases beyond 0.07.

V. STOCHASTIC RESONANCE

All the systems studied above may, due to their stochas-
tic switching properties, exhibit stochastic resonance (SR).
This is an nonlinear effect in which the presence of a deter-
ministic oscillation in the state variable is enhanced by noise.
This presence can be measured, e.g., by the power spectrum
of V(¢), from which a signal-to-noise ratio (SNR) can be
extracted. As I} increases from zero, the SNR goes through a

. I 3% 1 : 1
maximum (at the “resonance”), leading to the paradoxical

notion that an increase in noise can increase the SNR. This is
possible if the deterministic forcing cannot by itself induce
the neuron to fire (i.e., it is subthreshold). Hence, without

~_CHAOS, Vol. 5, No. 1, 1985 ) ) ) )
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noise, no firings occur. As I increases, more firings occur,
and they are more correlated with the small driving signal
over a certain range of D. If the noise becomes too strong,
this correlation decreases. Skipping is not SR, nor is it a
sufficient condition for SR. SR has been suggested to occur
in real neurons in Ref. 24; it was studied in the context of
excitable models in Refs. 17 and 18, and was shown to occur
experimentally in Ref. 7.

Viil. CONCLUSION

Skipping can occur with or without external periedic
forcing, depending on the regimes of neural activity that can
be “accessed” through noise (fixed point, excitable, pace-
maker, and bursting). It is somewhat striking that it appears
in the vicinity of so many noisy bifurcations; this may un-
derlie its ubiquity in neurcbiology. The best way to uncover
its mechanism in an experimental setting is probably to vary
system parameters (as is the case to demonstrate chaos in any
systern). The different ISIHs thus obtained are characteristic
of the underlying dynamics. For example, as the applied cur-
rent is changed in Plant’s model, the ISIH structure can
change drastically. This is not the case for the FHN model
near a Hopf bifurcation.

Our study of skipping was not intended to be compre-
hensive. It is, first of all, limited to situations where the noise
and deterministic oscillation bring the soma voltage closer to
the spiking threshold. Spikes can also arise out of postinhibi-
tory rebound, and skipping may occur when rebound events
are deleted from a periodic pattern of such events. And pace-
maker activity at a noisy inhibitory synapse?® can produce
skipping. The insights our study offers into skipping will
potentially be useful for the interpretation of this and other
physiological data. For example, in the cardiac arrhythmia
known as concealed bigeminy,'? there is a putative 2:1 en-
trainment between the sinus and ectopic rhythms. Fluctua-
tions in refractory time are thought to cause skipping in the
ectopic rhythm. The results of Secs. III-1V indicate that this
could also occur if the origin of the 2:1 entrainment were
noise induced rather than deterministic. The study of sto-
chastic phase locking has!! and will continue to benefit from
the powerful concepts found in the theory of circle maps.
Moreover, we suspect there exists a deeper connection be-
tween resonances in circle maps and stochastic resonance, as
both involve the interaction of specific time scales.
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