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ABSTRACT 

Simple periodic as well as more complex behaviors are shown to occur in the human 

pupil light reflex with piecewise constant mixed and delayed feedback. The output of an 

infrared video pupillometer, an analog voltage proportional to pupil area, is processed by 

an electronic comparator which synthesizes the piecewise constant feedback. The system is 

described by a nonlinear delay differential equation which has been previously shown 

analytically to exhibit periodic and aperiodic behavior. After parameter estimation from 

the data, it is found that the observed simple periodic behaviors correlate well with the 

model behaviors, Although more complex behavior can be observed for parameter values 

which gave complicated dynamics in the model, there is not a one-to-one correspondence 

between the observed and predicted results. The effect of uncontrollable fluctuations in the 

parameters on the observability of complex dynamics in this system is discussed. 

INTRODUCTION 

The control of a physiological variable x is often given by an equation of 
the form 

dx . 
x = x = production - destruction 

= g( x( I - 7)) - lxx, (1) 

*This research was partially supported by the Natural Science and Engineering Re- 

search Council of Canada (NSERC) through Grant A-0091. A.L. was supported by an 

NSERC postgraduate scholarship. 

‘Address correspondence to Dr. John G. Milton, Department of Physiology, McGill 

University, McIntyre Medical Sciences Building, 3655 Drummond Street, Montreal, P.Q. 

H3G 1Y6. 

MATHEMATICAL BIOSCIENCES 90:183-199 (1988) 

QElsevier Science Publishing Co., Inc., 1988 

52 Vanderbilt Ave., New York, NY 10017 

183 

0025-5564/88/$03.50 



184 ANDRE LONGTIN AND JOHN G. MILTON 

where g(x( t - T)) is a nonlinear function of x(t - T) and a is a positive 
constant [3, 5, 12-151. The time delay, 7, is an essential feature of these 
control systems and arises, for example, as the time required for a cell to 
mature, or the time required for a nerve impulse to travel along an axon and 
across a synapse, or the time for hormonal signals to travel from their site of 
production to target organs by diffusion and/or passage through the circula- 

tion. 
For many physiological control systems, g(x(t - T)) is a “humped” 

function of x(t - T), i.e., maximal production occurs at some intermediate 
value of x( t - T), and thus the control system displays both positive and 
negative feedback characteristics [5, 7, 11, 141. Analytic and computer 
simulation studies have shown that for various choices of “humped” g( x( t 
- T)), Equation (1) can exhibit a rich variety of periodic and aperiodic 
(“chaotic”) dynamics [3, 5, 7, 121. Moreover, it has been shown that for 
biologically appropriate choices of g( t - 7) including estimation of the 
relevant parameters from published data, there is qualitative agreement 
between the observed and predicted dynamics [3, 121. 

We are not aware of a previous report of an experimental study of the 
dynamics seen in a physiological control system with delayed mixed feed- 
back. The control of pupil area by the light reflex has been extensively 
studied as an example of a neurological control system [19-231, and from an 
experimental point of view, this system offers the advantages that it is 
readily accessible and can be monitored and manipulated by noninvasive 
techniques. Here we study a hybrid experimental system for the control of 
the human pupil light reflex which incorporates piecewise constant delayed 
and mixed feedback (Figures 1 and 2). For Equation (1) with this kind of 

A(t -7) 

FIG. 1. Piecewise constant delayed-feedback nonlinearity used in this study. The 

function f is defined in Equation (2). T1 and T, are, respectively, the lower and higher 

thresholds which are set by the investigator. 
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FIG. 2. Schematic of the instrumentation used for investigating the pupil light reflex 

with delayed mixed feedback. The area comparator described in “Methods” utilizes 

operational-amplifier circuitry. Although the Hamamatsu Iriscorder C-2515 is a binocular 

apparatus, we used it in the monocular mode, as this was more convenient in that only one 

camera had to be focused and aligned. 

feedback, it has been possible to analytically prove the existence of stable 
equilibria, of stable and unstable limit cycles, and of infinitely many periodic 
solutions and uncountably many aperiodic, mixing solutions for defined 
regions in parameter space [6, 71. With the simple form of the delayed mixed 
feedback we have chosen, it is possible to compute the solutions exactly and 
thus to compare the observed and predicted dynamics for different parame- 
ter sets. Moreover we are able to quantify the intrinsic variability of certain 
parameters and thereby address the issue of the observability of complex 
dynamics in this system. 

METHODS 

Subjects were healthy males and females (n = 10; ages 20-45 years) who 
were free from both ocular disease and disorders known to affect autonomic 
function. All measurements were performed in subjects who had been dark 
adapted for at least 15 minutes in a room lit only by a dim red light. During 
pupillary measurements, the subjects were instructed to refrain from blink- 
ing as much as possible and to fix their gaze on the target appearing on the 
viewing screen (a dim green asterisk); some subjects performed mental tasks 
(e.g. multiplication tables) to minimize spontaneous fluctuations in pupil 
area c‘hippus”) [l]. 
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Measurements of pupil area were made with an infrared videopupillome- 
ter (Hamamatsu Binocular Iriscorder C2515) [9]. The video cameras (Figure 
2) are of the charge-coupled-device (CCD) type, and their output is analyzed 
by a frame grabber which counts the number of pixels above a slice level 
(“gray level”) adjusted by the experimenter to discriminate between pupil 
and iris. The output of the frame grabber is an analog voltage proportional 
to the pupil area (sampling rate 60 Hz). Light sources were light emitting 
diodes (peak wavelength of 605 nm). All experiments were done under 
“open”-loop conditions [23] by focusing a 1.2-mm beam of light on the 
center of the pupil (initial diameter 5-7 mm). Under these conditions the iris 
does not alter the beam of light falling on the retina. 

The variable x in Equation (1) can be identified with the area of the iris, 
which is regulated by the autonomic nervous system (parasympathetic and 
sympathetic), and the function f( x( t - T)) can be identified with the feed- 
back of the iris on the light flux to the retina. Since the pupillometer 
measures pupil area and not iris area, Equation (1) has to be rewritten to 
take account of the inverse relationship between iris size x and pupil size A. 
Defining A, to be the maximal size of iris plus pupil and bf( A( t - T)) = 

g( A, - A( t - T)), we can write A(t) = A, - x(t), and Equation (1) becomes 

k+aA=-j?f(A(t-7))-I+aA,,, (2) 

where p is the intensity of the light pulse, and OL is the reciprocal of the time 
constant for pupillary movements and is different for constriction (cw,) and 
dilation (ad). In going from Equation (1) to Equation (2) we have added a 
forcing term I to represent the background illumination of the retina. It is 
important to note that with the choice of f( A(t - T)) shown in Figure 1, 
Equation (2) can be solved exactly, without resorting to numerical integra- 
tion methods, the initial condition being specified by a function defined on 
the interval ( - r,O). 

In our experiments the measured pupil area is used to control the timing 
and duration of light pulses falling on the retina by modifying a technique 
originally developed by Stark [20]. The control system for the pupil area, 
given by Equation (2), was constructed by opening the feedback loop and 
inserting the piecewise constant feedback function (Figure 1) in the follow- 
ing way. The analog output proportional to the pupil area, A, was compared 
to the two adjustable thresholds Ti and T2 using operational-amplifier 
circuitry. The output logic level goes HIGH when Tl -c A -c T2 and LOW 

otherwise. The HIGH level drives the light on, and illuminates the retina in 
open loop. This circuitry is included in Figure 2 as the box labeled “Area 
Comparator.” In our experiments, the pupil being stimulated was also the 
one being measured. 

The solution of Equation (2) requires the specification of seven parame- 
ters: the time delay; the time constants for constriction and dilation, t, and 
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fd; the asymptotic values the pupil area tends to when the light is ON and 

OFF, A,,, A,,,; and the lower and upper thresholds, T,, T,. The value of A, 
does not affect the qualitative behavior of Equation (2) and was taken to be 
100 mm. Of the remaining parameters, T,, T2 are fixed by the investigator, 
and the others are estimated experimentally. The neural time delay for the 
response of the pupil to light was determined as the time between the onset 
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FIG. 3. Plot of the logarithm of the change in pupil area A, as a function of time 

following a single OS-second light pulse. The changes in pupil area have been normalized 

to the total change in pupil area that occurs for constriction and dilation respectively. For 

pupillaty constriction the initial value of A, was measured at the onset of constriction t = i, 

(see insert), and the asymptote, A,,, was the minimum area obtained with a 2-second light 

pulse. For pupillary dilation the initial value of A, was measured at the onset of dilation 

I = i,. In principle, A,,, is equal to the initial pupil area (as is true for the example given in 

the insertion), but typically, following a OS-second light pulse the pupil did not dilate back 

to its initial value suggesting, that some adaptation had occurred. In these cases, A,,, was 

reestimated from the time course of the dilation. 
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of the light pulse and the onset of the pupillary constriction, using a 
computer program incorporated in the Iriscorder C2515. This neural time 
delay was assumed to be the same as the time between the cessation of the 
light pulse and the onset of dilation. The time required for the signal from 
the video camera to reach the light emitting diode contributed an additional 
lOO-msec delay. The time delay r in Equation (2) is equal to the neural time 
delay plus the machine delay. The time constants t, and t, were measured 
as the e-l times for a pupil receiving a single 0.5-second light pulse (Figure 
3). The values of the asymptotes are given by 

The asymptotes were measured as follows: Let A, be the pupil area at some 
time when the pupil is constricting; then 

A,=A+A,,, (5) 

where A is a pupil area to be determined. At time t, = cu;’ later, the pupil 
area is A, and we can write 

A, = e- ‘A + A,, . (6) 

By combining Equations (5) and (6), 

42 - 4 
A = 0.632 ’ (7) 

and A, can be calculated from Equation (5). The value of Aoff can be 
evaluated in a similar manner when the pupil is dilating. 

RESULTS 

Figure 3 (insert) shows the change in pupil diameter as a function of time 
following a single 0.5-second light pulse. After a delay of 292+ 10 msec 
(mean? SD for 10 subjects), the pupil undergoes a rapid constriction fol- 
lowed by a slower dilation. The time courses for constriction and dilation are 
both reasonably well fitted by a single exponential decay: t, = 0.4kO.l 
seconds; t, = 1.4* 0.4 seconds for 5 subjects. These observations suggest 
that for the hybrid system incorporating the choice of f(A(t - T)) shown in 
Figure 1, Equation (2) will provide a good description of the response of the 
pupil to light. 
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FIG. 4. Example of pupil cycling in a one-threshold experiment (case 1). Simple 

periodic behavior (referred to as type 1 in Figure 5) is initiated at the left by lowering Ti to 

the level indicated. Above the data, we have shown the sequence of light pulses seen by the 

retina. In the experiment (top graph) the light turns on (off) 100 msec after the pupil area 

crosses the threshold area r,. This time delay represents the machine delay. The model 

solution was obtained by using the following parameters: r = 0.385 set, (Y, = 2.50 set-l, 

ad =1.25 set-‘, A,, = 14.2 mm’, Aoff = 28.7 mm’, r, = 23.8 mm’, T2 = 70.0 mm’. The 

values of A,,, A,, represent the average of the values obtained for each cycle (see Figure 

8). Initial pupil area is 34 mm’. 

0 2 4 6 8 10 

TIME (sec.) 

CASEl: A,,<TI<A,pfiT2 

Figure 4 shows the behavior of pupil area when the lower threshold Tl is 
chosen to be between the asymptotes and also the upper threshold T, is 
greater than the upper asymptote A,,. Under these conditions, pupil area 
undergoes repetitive constrictions and dilations, the light being turned on 
whenever the pupil area A is greater than Tl. The period of these oscillations 
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is the time between successive pupillary constrictions and is a function of the 
values of A,,, Aoff, the time constants, and the total time delay T (the 
intrinsic neural time plus that of the electronic feedback). The mean period 
of pupil cycling can be varied from 1 to 8 seconds by changing Tr and T 
(data not shown). We have found that the observed mean period over this 
range agrees with that predicted by Equation (2) to within 20% (typically 
better than 10%) (Longtin and Milton, in preparation). 

CASE 2: A,, c Tl c T2 i A,,, 

Figure 5 gives a representative bifurcation diagram for the calculated 
solution of Equation (2) over the parameter space spanned by (T,, T2). Our 
computer simulations indicate that for the delay present in the system 
(380-450 msec), most regions of this subspace correspond to stable periodic 
behavior; however, in a narrow band (labeled C in Figure 5) solutions of 
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FIG. 5. Dynamic picture in a region of parameter space spanned by the thresholds Tl 

and T, (note that Tl i T2). The numbers labeling the different regions correspond to the 

number of light pulses per period in the exact solutions of Equation (2). Only the 

low-periodicity regions are indicated. All of the more complicated solutions belong to 

the region marked C. Note that the solution in the narrow region marked 2 is qualitatively 

different from the one marked 2. Parameter values are r = 0.425 set, a, = 4.00 set-‘, 

ad =1.429 set-‘, A,, =15.0 mmr, A,,, = 22.0 mma. 
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different periodicities are in close proximity and aperiodic (“chaotic”) 
solutions occur. For simplicity we have represented the dynamics by the 
number of light pulses per periodic cycle. Although the solutions within each 
region have the same qualitative features, i.e. number of light pulses per 
period, they do not necessarily have the same period. The region labeled 0 
corresponds to solutions where the pupil area dilates asymptotically to Aoff. 
The region labeled 1 corresponds to results of the type shown in Figure 4, i.e. 
one light pulse per cycle. 

Next to region 1 is a region labeled 2, corresponding to two light pulses 
per cycle. Figure 6 compares the observed and predicted dynamics for a 

Observed 

LIGHT On 
off nr no no m no nr nl 

h 

.Tl 

2 4 6 8 10 

TIME (sec.) 

Model 

LIGHT 
I mu_nu_nu_nu_fu_~ 

I ’ 

0 2 4 6 8 10 

TIME (sec.) 

FIG. 6. Example of a solution characteristic of region 2, in which the retina sees a 

double pulse of light in each cycle. The model prediction is given in the lower half of the 

figure. Parameter values are r = 0.425 set, n, = 4.00 set-‘, ad =1.429 sect’, T1 =1X.2 

mm2, T2 =19.2 mm2, A,, =13.8 mm2, A,,, = 21.3 mm2. The averaged values of the 
asymptotes were determined as in Figure 4. 
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choice of Ti and T, within this region. For solutions of this type a smaller 
pupillary constriction-dilation change occurs in the trough of the larger one. 

As for the dynamics observed in region 1, there is good agreement between 
theory and experiment. It should be noted that the transition 1 + 2 corre- 
sponds to a bifurcation in Equation (2), but that it is not a period-doubling 
bifurcation, since little change in period occurs. There is also another region 
in which there are two light pulses per cycle, labeled as 2. Solutions in this 
region have the smaller pupillary constriction-dilation change occurring on 
the peak of the larger one. We have not observed solutions of this type. 

Close to region 2 there are smaller regions containing more complex 
dynamics, i.e. regions 4, 5, and C. The period varies continuously in each of 
these regions. The boundary between regions 2 and 5 corresponds to a 
period-doubling bifurcation, but the boundary between regions 4 and 5 does 
not. Additional period doublings have been shown to occur in region C. 

In Figure 7 we show the observed oscillations in pupil area in an 
experiment in which the lower threshold Tl was held constant and the upper 
threshold T, was adjusted to a value which produces a region-5 solution of 
Equation (2). With this choice of Tl and T2 more complex oscillations are 

obtained than were observed in region 2 [compare Figures 6 and 7(b)]. 
Figure 7(c) shows the solution of Equation (2) for the parameters estimated 
from the data in Figure 7(b). Although there is not a one-to-one correspon- 
dence between the observed and predicted oscillations, there are nonetheless 
some similarities. The region-5 solution shows a recurring pattern of a large 
pupil dilation-constriction, followed by a smaller one, then another larger 
one followed by two smaller ones. A similar pattern in the successive 
amplitudes is seen during the first 7 seconds of the observed oscillation 
[Figure 7(b)]. The period of this recurrence in the successive amplitudes of 
the observed oscillations over the first seven seconds is = 3.6 seconds, which 

is = 2.2 times the period of the corresponding region-l oscillation shown in 
Figure 7(a). This observation offers support for the possibility that the 
observed oscillation is, at least transiently, in a region of parameter space 
associated with a period doubling, i.e. region 5, or more complex. 

We next explored the solutions of Equation (2) in the neighborhood of 
the region-5 solution shown in Figure (7~) to see if better agreement with the 
observed oscillation could be obtained. Figure 7(d) shows a solution of 
Equation (2) which is closer to the observed oscillation over the first 7 
seconds. This solution was obtained by increasing the parameter Aoff by 
only 5%. The period of this solution is = 2.1 times that of the corresponding 

region-l solution (i.e. the solution with the same Tl). These observations 
emphasize the sensitivity of the solutions of Equation (2) to small fluctua- 
tions in the control parameters. 

Even more complicated oscillations are observed when the thresholds are 
chosen to give solutions in region C (data not shown). 
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FIG. 7. Experimentally observed pupil oscillations near a period-doubling bifurcation. 

(a) shows the pupil oscillation obtained when TI = 18.5 mm and T, = 40 m&, and (b) 

shows the oscillation obtained when 7” is lowered to 19.5 mm and Tl is held constant. (c) 

shows the solution of Equation (2) for the parameters estimated from (b): T = 0.425 set, 

(II,. = 4.0 set-‘, CQ = 1.429 set-‘, A,, = 16.0 m&, A,,, = 22.0 mm*. (d) shows a solution of 
Equation (2) using the same parameters as used for (c) except that A,,, was increased to 

23.05 m&. 
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“NOISE” AND OBSERVABILITY 

It is possible that the lack of agreement between the solutions of Equation 
(2) and the observed complex oscillations [compare Figure 7(b) and (c)] may 
have arisen because of uncontrollable fluctuations in certain of the control 
parameters describing the pupil’s response to light [compare Figure 7(c) and 
(d)]. Here we examine this possibility. 

We assumed that the only parameters that changed in our experiments 
were the values of the asymptotes (see Methods and Discussion). Support for 
this assumption is given in Figure 8. In Figure 8(b) we plot the values of the 
asymptotes as a function of the ith cycle for the data shown in Figure 4, and 
in Figure 8(a) we compare the measured period for each cycle with the 
period predicted from Equation (2) using the corresponding values of 

1 3 5 7 9 11 13 15 

i-th Interval 

FIG. 8. (a) Comparison of the measured (0) and predicted (0) cycle times for the 

data given in Figure 4. (b) The predicted cycle times have been calculated from Equation 

(2) using the appropriate values of the asymptotes and represent the steady-state period. 

The estimated error in the asymptotes was 0.5 mn?. 
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FIG. 9. Dynamical picture in a region of parameter space spanned by the asymptotes 

A,, and A,,,. The labeling is the same as in Figure 5. Parameter values are r = 0.425 set, 

(I, = 4.00 set-l, ad = 1.429 set-‘. The values of the asymptotes in the region labeled a (0) 

were measured for the oscillation shown in Figure 6, and those in the region labeled b (A) 

have been measured for the oscillations shown in Figure 7(b). The dynamic pictures for u 

and b were sufficiently close to warrant the use of the same diagram to display the 

variability of the asymptotes. The estimated error in measuring the asymptotes was 0.5 

mm2. 

the asymptotes. In this manner it can be seen that the variations in period 
are largely accounted for by the variations in the asymptotes. 

Figure 9 shows a region of parameter space spanned by (A,,,A,rr) in 
which T, and T, are fixed at the values used to obtain the type-2 oscillations 
shown in Figure 6 and the oscillations in Figure 7. In this parameter space, 
we have plotted the measured values for the asymptotes for each successive 
cycle for these oscillations-respectively, area a and area b. It is clear that 
our ability to observe oscillations which resemble the type-2 solutions of 
Equation (2) is due to the fact that the variations in the asymptotes are not 
large enough to go outside region 2 in parameter space. On the other hand, it 
is not surprising that we were not able to obtain agreement between our 
model and the observations in Figure 7(b), since the fluctuations in the 
values of the asymptotes overlap several regions in this parameter space. 
Presumably the experimentally observed oscillations shown in Figure 7(b) 
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represent a mixture of solutions from these adjacent regions in parameter 
space and transients. 

DISCUSSION 

We have studied the dynamics of a hybrid system for the control of the 
human pupil light reflex possessing mixed delayed feedback, and compared 
the observed with the predicted dynamics. The piecewise constant delayed 
mixed feedback function shown in Figure 1 was chosen because it has the 
advantage of being well characterized analytically [6-71, all the relevant 
parameters can be directly estimated from the experimental data, and the 
corresponding solutions of the model can be computed exactly. It must be 
emphasized that the solutions of this model [i.e. the solutions of Equation 
(2)] are solutions of an autonomous delay differential equation and not the 
response to external periodic forcing. 

We observed a rich variety of dynamics, including no oscillation (region 
0), simple limit-cycle oscillations (regions 1 and 2), and more complex 

oscillations [Figure 7(b)]. There was quantitative agreement between the 
observed oscillations and those predicted by Equation (2) in region 1, and 
good qualitative agreement with the model in region 2. The model also 
correctly predicted the parameter ranges over which more complicated 
dynamics are observed experimentally. 

However, for the more complex oscillations there is not good agreement 
between the observed pupillary dynamics and those predicted by Equation 
(2). We suggest that these discrepancies arise because of unmodeled fluctua- 
tions in certain of the parameters which describe the pupil’s response to 
light. As the oscillations become more and more complicated in the model, 
the corresponding regions in parameter space become smaller and smaller 
(see Figures 5 and 9). Eventually the region in parameter space occupied by 
the variability of these parameters becomes large relative to the size of the 
region over which a particular type of oscillation occurs. This is reflected 
experimentally by a solution which combines the dynamics observed in 
neighboring regions of parameter space as well as transients [solutions of 
Equation (2) often show long transients before settling on a periodic cycle]. 
Although in other physiological [4] and physical [2, 10, 18, 241 systems it has 
been possible to observe more bifurcations than we observe here, the 
inherent noise in the system eventually prevents the observation of the 

predicted dynamics [8, 171. 
There are five parameters in Equation (2) which can undergo changes in 

our experiments: the time delay (T), the rate constants for constriction and 
dilation ((T=, ad), and the asymptotes (A,,, A,,,). We assume that the only 
parameters which changed in our experiments were the values of the asymp- 
totes. The main rationale for this assumption is the observation that it 
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permitted good agreement between experiment and theory for the region-l 
and -2 solutions with all values of the parameters being measured from the 
data (Figures 4 and 6). In contrast, when we assumed that the only 
parameters which changed were the values of the rate constants, there was 
no agreement between the model and any of the observed oscillations. 
Finally, computations showed that the observed variations in the intrinsic 
neural delay (k 30 msec) were not large enough to significantly influence the 
predicted dynamics. Although these observations do not eliminate the possi- 
bility that these latter parameters have also changed during our experiments, 
they do suggest that the most significant changes in the parameters affecting 
the dynamical behavior of our system occur in the asymptotes. 

There are a number of factors which contribute to the changes in the 
values of the asymptotes. A major influence is the adaptation of the retina to 
the average light level (ambient light plus the repetitive light pulses during 
pupil cycling) [19-201. As the pupil cycle time is decreased from 7 to 1 
seconds, the fraction of time that the light is on increases from 0.01 to 0.40 
(data not shown). Thus under conditions of more rapid cycling the pupil will 
tend to be smaller (since the average light level is greater). In addition, there 
are other retinal factors such as photoreceptor bleaching, as well as the 
influence of other neural systems on the pupil light reflex such as the 
ascending reticular activating system (occurring in particular at the level of 
the Edinger-Westphal nucleus), the accommodation reflex, and the resting 
activity of the optic nerve [16]. 

It is possible that by constructing a model incorporating all of the 
influences on the values of the asymptotes, it might be possible to predict the 
observed dynamics in more detail. In particular, extension of our model to at 
least a second-order delay differential equation would be required to 
eliminate the slope discontinuities present in Equation (2). However, besides 
rendering the exact computation of orbits and estimation of relevant param- 
eters more difficult, we expect that as the predicted dynamics become more 
complex, the region in parameter space over which they are observed will 
become narrower until the remaining “ unmodeled” noise becomes larger 

than these regions, thus rendering the dynamics unobservable. Although it is 
clear that such an approach would narrow the region in this extended 
parameter space over which unmodeled parameter variability occurs, it 
remains to be seen whether this narrowing would be great enough to allow 
observation of the more complex predicted dynamics. 

“Noisy” variations are characteristically seen in physiological data. The 
fact that Equation (1) can admit very complicated dynamics suggests the 
possibility that some of this noise may be of deterministic origin [3, 7, 12, 
151. However, it is clear that in any real physical or biological system there 
will also be some degree of stochasticity, for example in the form of thermal 
noise, and that deterministic chaos, if present at all, will be superposed on 
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this background signal. In our system, complicated “noisy” solutions are 
observed even for parameter choices which do not correspond to chaotic 
solutions of Equation (2). We feel that these noisy behaviors reflect a 
combination of different types of solutions in adjacent regions of parameter 
space and transients resulting from the perturbations introduced by the 
noisy parameters. 
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