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1. Introduction 

The neurologist is often faced with patients who exhibit a bewildering array of 
abnormal oscillations and complex rhythms that pose therapeutic problems. These 
problems take many forms (Mackey & Milton, 1987; Glass & Mackey, 1988). Most 
commonly there is an appearance of an oscillation in a neurological control system 
not normally characterized by a rhythmic process. Examples include ankle clonus 
in patients with corticospinal tract disease (Dimitrijevic et al., 1978), various move- 
ment disorders (e.g. essential and Parkinson's tremors, Marsden, 1984a, b), and the 
abnormal paroxysmal oscillations in the discharges of neurons which are associated 
with seizures (Ayala et aL, 1973). There can be a qualitative change in the oscillations 
produced by an already rhythmic process, for example, gait abnormalities (Beuter 
& Garfinkel, 1985), Cheyne-Stokes respiration (Cherniack & Longobardo, 1973), 
altered sleep-wake cycles (Wehr et al., 1982) and rapid cycling manic-depressive 
illness (Wehr & Goodwin, 1983). In addition, there can be the disappearance of a 
rhythmic process as occurs in patients with depression in whom there is the disap- 
pearance of the diurnal rhythm in cortisol secretion (Hollister et aL, 1980). Finally, 
some clinical events recur in a seemingly random fashion, for example, seizures in 
adult epileptics (Milton et al., 1987). 

The traditional explanation given by the neurologist is to relate the appearance 
of abnormal dynamical behaviors to pathological processes which destroy or modify 
neural control mechanisms. The abnormal breathing patterns (Plum & Posner, 1980) 
and rhythmic movements of the palate (Lapresle & Hamida, 1970) which can occur 
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following certain brainstem strokes are examples of oscillations that arise because 
neural control mechanisms which normally suppress their appearance have been 
destroyed. On the other hand, the appearance of nystagmus and clonus in patients 
with multiple sclerosis are likely related to modifications in intact control mechan- 
isms related to axonal demyelination (Rasminsky, 1984). However, in the majority 
of neural diseases there is both a destruction of neural pathways and modifications 
in those that remain. For example in Parkinson's disease there is both a loss of 
dopaminergic neurons in the basal ganglia and a depletion of dopamine in the 
remaining neurons (Alvord, 1968). Three approaches have been used to treat 
abnormal dynamical behaviors: (i) replacement of the deficient neurotransmitter 
(as in L-DOPA treatment in Parkinson's disease, Barbeau, 1969); (ii) modification 
of the balance between the remaining excitatory and inhibitory control mechanisms 
(as in pharmacological treatment of epilepsy, Woodbury et  al., 1982); and (iii) 
destruction of one or more of the remaining control loops,(as in surgical treatment 
of various movement disorders, Molina-Negro, 1979). 

In recent years a reinterpretation of the origin of the abnormal dynamical behaviors 
in neurological patients has been suggested (Mackey & Glass, 1977; Kaczmarek & 
Babloyantz, 1977; Glass & Mackey, 1979; an der Heiden et  al., 1981; Guevara, et  
al., 1983; Chay, 1984; King et  al., 1984; Mackey & an der Heiden, 1984; Chay & 
Rinzel, 1985; Aihara & Matsumoto, 1986; Ermentrout, 1986; Mackey & Milton, 
1987). These proposals have been based on studies of mathematical models of 
physiological systems in which qualitative changes in dynamics ("bifurcations") 
occur as certain parameters are varied. These behaviors range from stable equilibria 
to simple and complex periodic oscillations to aperiodic fluctuations ("chaotic" in 
the current vernacular). In this context, the abnormal oscillations in neurological 
patients arise because of either alterations in certain control parameters (such as 
neural conduction time, the number of membrane receptor~ and their affinities) 
and/or in the structure of the system. 

In clinical situations, it is frequently difficult to identify the mechanism(s) leading 
to the observed dynamical abnormality and the abnormalities themselves are often 
difficult to characterize. For example, in epilepsy alterations in neural feedback are 
believed to be important in the genesis of seizure activity (Ayala et  al., 1973; Gloor, 
1979). The fact that seizures can be triggered by fever, hyperventilation, photic 
stimulation and sleep deprivation (Aicardi, 1986; Niedermeyer & Lopes de Silva, 
1987) shows that paroxysmal changes in neural dynamics can be brought about by 
transient alterations in physiological parameters. Anticonvulsant therapies attempt 
to prevent or abort seizure activity by modifying neural inhibitory and excitatory 
mechanisms either by the use of medications (Woodbury et  al., 1982) or biofeedback 
(Sterman & Friar, 1972; Forster, 1975) techniques. However, neither the identity of 
the control mechanism nor the altered physiological parameter are known. Charac- 
terization of an epileptic abnormality is based on clinical history and measurement 
of the electro-encephalogram (EEG) (Browne & Feldman, 1983; Aicardi, 1986). 
Although typically the recognition of a seizure either clinically or with the EEG 
poses little problem, even to an untrained person (Fig. 1), interpretation of the EEG 
changes in neuro-physiological terms is difficult since each EEG electrode simul- 
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FIG. 1. Electroencephalographic recording (EEG) of a train of generalized 3 Hz spike and wave 
discharges in patient with a history of absence attacks and generalized tonie-clonic seizures. Note the 
abrupt change in the frequency and morphology of the EEG that is associated with the onset and offset 
of this train. (From Spehlmann, 1985, with permission from the publisher.) 

taneously records from - 6  cm 2 of brain surface and hence millions of  neurons 
(Cooper  et  al., 1965). 

In section 2 we describe quantitative measures used to characterize complex 
neural dynamics in neural systems. Using these measures it is difficult to determine 
underlying mechanisms. In section 3 we describe experimental models that have 
been used to induce bifurcations in neural control systems by changing control 
functions. In some situations, the observed dynamics are quite complex but an 
underlying theory can be developed. The relevance of  these observations for future 
work is discussed in section 4. 

2. Characterization of  Neural Time Series 

Traditional approaches to the quantitative analysis of  neural time series are based 
on Fourier methods in which the time series is decomposed into its frequency 
components  and the results displayed in the form of  a power spectrum (Lopes da 
Silva, 1987). Mea.surements of  the power spectra have been widely used, for example, 
to assess the background activity of  the EEG (Duffy et  al. 1979), to evaluate changes 
in the EEG during sleep (Dumermuth et  al., 1972; Mendelson et  al., 1987) and 
carotid endarterectomy (Blume & Sharbrough, 1987), and to describe the frequency 
content of  various tremors (Halliday & Redfearn, 1956; Gresty & Findley, 1984), 
speech and auditory signals (Michelsen, 1985) and the electrical activity of  muscle 
(Lindstrom & Magnusson, 1977). 

In recent years, a new vocabulary and mathematical artillery has insinuated itself 
into the analysis of  complex dynamical behaviours. These techniques are based on 
recent advances in nonlinear dynamics. Here we briefly indicate how two measures, 
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the Liapunov number and the dimension, are currently being used to characterize 
neural time series. 

T h e  L iapunov  number  measures the rate of divergence of solutions of deterministic 
dynamical systems for initial conditions that are very close (Wolf et al., 1985). If, 
in such a system, the largest Liapunov number is negative, then there is either a 
stable steady state or a stable limit cycle. On the other hand, a positive Liapunov 
number is often taken as a definition of chaos (Wolf et al., 1985). Positive Liapunov 
numbers have been observed experimentally for neural spike trains recorded from 
deafferented buccal-cerebral neurons and motor neurons of the cerebro-pleural 
ganglion of the sea slug (Mpitsos et al., 1988) and for the human EEG recorded 
under a variety of conditions (Babloyantz et al., 1985; Babloyantz & Destrexhe, 
1986; Mayer-Kress & Holzfuss, 1987). Interpretation of these observations as 
evidence for determinstic chaos is not yet possible since the Liapunov number is 
positive for purely random processes such as a random walk. Further, the algorithm 
commonly used to compute Liapunov numbers (Wolf et al., 1985) has many short- 
comings; for example, it can give erroneous results in the presence of large time 
derivatives (Vastano & Kostelich, 1986; Wolf & Vastano, 1986). 

T h e  d imens ion  is a quantity which is used to characterize the geometry of the 
steady state dynamics produced by deterministic systems (Russell et al., 1980). For 
example, the dimension of an equilibrium point is 0 and that of a periodic orbit is 
1. Various computer algorithms have been developed in an attempt to estimate the 
dimension when time series are very complex (for a review see Mayer-Kress, 1988). 
Applications of these algorithms to the study of neural dynamics typically yield 
noninteger values for the dimension. A geometrical object with a noninteger 
dimension is called a fractal (Mandelbrot, 1977). Fractal dimensions have been 
calculated for a variety of neural time series including finger tapping of parkinsonian 
and normal subjects (Kraus et aL, 1987), neural spike trains recorded from sea slugs 
(Mpitsos et aL, 1988) and the pre- and post-central gyri of monkeys (Rapp et al., 
1985), the EEG recorded from the olfactory bulb of rodents (Skarda & Freeman, 
1987), and the human EEG under a variety of conditions (Babloyantz et al., 1985; 
Albano et al., 1986; Babloyantz, 1986; Babloyantz & Destrexhe, 1986, 1987; Layne 
et al., 1986; Rapp et al., 1986; Mayer-Kress & Layne, 1987; Mayer-Kress & Holzfuss, 
1987; Watt & Hameroff, 1987). Although some chaotic systems (i.e. systems with a 
positive Liapunov number) have fractal dimensions, not all fractals are generated 
by chaos and not all chaotic systems are fractal (Grebogi et al., 1984). There are a 
number of well recognized limitations associated with the computer algorithms used 
to estimate the dimension, e.g. the sensitivity of the algorithm to the number of data 
points, sampling interval and high derivatives; the effect of electronic filtering of 
the time series to remove artifact on the calculation of the dimension; and the 
stationarity of the time series (Caswell & Yorke, 1986; Layne et al., 1986; Albano 
et al., 1987; Kostelich & Swinney, 1987; Mayer-Kress, 1988; Mees et al., 1988). 
Consequently, the relevance of the observations of a fractal dimension to the 
identification of chaotic dynamics is obscure at best. 

Clinical interpretation of the EEG requires that attention to be given to the 
morphology, frequency and distribution of the various waveforms (Spehlmann, 
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1985; Niedermeyer & Lopes da Silva, 1987). However, in some applications a 
detailed reading of the EEG is not required since the only interest is to detect 
whether gross changes have occurred. An example is the use of the EEG to monitor 
carotid endarterectomy procedures (Blume & Sharbrough, 1987). Since the 
dimension in principle reduces the EEG to a single number, it has been suggested 
that the dimension may be useful to characterize changes in the morphology and 
frequency of waveforms during various surgical procedures (Layne et al., 1986; 
Mayer-Kress & Layne, 1987; Mayer-Kress & Holzfuss, 1987). This is an intriguing 
possibility, but at present suitable high speed computers for the rapid calculation 
of the dimension are not available in most clinical settings and progress is slow. 

Power spectra, Liapunov numbers and dimension provide descriptive measure- 
ments of time series. These quantities do not provide direct insight into the mechan- 
isms which produce the measured time series. For example, the question as to 
whether the human EEG is chaotic during a seizure avoids the much more important 
question as to which neural inhibitory or excitatory mechanism(s) are actually 
involved in producing a seizure. Certainly one does not need to calculate the 
dimension of the EEG to determine if a seizure has occurred; this is usually obvious 
(Fig. 1). At present the mathematical properties of deterministic equations necessary 
for the production of chaotic dynamics are being uncovered (Guckenheimer & 
Holmes, 1983; Lasota & Mackey, 1985; Devaney, 1986). However, the identity of 
the neural mechanisms which are capable of generating chaotic signals, if they exist 
at all, are not known. Indeed, the complex neural time series measured experi- 
mentally may be chaotic; may arise from the interaction of several independent 
oscillators (e.g. quasi-periodicity); may reflect stochastic noise; or may reflect some 
combination of these possibilities. Clearly what is needed are methods to unravel 
the origins of these time signals. 

3. Inducing Bifurcations in Neural Dynamics 

A direct approach for studying bifurcations in neural dynamics is to experimentally 
induce changes in known parameters in neural control mechanisms. Most experi- 
ments of this type have been performed in invertebrate and animal preparations. 
Examples include (i) the generation of a variety of complex oscillations in the 
membrane potential of isolated invertebrate neurons by altering the frequency and 
amplitude of periodic electrical stimulation (Aihara & Matsumoto, 1987; Everson, 
1987; Hayashi & Ishizuka, 1987; Matsumoto et aL, 1987) and by blocking K ÷ 
channels with 4-aminopyridine (Holden et al., 1982); and (ii) production of changes 
in breathing patterns in animals by either increasing the circulatory delay between 
the brain and lung (Guyton et al., 1956) or by altering the frequency of mechanical 
ventilation in anesthestized animals (Petrillo & Glass, 1984; Petrillo et al., 1983) 
and humans (Graves et al., 1986). 

Although the observation of abnormal dynamic behaviors in humans with neuro- 
logical disease suggests that bifurcations can occur in human neural dynamics, there 
has been a paucity of human models in which it has been possible to directly assess 
the dynamics which arise from parameter manipulation. The strategies which have 
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been employed involve either manipulation of a time delay in a sensory feedback 
loop or of the gain in a feedback loop. Experiments in which a variable time delay 
has been inserted into a sensory feedback loop have typically focussed on a variety 
of motor tasks. Examples include the introduction of delayed auditory feedback 
causing stuttering in normal individuals (Lee, 1950, 1951) and of delayed visual 
feedback leading to poor hand writing (Smith, 1962; Smith et al., 1960) and altered 
performance in tracking tasks (Merton et ai., 1967; Glass et al., 1988). 

Experiments in which the gain of a feedback loop has been manipulated have 
essentially been limited to the visual system. Examples include (i) the production 
of limit cycle oscillations in the visual smooth pursuit system by increasing the gain 
of the horizontal retinal feedback gain (Scotto & Oliva, 1984); (ii) "high gain" 
oscillations in pupil area, i.e. pupil cycling, induced by focussing a narrow light 
beam at the pupillary margin (Stern, 1944; Miller & Thompson, 1978); and (iii) 
simpler and complex oscillations in pupil area which occur when the pupil light 
reflex is "clamped" with external feedback (Stark, 1962; Longtin & Milton, 1988; 
Milton et ai., 1988; Reulen et ai., 1988). 

In the remainder of this section we will discuss recent work in our laboratories 
involving experiments in which altered feedback has been introduced into two 
different situations: (i) the clamped pupil light reflex, and (ii) a visually guided 
motor tracking task. 

3.1. B I F U R C A T I O N S  I N  T H E  C L A M P E D  P U P I L  L I G H T  R E F L E X  

Studies of the pupil light reflex play an important role in current investigations 
of the properties of human neural feedback mechanisms (Stark, 1959, 1984). This 
reflex is a delayed negative feedback neural control mechanism which regulates the 
retinal light flux (equal to the light intensity multiplied by the pupil area) by changing 
the pupil area. The time delay, r, or pupil latency is -300  msec (Milton et al., 1988). 
Oscillations in pupil area with a period T, where 2~" < T < 4~-, are predicted to occur 
once the gain and/or • in the feedback loop become sufficiently large (Stark, 1959, 
1962; Stark & Cornsweet, 1958; Longtin & Milton, in press). In the language of 
dynamical systems, the onset of the oscillations coincide with a supercritical Hopf  
bifurcation (Longtin & Milton, in press). 

Direct experimental verification of the above predictions has been facilitated by 
the development of techniques to clamp the pupil light reflex (Stark, 1962; Longtin 
& Milton, 1988; Milton et al., 1988; Reulen et al., 1988). Clamping refers to a 
technique in which the feedback loop is first "opened" by focussing a small light 
beam onto the center of the pupil in order to circumvent the shading effects of the 
iris on the retina (Stark & Sherman, 1957). The feedback loop is then reclosed with 
an electronically constructed circuit, or clamping box, which relates measured 
changes in pupil area to changes in retinal illumination. By appropriate design of 
the clamping box, the reflex can be made unstable and the types of dynamical 
behaviors explored in a precisely controllable manner. With this technique it has 
been possible to gradually increase the gain in the feedback loop and verify that 
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oscillations occur once the gain becomes sutticiently large (Stark, 1962; Reulen et 
al., 1988). 

A simple design of the clamping box is shown in Fig. 2(a). This has been referred 
to as piecewise constant negative feedback since once pupil area exceeds an adjust- 
able area threshold, 01, the light is turned on and the pupil will then become smaller 
(Milton et al., 1988; Milton & Longtin, unpublished results). Piecewise constant 
negative feedback is an idealization of the traditional technique of producing pupil 
cycling by focussing a narrow light beam at the pupillary margin, but affords better 
control (Milton et al., 1988). Measurements of pupil cycling are important as a 
clinical test for detecting pathology within the reflex arc (Stern, 1944; Miller & 
Thompson, 1978; Milton et al., 1988). This observation has provided a major impetus 
for obtaining analytic insight into the properties of the oscillations in pupil area 
that occur under conditions of negative feedback. 

Figure 2 shows the results of an experiment with piecewise constant negative 
feedback. Provided that z > 0 (which is always true), the condition for the onset of 
the oscillation is simply that O~ be less than the initial pupil area (Longtin & Milton, 
1988; Milton et al., 1988). As is shown the period and the amplitude of the oscillations 
depends on the value of 6t relative to the initial pupil area [compare Figs 2(c-f)] 
and the total time delay (equal to the pupil latency plus the machine delay) [compare 
Figs 2(f) and (g)]. 

The changes in pupil area, A, that occur under conditions of external piecewise 
constant feedback are given by the delay-differential equation (Longtin & Milton, 
1988, in press) 

dg dA 
- -  - - +  ag(A) = F(A~) (1) 
dA dt 

where z is the total time delay and A, is the pupil area at a time ~" in the past, i.e. 
A, = A ( t - r ) .  The rate constant for pupillary movements differs for constriction 
(a~) and dilation (ad). The function F(A,) has only one of two values depending 
on whether the light is on or off and the function g(A) relates changes in neural 
activity in the reflex arc to changes in pupil area. Experimentally it is found that 
the time courses for constriction and dilation can each be approximated by a single 
exponential (Longtin & Milton, 1988) and thus eqn (1) can be written as 

d__AA+ a A  = [ A o n ,  if A, < 01 (2) 
dt [Ao,,  i fA~>01 

where Aon, Ao~ are constants which depend on, among other things, the intensity 
of the light beam and the background illumination (Longtin & Milton 1988). The 
values of the constants ac, ad, Aon, Ao~ can be determined from plots of the 
maximum, or minimum amplitude of the oscillations in pupil area as a function of 
01 as shown in Figs 2(b) and 3(b). 

As can be seen in Fig. 2, the amplitude and period of the solutions of eqn (2) 
closely resemble those of the observed oscillations in pupil area produced by 
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FIG. 2. Compar i son  of  the changes  in pupil area that occur as a function of  time with imposed negative 
feedback to those predicted by eqn (2) (subject MC).  The piecewise constant  negative feedback is shown 
in (a). The pupil latency time was 285 msec. In (c-f) the machine  delay was 100msec  ( r = 3 8 5  msec) 
and in (g) the machine  delay was increased to 579 msec ( r  = 864 msec). The area threshold,  #l ,  was set 
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C O M P L E X  D Y N A M I C S  A N D  B I F U R C A T I O N S  137 

changing either 0~ or ~'. These observations indicate that eqn (2) provides a good 
description of the dynamics observed in this experimental paradigm. However, the 
small cycle-to-cycle variations in pupil area are not predicted by eqn (2), and we 
believe that they reflect the influence of uncontrollable variations in the reflex arc, 
i.e. "noise". 

A design of the clamping box which is better suited for the generation of complex 
dynamical behaviors is shown in Fig. 3(a) and corresponds to piecewise constant 
"mixed" feedback (an der Heiden & Mackey, 1982, 1987; Longtin & Milton, 1988). 
This type of feedback resembles negative feedback [Fig. 2(a)] except that once pupil 
area exceeds an area threshold 02 > 0~, the light is turned off. The interest in studying 
this type of feedback stems from the analytic insight that has been gained into the 
properties of the equation 

Aon, ifAT<0~ 
d__AA+ctA= Aon, i f 0 1 < A , < 0 2 .  (3) 
dt 

~.Aon, if A~> 02 

For eqn (3) it has been possible to prove for simple initial conditions the existence 
of stable equilibria, of stable and unstable limit cycles, and Li and Yorke type chaos 
as well as mixing and exact motions as 01 and 02 are varied (an der Heiden, 1983, 
1985; an der Heiden & Mackey, 1982, 1987). These latter aperiodic trajectories are 
unstable and thus would be expected to be difficult or impossible to observe 
experimentally. In numerical experiments we always observe complicated limit 
cycles in the parameter ranges where aperiodic dynamics exist. However, these limit 
cycles are stable only over extremely narrow parameter ranges and thus would be 
difficult to observe in real systems in which parameters may fluctuate. 

Figure 3 shows the results of an experiment with mixed feedback. A variety of 
different oscillations, which are more complex than those produced with negative 
feedback (Fig. 2), occur as 01 and 02 are varied. For the parameter values measured 
experimentally, qualitatively similar solutions are produced by eqn (3). The agree- 
ment between the solutions of eqn (3) and experimental observations is best for the 
simpler oscillations shown in Figs 3(c) and (d). The more complex experimental 
oscillation shown in Fig. 3(e) has the same overall morphology as the corresponding 
solution of eqn (3), but possesses less detail. This presumably is a reflection of the 
inability of the slowest elements of the reflex arc to undergo rapid, sudden changes 
in direction. Indeed better agreement is obtained when eqn (3) is modified to include 
mechanical inertia (Milton & Longtin, unpublished results). 

Although eqn (3) correctly predicts that very complex oscillations should be 
observed for certain choices of 0~ and 02 [Fig. 3(f)], the predicted oscillations are 
periodic and clearly qualitatively very different. The origin of these complex oscilla- 
tions in pupil area is currently under active investigation. One possible explanation 
is that this oscillation reflects the influences of uncontrolled irregular variations in 
certain of the parameters of eqn (3), i.e. multiplicative noise (Longtin & Milton, 
1988). To illustrate the influence of parameter fluctuations, in Fig. 4 we show the 
effect of measured variations in Aon and Aon on the solutions of eqn (3). For the 
values of 0~ and 02 which produce the complex oscillations shown in Fig. 3(f), the 
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b e c a u s e  o f  t he  w i d e r  p a r a m e t e r  i n t e rva l s  o v e r  w h i c h  t h e y  a re  e x p e c t e d  to  o c c u r  
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FIG. 4. The (Aon , Ao,)-parameter space for eqn (3) for the values of the area thresholds 0t, 02 in 
Fig. 3 [(a), (b), (c), and (d) correspond, respectively, to Figs 3(c), (d), (e), and (f).] In constructing 
these parameter spaces the values of ac, ad, ~" have been fixed and we have classified the periodic 
solutions of eqn (3) symbolically by the number of light pulses per period [i.e. Fig. 3(d) shows a type 
2 solution since there are two light pulses per period]. The region labelled "C" contains very complex 
periodic solutions in close proximity as well as unstable mixing solutions. The rectangular boxes enclose 
the measured values of Ao., Aof r (->10 consecutive values). Since in eqn (3), constriction and dilation 
occur as first order processes, it is possible to measure the values of Ao., Ao, cycle to cycle using the 
values of, respectively, ac, aa (Longtin & Milton, 1988). 

[Figs 4(a), (b), (c)]. We cannot exclude the possibility that the source of this 
multiplicative noise itself may represent the trace of a chaotic process (Lasota & 
Mackey, 1985, 1989) which is injected at some point into the reflex arc, for example, 
at the retina (Longtin & Milton, 1988) or the Edinger-Westphal nucleus (Stark et 
al., 1958; Stanten & Stark, 1966). 

The observations in Fig. 3 give a direct demonstration that qualitative changes 
in the dynamics of a neural control mechanism can arise as quantitative changes 
are made in the properties of neural feedback. The qualitative changes in dynamics 
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occur at approximately the same parameter values which produce bifurcations in 
a simple mathematical model for the pupil light reflex [eqn (3)]. Thus bifurcations 
in neural control mechanisms can be induced by parameter manipulation. However, 
these observations also emphasize that the different components of the observed 
dynamics must be carefully identified and evaluated before the aperiodic behaviors 
generated by the nervous system can be confidently assigned a determinstic origin. 

3.2. V I S U A L  D E L A Y S  IN M O T O R  T R A C K I N G  T A S K S  

It is possible to alter dynamics in a process as complex as motor control by 
introducing a time delay into a sensory feedback loop. Figure 5 summarizes the 
results of an experiment in which a variable time delay is introduced into a simple 
motor tracking task (Merton et al., 1967; Glass et  al., 1988; Beuter et al., unpublished 
results). In this experiment subjects are required to adjust the position of their index 
finger to match the position of a target. However, the subjects are not able to directly 
assess the position of their index finger in relation to the target. Instead the subjects 
look at an oscilloscope screen on which two horizontal lines are displayed; one is 
stationary and corresponds to the target and the other is controlled by a micro- 
displacement tranducer attached to the index finger which is fixed by a lightweight 
medical splint so that movement only occurs at the metacarpo-phalangeal joint. The 
subjects are asked to match the two horizontal lines as closely as possible. A variable 
time delay is introduced by inserting an analog delay line between the transducer 
and the oscilloscope. Thus, by viewing the oscilloscope screen, the subjects are only 
able to judge the position of their index finger relative to the target at some time 
in the past. In addition, the feedback gain can be increased by amplifying finger 
movements so that relatively larger displacements are seen on the oscilloscope 
screen. In the experiments we discuss here, the gain has been adjusted so that a 
finger displacement of 1 mm corresponds to a displacement of --16mm on the 
oscilloscope screen. 

Figures 5(a) and (b) show the effect of an increase in the analog time delay by 
300 msec and 1500 msec on the subject's performance during this visual tracking 
task. There are small rhythmic finger displacements in finger position with a mean 
frequency of 8-12 Hz [Figs 5(c), (d)]. These rhythms are present with or without 
the analog time delay (data not shown) and are associated with physiological tremor. 
As can be seen in Figs 5(c) and (d), the frequency of this tremor is not influenced 
by an increase in the analog time delay; however, the overall amplitude of finger 
displacements increases with the time delay. 

Physiological tremor recorded in distal extremities is thought to involve complex 
mechanisms at the segmental level (i.e. spinal or brainstem) and central level (i.e. 
supra-spinal rhythmic input to motoneurons) (Lippold, 1970; Marsden, 1984b). Its 
amplitude can vary between subjects and is affected by both psychological (i.e. 
emotional state) and physiological factors (i.e. temperature disturbance or 
pharmacological agents such as beta-agonists) (Koller, 1984). 

The addition of the analog time delay does result in the appearance of an increase 
in power in the power spectra below 1.5 Hz [Figs 5(c), (d)]. This is associated with 
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FIG. 5. (a), (b). Time series of the displacement of the index finger of a healthy subject (subject IT) 
performing the delayed visual tracking task described in the text with an added time delay of (a) 300 msec 
and (b) 1500 msec. The amplitude of the displacements in finger position increases with the time delay 
and in the case of the 1500 msec delay a regular low frequency oscillation appears intermittently (indicated 
by ],). In (c) and (d) the power spectra of the finger displacement time series shown, respectively, in (a) 
and (h) is plotted for frequencies from 0-15 Hz. The logarithm of the amplitude of the power spectrum 
has been plotted in arbitrary units. With increasing delay, more power appears at frequencies <1-5 Hz. 

the appearance of  a low frequency oscillation superimposed on the physiological 
tremor [Fig. 5(b)]. The amplitude and period of  this low frequency oscillation 
increases as the time delay increases. This oscillation is not regular, but occurs 
intermittently. During the time intervals when this oscillation is more regular, the 
average inter-peak interval is found to increase continuously with the time delay 
and is found to be between two and four times the delay (Beuter et al., unpublished 

results). 
Since this delay does not appear to influence the frequency of  the physiological 

tremor, it is likely that it is influencing a more central control mechanism. This 
interpretation is consistent with neuroanatomical considerations. The afferent signals 
arising from the proprioceptors and the retina travel by separate pathways to the 
cortex via separate thalamic nuclei. The likely first sites of  interaction of  this afferent 
information for the task o f  altering finger position are the association areas of  
the cortex, i.e. the parieto-occipital lobes. Thus, the increased time delay in our 
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experiment is probably affecting, as yet unknown, mechanisms in this region of the 
cortex. In addition, the cerebellum and basal ganglia are also likely to play a role. 
For example, the cerebellum modulates both descending efferent information to the 
spinal cord and finger via the corticospinal and rubrospinal tracts and ascending 
afferent information from vision (i.e. superior colliculus) and limb movements (i.e. 
spinocerebellar tracts). 

Theoretically it can be shown that the period of an oscillation for a first order 
delayed feedback mechanism is at least two times the delay and, under certain 
conditions, may be bounded above by four times the delay (Hayes, 1950; Mackey 
& Glass, 1977; Glass & Mackey, 1979). This prediction is consistent with the period 
of the intermittent oscillation in finger position that occur when the delay is added 
(Fig. 5). However, in these simple mathematical models the observed cycle is a 
stable regularly occurring one (i.e. limit cycle), whereas the oscillation observed in 
this experiment is only intermittently regular. A number of neural mechanisms might 
account for this intermittency. The appearance and disappearance of the oscillation 
might be due to interactions between the multiple feedback loops which underlie 
the stabilization of the finger (Glass et al., 1988). An alternative possibility is that 
the feedback loops are selectively activated depending on the current and past states 
of the system (Beuter et  al., unpublished results). For example, the relative impor- 
tance of visual and proprioceptive mechanisms for maintaining finger position might 
fluctuate during the course of a single trial (Stephens & Taylor, 1974). Finally, the 
same reflex mechanisms may have different uses in different movement contexts 
(Lee et al., 1983) and the volitional and motor planning of the subjects may also 
influence their motor responses through feedforward mechanisms (Hammond, 1956). 

The above observations illustrate a general principle of neural control, i.e. there 
exist multiple mechanisms that influence the controlled activity at several levels in 
the nervous system. This principle is not unique to the control of finger movement 
but applies to virtually every neural behavior. A major problem is to unravel the 
interactions of the various central control loops and ultimately understand their 
contribution to the observed dynamics (as in Fig. 5). No foolproof strategy now 
exists to do this. One approach, not yet adequately tried, is to perform experiments 
in patients with known lesions that selectively eliminate neural pathways that control 
motor behavior (e.g. patients with cerebeller pathology or Parkinson's disease). 
These results can then be compared with those from normal subjects and in 
theoretical models with an effort at detecting qualitative changes in dynamics induced 
by the lesion. 

4. Conclusions 

Neurological systems generate complex dynamic behaviors. Although a variety 
of quantitative measures, such as power spectra, Liapunov exponents, dimension, 
have been used to describe these rhythms, these descriptions do not give a clear 
indication of the underlying mechanisms. We believe that an essential first step is 
the study of relatively simple model systems in which bifurcations can be induced. 
Here we have considered experiments in which alterations in the time delay and/or 
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gain of feedback loops are introduced using electronic circuits. It may also be 
possible to eventually develop experimental models in which bifurcations can be 
induced using pharmacological and/or surgical interventions. Neurological lesions 
provide another source of identifiable modifications in neural control. The goal of 
these experiments is not just to observe some novel behavior, but is to yield sufficient 
experimental data that theories based on known physiological mechanisms can be 
posed and then tested experimentally. In this way it should be possible to develop 
an understanding of the origins of dynamical behaviors seen in human disease and 
then, hopefully, devise more effective therapeutic strategies. 
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