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Abstract

We study a white-noise driven integrate-and-fire (IF) neuron with a time-dependent threshold. We give analytical expressions for

mean and variance of the interspike interval assuming that the modification of the threshold value is small. It is shown that the

variability of the interval can become both smaller or larger than in the case of constant threshold depending on the decay rate of

threshold. We also show that the relative variability is minimal for a certain finite decay rate of the threshold. Furthermore, for slow

threshold decay the leaky IF model shows a minimum in the coefficient of variation whenever the firing rate of the neuron matches

the decay rate of the threshold. This novel effect can be seen if the firing rate is changed by varying the noise intensity or the mean

input current.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Integrate-and-fire (IF) models are nowadays fre-
quently used to understand generic effects in neural
signal transmission or network behavior. Compared to
more realistic multidimensional ionic models, IF neu-
rons can be easily used in large network simulations;
they also permit in many instances an analytical
approach to diverse problems like, for instance, spike
train variability, neural signal transmission, or network
oscillations.

Stochastic IF models that take into account random
influences (channel noise, random synaptic input, etc.)
have a long history and are still used frequently for
modeling purposes. The ‘‘standard’’ system for this kind
of modeling is a perfect or leaky IF neuron driven by an
input current and a white Gaussian background noise
e front matter r 2004 Elsevier Ltd. All rights reserved.
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(for reviews, see Ricciardi and Sacerdote, 1979; Tuck-
well, 1988; Lánský and Rospars, 1995). Recent research
has focused on analytical approaches for extensions of
this basic model by taking into account a finite
correlation time of the input noise (Fourcaud and
Brunel, 2002; Middleton et al., 2003; Lindner, 2004a) or
the inclusion of a nonlinear leakage term (quadratic IF
model) (Gutkin and Ermentrout, 1998; Lindner et al.,
2003; Brunel and Latham, 2003) that corresponds to a
type I neuronal dynamics (Ermentrout, 1996; Gutkin
and Ermentrout, 1998).

Another extension that has been used in a number of
studies is an IF model with a time-dependent threshold
(Tuckwell, 1978; Vasudevan and Vittal, 1982; Wilbur
and Rinzel, 1983; Tuckwell and Wan, 1984; Rappel and
Karma, 1996; Chacron et al., 2000, 2001, 2003) (see also
Holden, 1976, Chapter 4 for further references). Such
models have been considered for several reasons. A
decaying threshold, for instance, mimics the effect of an
afterhyperpolarization observed in many neurons. More
generally, it may be looked upon as a mechanism for a
relative refractory period. Recent interest in IF models
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with a time-dependent threshold originates in the study
of non-renewal spike trains: if the threshold obeys a
dynamics driven by the spikes of the IF model, negative
ISI correlations can be observed. In particular, a leaky
IF model with a dynamical threshold (LIFDT model)
has been used to reproduce with high accuracy the firing
statistics of electrosensory neurons (Chacron et al.,
2000, 2001).

Here we consider a white-noise driven IF model with
exponentially decaying threshold as used by Tuckwell
(1978) and Tuckwell and Wan (1984). The threshold
starts after each reset of the voltage at the same fixed
value, i.e. this model will generate a renewal process. We
focus on the mean, variance, and coefficient of variation
(CV) as functions of the system parameters. These
statistics are of general interest both for the character-
ization of the spontaneous neural activity as well as for
the neuronal signal transmission. Our study may help to
understand under which conditions a decaying threshold
may facilitate or deteriorate signal processing by
stochastic neurons. Although the considered model
generates a renewal process, it is very close to the non-
renewal LIFDT model mentioned above and may be
regarded as a simplified version of the latter. In this
respect our results may also be taken as a first step
towards an understanding of the more complicated
LIFDT model.

Since IF models with time-dependent threshold pose a
complicated first-passage-time (FPT) problem, most of
the previous work employed numerical simulations.
Tuckwell and Wan (1984) derived a partial differential
equation governing the ISI moments; these equations,
however, were solved numerically. For the case of a
perfect IF model driven by Poissonian shot noise with a
certain amplitude distribution, Vasudevan and Vittal
(1982) gave implicit relations for the ISI density; a
numerical evaluation of those relations were not
performed in this work, though. Researchers in the field
of applied probability theory focused on the asymptotic
behavior (i.e. the tail) of the FPT density (Giorno et al.,
1990) and on specific threshold functions where the FPT
density can be exactly solved (Jáimez et al., 1995;
Gutiérrez et al., 1997); the latter do not include the
specific problem considered here. In this paper, we give
explicit expressions for mean and variance of the ISI in
the presence of an exponentially decaying threshold.
Our results hold true for the entire range of decay rates
of the threshold but require the threshold modulation to
be weak. The theory relies on very recent results for the
FPT problem in the presence of a time-dependent drift
derived by one of the authors (Lindner, 2004b).

Our results show that for either perfect and leaky IF
models, there exists an optimal decay rate that
minimizes the relative variability; i.e. the CV plotted as
a function of the decay rate passes through a minimum.
In particular for a leaky IF model, the relative
variability can be either larger or smaller than in the
case of a constant threshold. Further, the firing rate is in
general diminished by the time-dependence of the
threshold. All of these effects, however, are rather small
as long as the amplitude of the time-dependent change
in threshold is small (o20% of the unperturbed
constant threshold). An exception to this is a novel
effect found at slow threshold decay for the leaky IF
model operating in a Poissonian firing regime. Here the
relative variability shows a minimum as a function of
either mean input current or noise intensity; the
minimum occurs at parameter sets for which the firing
rate of the neuron roughly equals the decay rate of the
threshold. The minimum can be rather pronounced
already for a small amplitude of the threshold decay. We
note that a minimum in the CV as a function of the
firing rate was observed experimentally in nerve
afferents of the squirrel monkey (Goldberg et al.,
1984) and also obtained by numerical simulations of
an IF model with AHP current (Smith and Goldberg,
1986).

This paper is organized as follows. In Section 2, we
introduce the model and the quantities of interest; we
also give a description of the integration procedure for
the numerical simulation of the first-passage process. In
Section 3, we present the analytical results for the mean
and variance of the ISI in the presence of a decaying
threshold. In Section 4, the effect of the decaying
threshold on mean, variance, and coefficient of variation
is explored; we shall consider the functional depen-
dences of these statistics on the various system
parameters (decay rate, base current, noise intensity)
and compare some of our analytical findings to results
of numerical simulations. In Section 5, we summarize
our findings and discuss briefly their neurobiological
implications.
2. The Models and their numerical simulation

We consider an IF model driven by a constant base
current m and a white Gaussian noise xðtÞ with intensity
parameter s that obeys the stochastic differential
equation of an Ornstein–Uhlenbeck process

_v ¼ �av þ mþ sxðtÞ: (1)

Time is measured in multiples of the membrane time
constant tmem: The base current and the noise intensity
differ only by scalar factors from the parameters of a
noisy input current as, for instance, used in an
experiment in vitro. The above equation has still to be
complemented by a spike-and-reset rule. Whenever the
voltage v reaches the threshold value Y; a spike is fired
and the variable v is reset to v ¼ vR ¼ 0: The interspike
intervals (ISIs) are then the first passage times of the
variable v from v ¼ 0 to v ¼ YðtÞ: The common way to
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incorporate an absolute refractory period is to add a
constant time tabs to the first passage time. For the sake
of simplicity, we set here tabs ¼ 0: For the standard
leaky IF model, we set a ¼ 1 without loss of generality.
The case of negligible leakage (perfect IF model)
corresponds to a ¼ 0: In both cases, Y is usually a
constant that can be normalized to one. Here we
consider as was done by Tuckwell (1978) a time-
dependent threshold that introduces an additional
relative refractory period. In particular we have

YðtÞ ¼ 1 þ e exp½�lðt � tkÞ�; (2)

where tk is the last spiking time and l is referred to as the
decay rate of the threshold. The model is illustrated for
a ¼ 1 and a slow decay rate in Fig. 1, showing the time
courses of the voltage variable and of the threshold;
spikes and one ISI are also indicated.

It is important to note that this IF model still
generates a renewal spike train, i.e. there are no
correlations among the ISIs generated by the IF neuron.
The effect of the time-dependent threshold is therefore
restricted to the statistics of the single ISI henceforth
denoted by T : Here we consider the most important
characteristics of the single ISI: its mean hTi and its
variability. Since often the stationary firing rate is
measured instead of the mean ISI, we may also consider
the rate given by

r ¼
1

hTi
: (3)

The variability can be quantified either by the variance

hDT2i ¼ hT2i � hTi2 (4)

and by the standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hDT2i

p
of the ISI or by a

relative measure like the coefficient of variation (CV)
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Fig. 1. The trajectory of the leaky IF model with exponentially

decaying threshold. The time course of the threshold (restarted after

each firing at 1 þ e) is shown by the dashed line, arrows represent

spikes and one ISI is explicitly indicated. Parameters are m ¼ 0:8; s2 ¼

0:2; l ¼ 0:5; and e ¼ 0:2:
that compares the fluctuations in the ISI (its standard
deviation) to the mean ISI

CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hDT2i

p
hTi

: (5)

First we discuss some simple limits of the model and
what kind of effects of the time-dependent threshold
might be intuitively expected in general.

If l ¼ 0 or very small, the model functions like a
standard IF model with rescaled constant threshold Y ¼

1 þ e: For l ! 1 in turn we expect that the threshold
quickly approaches Y ¼ 1 and hence the behavior of the
model will be exactly that for e ¼ 0: For arbitrary l
the mean ISI can be expected to always be larger than in
the case of constant threshold with e ¼ 0: Evidently,
each realization reaching YðtÞ ¼ 1 þ ee�lðt�tkÞ must have
exceeded v ¼ 1; thus for each realization, the first
passage time will be larger than in the unperturbed case
e ¼ 0:

It is not clear at the first glance, however, what is
going to happen to the absolute and relative variability

of the ISI measured by variance and CV, respectively.
Thinking of the decaying threshold as a refractory
mechanism, one might be tempted to conclude that the
relative variability will always be lower than for a
constant threshold. Furthermore it may be of interest
with regard to signal transmission properties of the IF
model whether the ISI variability can be minimized.
These issues will be clarified by means of the analytical
results that are derived in the next section. Before we
come to the analytical treatment, we will discuss briefly
the numerical simulation of the first passage time
problem.

2.1. Numerical simulations of the stochastic differential

equations

In order to measure the statistics of the ISI, one may
employ a numerical simulation of the model. In practice,
this means to approximate the integration of Eq. (1)
with a difference scheme for the voltage vi ¼ vðtiÞ at
discrete times ti ¼ iDt where Dt is the time step. Starting
at i ¼ 0 with v0 ¼ vR ¼ 0; one may use an Euler
procedure with an appropriate scaling of the noise term
(Risken, 1984)

viþ1 ¼ vi þ ðm� aviÞDt þ s
ffiffiffiffiffi
Dt

p
xi; (6)

where the xi are independent zero-mean Gaussian
random numbers with unit variance. The simulation is
performed until for the first time viþ14Yðtiþ1Þ (this has
to be checked at every time step) which gives us the first
stochastic realization of the ISI

T1  ði þ 1=2ÞDt: (7)

Starting again at i ¼ 0 with v0 ¼ 0 and repeating this
procedure many times (a typical value is N ¼ 106)
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allows the determination of the ISI’s mean and variance
with sufficient accuracy. The mean, for instance, is given
by the sum over all realizations of the ISI

hTi ¼
1

N

XN

j¼1

Tj : (8)

By approximating the stochastic differential equation
with the difference scheme Eq. (6), we may make,
though, an error in estimating the ISI. First of all, it is
clear that if viþ14Yðtiþ1Þ we cannot tell at which time
within the interval ½ti; tiþ1� the threshold has been
crossed, thus, the ISI is only determined with an
uncertainty of order of magnitude Dt: We may decrease
the time step (thus increasing, of course, the computa-
tion time) in order to reduce this error. For the perfect
IF model, a time step of Dt ¼ 10�3 was sufficient to
reproduce with the desired accuracy mean and variance
with constant threshold for which we know the exact
results for these quantities. We employed the above
procedure to estimate mean and variance of the ISI for
the perfect IF dynamics with time dependent threshold
using at each data point 106 ISIs.

There is, however, an additional systematic error
made in estimating the interval. This error seemed to be
more severe for the leaky IF model than for the perfect
IF model. Even if both vi and viþ1 are smaller than the
value of the time-dependent threshold, the voltage could
have exceeded the threshold in between ti and tiþ1: This
introduces a systematic error (an overestimation of the
ISI) in proportion to the square root of the time step
and thus results in a very slow convergence of the
numerical procedure when the time step is decreased. A
linear convergence can be restored by accepting
a successful passage with the interval ½ti; tiþ1� for
subthreshold values vðtiÞ; vðtiþ1ÞoVT with finite prob-
ability (cf. Honerkamp, 1993)

Pðvi; viþ1Þ

¼ exp 2
ðvi þ viþ1ÞV T � viviþ1 � V2

T

s2Dt

� �
; ð9Þ

where in our case we took the threshold value V T to be
equal to the time dependent threshold at t ¼ tiþ1; i.e.
V T ¼ Yðtiþ1Þ:

The actual implementation of the numerical algo-
rithm is as follows. We employed the finite difference
scheme until vi crossed a predefined subthreshold value
(typically, 80–90% of the lower limit of YðtÞ; for values
vi; viþ1 below this the crossing probability Eq. (9) is
exponentially small). After this event we continued with
Eq. (6) but also drew a uniform random number ai: For
both events where either viþ14Yðtiþ1Þ or where we had
aioPðvi; viþ1;Yðtiþ1ÞÞ for subthreshold values vi; viþ1; a
spike is said to have occurred and we set T ¼ ði þ

1=2ÞDt; otherwise the simulation was continued. Using
this scheme for the leaky IF model, simulations with
Dt ¼ 10�2 led to satisfying agreement with exact
analytical results for � ¼ 0: We also checked the
convergence with decreasing time step for two different
parameter sets and confirmed that Dt ¼ 10�2 achieved
the desired numerical accuracy. For each data set
(except for Fig. 13, see Figure caption), 106 ISIs were
used in order to determine the ISI’s mean and variance.
We want to point out that these simulations can be
rather time-consuming, in particular, if an accuracy of
one percent or less is required. Of course, one may get a
rough impression of the model by a short simulation
with poor statistics; doing so, one may, however, miss
important features of the neuronal dynamics. In this
light, it seems to be worth to invest some time and
efforts to derive analytical approximations for the ISI
statistics.
3. Theory

The dynamics Eq. (1) with the exponentially decaying
threshold Eq. (2) can be easily transformed to an IF
model with constant threshold but time-dependent drift.
This transformation is given by

~v ¼
v � ee�lt þ e

1 þ e
: (10)

For both perfect and leaky IF models this transforma-
tion yields an exponentially decaying drift and rescaled
parameters m; s; and e:

The general problem of a time-dependent drift has
been recently addressed by a novel analytical approach
in Lindner (2004b). In that paper general relations for
the linear corrections to the moments of the first-passage
time in the presence of a time-dependent drift were
given. Starting from the Fokker–Planck equation
governing the probability density of the first-passage
process, a perturbation approach yielded the first
correction terms (i.e. the term proportional to the
amplitude of the time-dependent drift) to each moment
of the first-passage time expressed by quadratures of the
probability density in the absence of the time-dependent
drift. Explicit formulas were derived for the cases of a
linear potential (i.e. a biased random walk) and a
parabolic potential both with an exponentially decaying
force of the form le�lt: These cases correspond to the
dynamics of the perfect and leaky IF model with
exponentially decaying drift, respectively, i.e. to the
models that are obtained from those considered here if
we apply the transformation Eq. (10).

Since we can map the problem of an IF model with
time-dependent threshold to the solved problem of an
IF model with time-dependent drift, it appears sufficient
to adopt the respective formulas for mean and variance
given by Lindner (2004b). This is indeed possible for the
perfect IF model. However, for the leaky IF model, a
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closer inspection reveals that additional efforts have to
be made to achieve formulas for mean and variance that
hold true for a large range of decay rates. The reason for
this is that the transformation Eq. (10) yields also a
rescaling of parameters such that the time-dependent
driving is not the same as considered by Lindner
(2004b).

In the following, we derive mean and variance of the
ISI for a perfect IF model (a ¼ 0) and for a leaky IF
model (a ¼ 1) separately; rate and CV can then be easily
determined using Eqs. (3) and (5).

3.1. Theory for the perfect integrator

For a ¼ 0; the transformation Eq. (10) yields the
following dynamics for the new variable ~v

_~v ¼ ~mþ ~ele�lt þ ~sxðtÞ (11)

with threshold at ~vT ¼ 1 and reset to ~vR ¼ 0 after firing.
It might be surprising that the decaying threshold acts
like an excitatory driving in a perfect IF model with
constant threshold. Note, however, that also the
parameters of the system (m; D; and e) have been
rescaled as follows:

~m ¼
m

1 þ e
; ~e ¼

e
1 þ e

; ~s ¼
s

ð1 þ eÞ
; (12)

i.e., the base current and noise intensity have been
reduced.

The first passage time problem for a dynamics
Eq. (11) has been treated by a perturbation method in
Lindner (2004b); the resulting formulas for the mean
and the variance read in our notation

hTi ¼
1

~m
�

~e
~m

1 � exp
~m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2 þ 2l ~s2

p
~s2

" # !
; (13)

hDT2i ¼ ~s2 1 � ~e
~m3

þ
2~e
~m2

~mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2 þ 2l ~s2

p þ
~s2

2 ~m
� 1

 !

� exp
~m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2 þ 2l ~s2

p
~s2

" #
: ð14Þ

Using the original parameters via Eq. (12) and taking
into account only constant and linear terms in e leads to
the following formulas for a perfect IF model with an
exponentially decaying threshold

hTi ¼
1

m
þ

e
m

exp
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2ls2

p
s2

" #
; (15)

hDT2i ¼
s2

m3
þ

2e
m2

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2ls2

p þ
s2

2m
� 1

 !

� exp
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2ls2

p
s2

" #
: ð16Þ
It is readily seen that Eqs. (15) and (16) differ from
Eqs. (13) and (14) only by a constant. The implications
of this constant are, however, important: a positive
exponential driving will always lead to a decrease in
mean and variance of the first-passage time (cf. the
discussion of these issues in (Lindner, 2004b)) while
quite to the contrary a decaying threshold leads to a
longer mean first-passage time (i.e. mean ISI) than for
e ¼ 0:

Let us start with some general observations regarding
the formulas Eqs. (15) and (16).

As already mentioned, for positive e (as assumed
throughout the following), the mean ISI Eq. (15)
increases compared to the unperturbed case (e ¼ 0)
which makes sense and is in accordance with our
remarks in the introduction of the model. The correction
to the variance, however, may change sign: for low l the
prefactor of the exponential is evidently positive while
for large l it will be negative if the noise is not too strong
(s5m). For e ¼ 0 or for l ! 1 the formulas yield the
well-known results for a white-noise driven perfect IF
model with constant threshold

hTi0 ¼
1

m
; (17)

hDT2i0 ¼
s2

m3
; (18)

where the index ‘‘0’’ indicates that e ¼ 0: For l ¼ 0 we
find

hTil¼0 ¼
1 þ e
m

; (19)

hDT2il¼0 ¼
s2ð1 þ eÞ

m3
; (20)

which also corresponds to the white-noise driven perfect
IF model but with a reset-threshold distance of 1 þ e:

Further, for vanishing noise s ¼ 0; the ISI of the
deterministic system Tdet can be calculated for arbitrary
amplitude e

Tdet ¼
1

m
þ

1

l
LWðee�l=ml=mÞ

¼
1

m
þ

e
m

e�l=m �
e2l
m2

e�2l=m þ � � � ; ð21Þ

where LWðxÞ is the Lambert W function.1 In the second
line of Eq. (21), we give the first three terms of a Taylor
expansion. Remarkably, up to first order in e this is the
same as we obtain from Eq. (15) for s ¼ 0; i.e. the term
linear in e equals the perturbation correction from
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Eq. (15) at s ¼ 0; implying that the latter is valid in the
weak noise limit. Note that the variance of the ISI has to
be zero in the case of s ¼ 0 for obvious reasons.
3.2. Theory for the leaky integrator

For a leaky IF model (a ¼ 1), the variable transfor-
mation Eq. (10) now leads to the dynamics

_~v ¼ � ~v þ
e

1 þ e
ðl� 1Þe�lt þ

e
1 þ e

þ
m

1 þ e

þ
s

1 þ e
xðtÞ: ð22Þ

Interestingly, the dynamics includes an exponentially
decaying drift term with amplitude proportional to ðl�
1Þ: From this, one can conclude that the problem is
exactly solvable not only for l ! 0 and l ! 1 but also
for l ¼ 1 since in this case the time dependent driving
vanishes and we obtain the standard white-noise driven
leaky IF model with constant, though rescaled para-
meters. We will use this fact later on.

For arbitrary values of l; we can again profit from
(Lindner, 2004b). There it was shown that for the
process

_x ¼ �bx þ a þ ele�lt þ
ffiffiffiffiffiffiffi
2D

p
xðtÞ (23)

with small e the mean and variance of the passage time
from 0 to xE can be expressed by

hTi ¼ hTi0 þ ed1ðlÞ; (24)

hDT2i ¼ hDT2i0 þ ed2ðlÞ; (25)

where hTi0 and hDT2i0 are the mean and variance in the
case of e ¼ 0 and d1; d2 are the linear corrections due to
the presence of the time-dependent drift. The former
functions can be written as follows (Lindner et al., 2002)

hTi0 ¼

ffiffiffi
p

p

b

Z xþ

x�

dy ey2
erfcðyÞ; (26)

hDT2i0 ¼
2p

b2

Z 1

x�

dy ey2
½erfcðyÞ�2

�

Z y

x�

dz ez2
Hðxþ � zÞ; ð27Þ

where we have used the Heaviside function HðxÞ

(Abramowitz and Stegun, 1970) and the abbreviations

x� ¼
a � bxEffiffiffiffiffiffiffiffiffi

2Db
p ; xþ ¼

affiffiffiffiffiffiffiffiffi
2Db

p : (28)

The correction terms are given by

d1ðlÞ ¼
l

l� b

ffiffiffiffiffiffiffiffiffi
p

2bD

r
ex2

þ½edr0ðlÞerfcðx�Þ

� erfcðxþÞ� ð29Þ
d2ðlÞ ¼ �
l

l� b

ffiffiffiffiffiffiffi
2p
Db

r
ex2

þ ederfcðx�Þ½r00ðlÞ
�

þ hTi0r0ðlÞ�

þ

ffiffiffi
p

p

b

Z 1

x�

dx ex2
erfc2

ðxÞ½Hðx � xþÞ

�edr0ðlÞ�

; ð30Þ

where we have used the Laplace transform of the ISI
density of the unperturbed (e ¼ 0) system r0ðlÞ and its
derivative with respect to l; denoted by r00ðlÞ: The
function r0ðlÞ can be expressed by the parabolic cylinder
function DaðzÞ (Abramowitz and Stegun, 1970) as
follows (Holden, 1976):

r0ðlÞ ¼ e�d=2 D�l=bðxþ

ffiffiffi
2

p
Þ

D�l=bðx�

ffiffiffi
2

p
Þ
; d ¼ x2

� � x2
þ: (31)

We can use the formulas given in Eqs. (24) and (25) in a
straightforward manner, replacing the amplitude e by
eðl� 1Þ=½lð1 þ eÞ� and setting

b ¼ 1; a ¼
mþ e
1 þ e

; D ¼
s2

2ð1 þ eÞ2
: (32)

Explicitly, the mean and variance are then given by

hTi ¼ hTi0

�

þ
eðl� 1Þ

lð1 þ eÞ
d1ðlÞ

�����
b¼1;a¼ðmþeÞ=ð1þeÞ;D¼s2=½2ð1þeÞ2�

; ð33Þ

hDT2i ¼ hDT2i0 þ
eðl� 1Þ

lð1 þ eÞ

�

�d2ðlÞ
�����

b¼1;a¼ðmþeÞ=ð1þeÞ;D¼s2=½2ð1þeÞ2�
: ð34Þ

This will not necessarily work well for all parameter
values, though. Consider, for instance, the limit l ! 0
in Eq. (22). Obviously, in this case the second and the
third term cancel each other and we are left with the
leaky IF with constant threshold and constant drift with
values of m and s rescaled by a factor 1=ð1 þ eÞ: This,
however, is not reflected in Eqs. (33) and (34) where the
constant term e=ð1 þ eÞ was included in the effective bias
term a: A similar discrepancy is encountered in the limit
of l ! 1; in fact, the formulas Eqs. (33) and (34) can
be expected to work fine only for decay rates that are
close to 1, i.e. close to the inverse membrane time
constant of the leaky IF model.

A closer inspection of the error made at small l in
Eqs. (33) and (34) reveals that there is an ambiguity in
the perturbation calculation. Above we have only
considered the linear correction of the mean and
variance due to a time-dependent drift. Evidently there
is also a change in the static parameters of the system
due to the transformation Eq. (10). The linear correction
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Table 1

Values of the parameters c1 and c2 that lead to an exact solution in the

linear theory Eqs. (38) and (39)

l c1 c2

0 0 0

1 1 0

1 m 1

In these cases c1 ¼ c1;T ¼ c1;DT2 and c2 ¼ c2;T ¼ c2;DT2 :
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to such a change is given by the derivative of the
respective function multiplied by the change in para-
meter according to a simple Taylor expansion. Instead
of lumping the third term in Eq. (22) into the effective
base current we could treat it as an static perturbation
which is equivalent to expanding the unperturbed mean
ISI at the effective base current as follows:

hTi0
mþ e
1 þ e

� �
 hTi

m
1 þ e

� �

þ
@hTi0ð ~mÞ

@ ~m

����
~m¼m=ð1þeÞ

e
1 þ e

: ð35Þ

In other words, if the base current of the unperturbed
system were taken as m=ð1 þ eÞ; then the linear correc-
tion in Eq. (24) would consist of a sum of the corrections
due to the time-dependent drift and due to the static
change in the drift. This kind of perturbation correction
is as justified as that in Eqs. (33) and (34). More
generally, the same idea can be also applied to the noise
strength s: The whole procedure becomes more clear by
recasting the Langevin Eq. (22) into the form

_~v ¼ � ~v þ
1

1 þ e
½eðl� 1Þe�lt þ ðmþ c1eÞ

þ eð1 � c1Þ þ½sð1 þ ec2Þ � c2es�xðtÞ�: ð36Þ

We have introduced some terms proportional to new
undetermined parameters c1 and c2: Of course, nothing
has changed compared to Eq. (22) since all terms
containing c1 or c2 cancel out. The crucial point is the
way we interpret this equation in the context of the
perturbation calculation: besides the correction with
respect to the time-dependent drift (that has not
changed by introducing c1 and c2), we consider also
the linear correction with respect to a small change in
the static parameters of the system. The static para-
meters are now given by

m̂ ¼
mþ c1e
1 þ e

; ŝ ¼ s
1 þ ec2

1 þ e
; (37)

note that they depend on c1; c2 too. The small changes in
the static parameters are indicated by the underlined
terms in Eq. (36). The linear corrections to mean and
variance are then given by

hTi ¼ hTi0 þ
e

1 þ e
l� 1

l
d1ðlÞ þ ð1 � c1;T Þ

�

�
@hTi0

@m̂
� sc2;T

@hTi0

@ŝ

�
; ð38Þ

hDT2i ¼ hDT2i0 þ
e

1 þ e
l� 1

l
d1ðlÞ þ ð1 � c1;DT2 Þ

�

�
@hDT2i0

@m̂
� sc2;DT2

@hDT2i0

@ŝ

�
; ð39Þ

where the respective quantity of the unperturbed system
is taken at the effective parameters given in Eq. (37). We
have added indices to the respective parameters c1 and
c2; indicating that the values of these parameters may
differ for mean and variance.

It can be proven (see Appendix A) that the values for
c1 and c2 listed in Table 1 lead to the exact solution for
mean and variance provided the decay rate has the
corresponding value found in Table 1. In these special
cases, the terms hTi0 and hDT2i0 give the exact solution
and the linear correction vanishes. Thus given a value of
the decay rate close to one of the special values in Table
1, we may use Eqs. (38) and (39) in order to calculate the
first two central moments of the ISI.

We are, however, also interested in the general
dependence of the ISI’s mean and variance on l: In
this case, a reasonable choice for the parameters that
does not lead to too cumbersome formulas is (see
Appendix A)

c2;T ¼ c2;DT2 ¼ 0; (40)

c1;T ¼ 1 þ
l� 1

l
d1ðlÞ

@hTi0=@m
; (41)

c1;DT2 ¼ 1 þ
l� 1

l
d2ðlÞ

@hDT2i0=@m
: (42)

Here all functions on the r.h.s. are taken at e ¼ 0: Hence,
in order to calculate mean and variance, one must
determine the parameters c1;DT2 ; c1;T by means of
Eqs. (41) and (42) and then use these values together
with Eq. (40) in Eqs. (38) and (39). Note that these
formulas reproduce the values of c1 and c2 found in
Table 1 at l ¼ 0 and l ¼ 1 but not at l ! 1: While
comparing to the results of the computer simulations,
we will always use Eq. (38) or Eq. (39) with the
parameters calculated by Eqs. (40), (41), and (42).
4. Discussion of the results; comparison to numerical

simulations

Here we plot mean, variance, and CV of the ISI as
functions of the decay rate l: We also look at the firing
rate and the CV as functions of input current and noise
intensity. We compare a subset of the analytical curves
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to simulation results which where obtained as explained
in Section 2.1.

Before we proceed let us briefly explain how the time
scales in our non-dimensional model are related to those
of a real neuron. As pointed out in the introduction,
time is measured in units of the membrane time constant
tmem which is typically of the order tmem � 10ms: The
dimensional decay rate of the threshold is thus obtained
by dividing the non-dimensional rate l by the membrane
time constant. For tmem ¼ 10ms; a low decay rate of
l ¼ 0:01 would thus correspond in real time to a decay
rate of 1 Hz. Further, when we talk about an ISI it is
given in terms of tmem; e.g. if tmem ¼ 10ms a non-
dimensional mean ISI of 4 corresponds to a ISI of 40 ms
in real time or to a firing rate of 25 Hz. In a similar way
we obtain the variance in real time by multiplying the
variance obtained from our model by t2

mem: Note that
the CV being the relative standard deviation of the ISI
does not depend on tmem and can thus be directly related
to an experimentally measured CV.

4.1. Results for the perfect IF model

We choose m ¼ 1 and a moderate noise intensity of
s2 ¼ 0:2 to study the dependence of the ISI’s mean and
variance on the decay rate of the threshold. Fig. 2
reveals a simple monotonous decrease of the mean with
growing l: The mean is also monotonously increased if
we go to stronger amplitudes e: One can easily check the
limit cases of small and large decay rate: at l ¼ 0
the mean ISI approaches ð1 þ eÞ=m; for large l we obtain
the value for the unperturbed system 1=m: By plotting
the deterministic ISI (Eq. (21) linearized in e) for
comparison (thin dashed lines in Fig. 2), we see what
the effect of the finite noise intensity is, namely, a fairly
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Fig. 2. The mean of the ISI vs. decay rate of the threshold for the

perfect IF model. Simulations (symbols) and theory (lines) with the

indicated values of the amplitude e and s2 ¼ 0:2: The thin dashed lines

represent the linearized deterministic ISI for s ¼ 0 (first two terms of

the second line in Eq. (21)).
weak one: only at large values of l a finite noise results
in a stronger modification of the mean ISI. In general,
for weak up to moderate noise intensity, the expression
for the deterministic mean ISI Eq. (21) will suffice to
describe the effect of the threshold and cover even the
range of larger amplitudes e:

The theory given by Eq. (15) agrees fairly well with
the simulation data up to an amplitude e ¼ 0:1: For
e ¼ 0:2 the theory seems to slightly overestimate the
effect of the time-dependent threshold for intermediate
values of the decay rate. Changing the noise intensity
does not change the range of validity of the linear
approximation (not shown) (Fig. 3).

The variance of the ISI for the perfect IF model
displays a more interesting dependence on the decay
rate. First of all, it can be either smaller or larger than in
the unperturbed case depending on the system’s para-
meters (in particular on the decay rate). For large decay
rate the variance tends to that of the unperturbed system
ðe ¼ 0Þ: By decreasing the rate, the variance becomes
smaller than for e ¼ 0: This can be understood as the
effect of a quickly decaying threshold that suppresses at
short times ðtohTi0Þ the occurrence of short ISIs. These
short ISIs appear now at a later instant, most likely in
the mode of the ISI density. In other words, probability
at short ISIs is moved into the mode of the probability
density, consequently the variance of this density will
decrease. Upon further decreasing l; the variance passes
through a minimum, crosses the value of the unper-
turbed system and saturates finally at a value consider-
ably larger than for e ¼ 0: Clearly, as we decrease l; the
threshold decay extends over longer and longer parts of
the typical passage from v ¼ 0 to v ¼ YðtÞ: If the decay
time 1=l gets equal to the mean ISI or even larger, the
effect of moving short ISIs into the mode of the ISI
density does not play a role anymore, but quite the
10-2 10-1 100 101

0.18

0.2

0.22

0.24

<
T

2 >

Theory ε=0 

Theory ε=0.05 
Theory  ε=0.1
Theory ε=0.2 
Sims  ε=0
Sims ε=0.05 
Sims ε=0.1 
Sims ε=0.2 

λ

Fig. 3. The variance of the ISI vs. decay rate of the threshold for the

perfect IF model. Simulations (symbols) and theory (lines) with the

indicated values of the amplitude e and s2 ¼ 0:2:
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contrary effect can be observed: realizations around the
mode of the density will be shifted further out and hence
the variance of the density will even increase compared
to the unperturbed case e ¼ 0:

As a matter of fact, the variance displays a minimum
only for sufficiently small noise intensity satisfying the
condition

CV 0 ¼ s=
ffiffiffi
m

p
o

ffiffiffi
2

p
(43)

as can be shown by inspecting Eq. (15). Furthermore,
the decay rate which minimizes the variance can be
expressed by the squared coefficient of variation, for
brevity denoted by R ¼ CV 2; and by the mean ISI of the
unperturbed system hTi0

lmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4R � 2R2

p
� 3R2=2 þ 4R � 1

hTi0Rð2 � RÞ
2

: (44)

In the weak noise limit (s ! 0), this value tends to

lmin !
3

2

1

hTi0
as CV 0 ! 0: (45)
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Fig. 5. Rate and CV of the ISI vs. input current m for the perfect IF model.

Other parameters: e ¼ 0:5 and s2 ¼ 0:2:
For finite noise intensity, lmin will be larger than this
value (as long as condition Eq. (43) is met). The latter
three relations are also found for an exponentially
forced linear dynamics (Lindner, 2004b)—we recall that
the variances in these two cases, i.e. Eqs. (14) and (16))
considered as functions of l differ only by a constant.

Interestingly, although the variance can be either
smaller or larger than in the case of a constant
threshold, the relative variability as measured by the
CV of the system with decaying threshold is always
smaller than that for e ¼ 0 (cf. Fig. 4). Hence, the
increase of the mean is stronger at low l than the
increase of the standard deviation. The CV attains a
minimum for l  0:5=hTi0; i.e. if l equals half of the
firing rate of the unperturbed system. Further explora-
tion reveals that this changes only slightly if base current
or noise intensity are changed: the decay rate at which
the minimum is attained varies between 0:5=hTi0 (for
weaker amplitude e) and 1=hTi0 (for stronger amplitude
e). The minimum does also occur for parameters at
which the variance does not attain a minimum vs. l:
Thus, in general the time-dependent threshold leads to
the strongest decrease of the relative variability if
threshold decay and unperturbed firing of the perfect
IF model have similar time scales.

Up to this point, we have considered the central
moments of the ISI vs. the decay rate of the threshold, a
picture that is convenient from the modelers point of
view but hardly measurable in a real neuron. More
common are plots of the transfer function, i.e. the
relation between the constant base current m and the
output rate, shown in Fig. 5 (l.h.s.). We also plot the CV
as a function of m (Fig. 5, r.h.s). In both figures, a
stronger amplitude (e ¼ 0:5) is used to show more
clearly the effect of the time-dependent threshold.

The rate of a perfect IF model with constant threshold
is a simple linear function (it is zero for mp0). From
Fig. 5 it is seen that the input current at which the rate
deviates from the linear behavior depends strongly on
the decay rate. If the input current m is sufficiently strong
such that m2

bls2 (this is the case for almost the entire
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range of m shown in Fig. 5 (l.h.s.)), we can approximate
the rate using Eq. (15) as follows:

r ¼ mð1 þ ee�l=mÞ
�1: (46)

With increasing m this simple relation shows a turnover
from r  m (unperturbed system) to r  m=ð1 þ eÞ (un-
perturbed system with larger threshold 1 þ e).The turn-
ing point depends only on l but not on s:

The CV is shown in Fig. 5 (r.h.s). It decreases
monotonously with increasing m for all values of the
decay rate. Remarkably, the difference between the CV
for e ¼ 0 and the CV of the system with time-dependent
threshold (inset) goes through a maximum. Put differ-
ently, the effect of the time-dependent threshold on the
relative variability is maximal for a certain input current
m: The value of m where the difference reaches its
maximum is to a good approximation given by the base
current that yields for e ¼ 0 a firing rate equal to 0:75l:
At the first glance this resembles the other condition we
found for the minimum in the CV vs. l where the decay
rate had to be slightly below the firing rate of the
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logarithmically; the noise intensity is s2 ¼ 0:2:
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Other parameters: e ¼ 0:5 and m ¼ 1:
unperturbed system. To clarify the small quantitative
discrepancy between the two conditions, we show in
Fig. 6 the difference between the CVs of the perfect IF
model without and with time-dependent threshold.

Clearly maxima are seen vs. l as well as vs. m;
however, these do not correspond to one global
maximum of the CV’s difference. For l  1 (i.e.
logðlÞ  0), for instance, a maximum vs. m is attained
at a small base current. At this value of m the difference
in CVs can be further increased by decreasing the decay
rate l: Although maxima vs. l and vs. m are located at
parameters that correspond to different ratios of decay
rate and firing rate, we can state that qualitatively a time-
scale matching condition is present: if the firing rate of
the unperturbed system and the decay rate are of the
same order of magnitude the effect of the time-dependent
threshold on the relative variability of the ISI sequence
will be strongest.

Fig. 7 shows rate and CV as functions of the noise
intensity s for different values of the decay rate l: The
rate dependence in the left panel illustrates nicely the
validity of the simple expression given in Eq. (46), that is
for so0:4; the rate does not depend on the noise
intensity at all. In the strong noise limit, we obtain
the simple expression for the rate m=ð1 þ eÞ; i.e. the rate
saturates at the value given by a static increase of the
threshold by e:

The CV in turn increases linearly with growing noise
intensity like the CV of the unperturbed system ðe ¼ 0Þ:
The effect of the time-dependent threshold is mainly a
simple offset of the CV compared to the unperturbed
case. The difference between unperturbed and perturbed
CV grows monotonously with s; i.e. it does not show a
maximum in contrast to Fig. 5 (inset in right panel)
where we varied the input current m instead of s:

In conclusion, the exponentially decaying threshold in
a perfect IF model results in an decreased relative ISI
variability, in a enlargement of the mean ISI (decrease in
firing rate), and in a variance (absolute variability) that
can be larger (for small l) or smaller (for large l) than in
the absence of the time-dependent threshold. F � I
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curves deviate slightly from the linear behavior of the
standard perfect IF model, showing a simple turnover
from the unperturbed case (at small input current) to the
rate of the standard model with static threshold at 1 þ e:
The effect of the time-dependent threshold on the
relative variability is minimized at a decay rate or a
base current at which a time-scale matching condition is
met: in this case the decay rate is equal to the rate of the
unperturbed system. This condition resembles the effects
of stochastic resonance (see Gammaitoni et al., 1998 for
a review); the minimum in the CV in turn is also
observed in another noise-induced effect: coherence
resonance (Pikovsky and Kurths, 1997). Note, however,
two important differences of our findings to the
aforementioned noise-induced effects: (1) in our case
the minimum in the CV is observed while varying decay
rate or input current but not by varying the noise
intensity; (2) there are no potential barriers or true
excitability involved here, yet they are essential for the
effects of stochastic resonance and coherence resonance.

4.2. Results for the leaky IF model

For the leaky IF model (with a ¼ 1 in Eq. (1)) we
choose in the following a base current that is subthres-
hold (mo1). In this case the firing statistics are
significantly different from that of the perfect IF model
and a qualitatively different behavior of rate and CV
with respect to a variation of input current and noise
intensity can be expected.

We first consider the mean, variance and CV as
functions of the decay rate for m ¼ 0:8 and a moderate
noise intensity with s2 ¼ 0:2: The value of the base
current m implies that the neuron is in the subthreshold
or noise-induced firing regime in which the voltage can
reach the threshold even in the unperturbed case e ¼ 0
only by the assistance of noise. Further, at these
parameter values the firing is determined by two
different, statistically independent processes: the passage
of the voltage from the reset voltage v ¼ 0 into the
resting voltage v ¼ m (relaxation process) and the escape
from the resting voltage to the time-dependent threshold
(escape process). It is important to note that the escape
process can only be realized in the presence of noise.

The mean ISI shown in Fig. 8 is a monotonously
decreasing function of the decay rate like in the case of
the perfect IF model. The approximation resulting from
the optimized perturbation calculation reproduces the
simulation data well up to an amplitude e ¼ 0:1; for e ¼
0:2 we note that the real ISI is slightly underestimated by
the analytical result.

The variance (Fig. 9) is almost always a decreasing
function of the decay rate as well. A closer look at large
decay rates (inset of Fig. 9) shows a small region where
the variance undershoots that of the unperturbed system
(i.e. that at l ! 1). This small decrease in absolute
variability is hard to verify by simulations and will
therefore be also hardly observable in real neurons.

Once more, the picture is different if we consider
the relative variability, that is the CV vs. decay rate
(Fig. 10). The relative variability is considerably
decreased (more than in the case of the perfect IF
model, cf. Fig. 4) as long as the decay rate is in a certain
range of moderate values. Below the lower limit of this
range ( 0:04 with slight differences among curves for
different values of �), we find that the CV can be higher
than in the unperturbed system which stands in marked
contrast to the findings for the perfect IF model. In the
limit l ! 0 we deal with a constant, though increased
threshold 1 þ �: Why does this increased threshold lead
to a higher relative variability? This can be understood
by considering the independent processes of relaxation
and escape the sum of which forms the entire first
passage process as explained above. At low l; the quasi
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static increase of the threshold will increase the relative
strength of the escape time while leaving the relaxation
process (passage from zero to resting voltage) un-
changed. Consequently, the entire process becomes
more irregular, which becomes apparent by the high
value of the CV at low l: Following this line of
reasoning it is also clear why this effect is not observed
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Fig. 10. The CV of the ISI vs. decay rate of the threshold for the leaky
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0.0 0.5 1.0 1.5 2.0
µ

0

0.5

1

1.5

ra
te

ε=0
λ=10
λ=1
λ=0.1

Fig. 11. Rate and CV of the ISI vs. input current m for the leaky IF model.

parameters: � ¼ 0:1 and s2 ¼ 0:2:

10-1 100
0

0.2

0.4

0.6

0.8

1

ra
te

ε=0
λ=10
λ=1
λ=0.1

σ

Fig. 12. Rate and CV of the ISI vs. noise intensity s for the leaky IF model.

parameters: � ¼ 0:1 and m ¼ 0:8:
in the perfect IF model where the escape time part of the
ISI is absent (there is no potential barrier for the perfect
IF model).

Next we discuss the dependence of spike rate and CV
as functions of the input current m and the noise
intensity s at different values of the decay rate l: The
transfer function (rate vs. input current) does not change
compared to the unperturbed case if the decay rate is
high (l ¼ 10). Deviations are present for l ¼ 1 and even
more pronounced for l ¼ 0:1; the threshold decay in this
case diminishes the slope of the transfer function.

The CV as a function of the input current decreases
monotonously for all decay rates shown in Fig. 11
(r.h.s.). As for the transfer function, a threshold decay
l ¼ 10 does not have much effect. For l ¼ 1 and l ¼ 0:1
the CV is decreased by the time-dependent threshold;
this decrease is again maximal for a certain finite input
current (cf. inset of Fig. 11, r.h.s.) which depends on the
decay rate l: Like in the case of the perfect IF model,
the maximum is attained at an input current for which
the rate of the unperturbed system is of the order of
magnitude of the decay rate; in particular for the
parameters used in Fig. 11 (r.h.s.), we have that
r0ðmmaxÞ  0:6l for both l ¼ 1 and l ¼ 0:1:

The effect of the decaying threshold on the rate and
the CV as functions of the noise intensity is shown in
Fig. 12. Clearly, the smaller the decay rate, the larger the
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effect on both rate and CV. Again for l ¼ 10; there is no
appreciable effect of the threshold decay on the
characteristic curves. For l ¼ 0:1 and l ¼ 1; the rate
drops compared to the unperturbed case; the decrease is
strongest at large noise intensity. For the CV in turn, the
value of the decay rate determines strongly whether the
effect of threshold decay is strongest at small or at large
noise intensity. The CV shows a minimum vs. s even in
the case of a constant threshold (� ¼ 0). This is a
manifestation of coherence resonance (Pikovsky and
Kurths, 1997) and has been found previously in the
leaky IF model with constant threshold (Pakdaman
et al., 2001; Lindner et al., 2002). It is a consequence of
the different dependences of the relaxation and escape
processes on the noise intensity. As we see in Fig. 12
(r.h.s.), a time dependent threshold with decay rate l ¼

1 decreases the CV around the minimum and also at
larger noise intensities; its effect vanishes in the weak
noise limit. This is qualitatively different if we consider
the slower decay of the threshold with l ¼ 0:1: Still the
minimum of the CV is deepened though not as strongly
as for l ¼ 1: Most importantly, the strongest deviation
is obtained at fairly small noise where the CV of the
unperturbed system is already close to one which is the
Poisson limit. We note that the same limit is actually
approached if we decrease the input current m suffi-
ciently. Therefore, the strongest impact of the threshold
decay on the relative variability at l ¼ 0:1 for both the
CV vs. m and the CV vs. s occurs if the leaky IF model
operates in a Poissonian firing regime with a time-
dependent rate.

We note that the decrease of the CV at small base
current or small noise intensity for l ¼ 0:1 is so strong
that it should be taken with caution (the theory is
actually only valid as long as the statistics are changed
only slightly). The strong effect of a threshold decay
with l ¼ 0:1 variability raises the question of what is
going to happen if we go to even smaller decay rates. In
Fig. 13 we show the CV vs. m (l.h.s.) and vs. s (r.h.s.) for
l ¼ 0:01: Here a qualitative change of these curves can
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Fig. 13. CV of the ISI vs. input current m (left) and noise intensity s (right) fo

values of the amplitude � (theory is not plotted for � ¼ 0:05 in the right pan

panel). Because of the low spike rate at small noise we used a smaller numb
be observed: the CV goes through a minimum upon
varying m as well as s in a parameter range where the
leaky IF with constant threshold generates a Poisson
spike train. Minima are predicted by the theory in both
cases and confirmed by the results of computer
simulations. However, we note that the theory based
on a linear correction is not very good just around the
parameter values that minimize the CV; in fact, the
theory breaks down (yielding negative ‘‘variance’’ and
the like) for the largest amplitude � ¼ 0:05 in Fig. 13
(r.h.s.). This is to be expected since the linear correction
cannot be good at providing large corrections to the
unperturbed case as they are seen in the results of the
simulations.

The origin of the new minimum occurring in the
Poissonian parameter regime becomes clear by realizing
that the minimum appears at parameters for which the
firing rate is of the same order of magnitude like the
decay rate. At much lower input current or noise
intensity, the mean interval is much larger and thus only
a small fraction of realizations is influenced by the
threshold decay; most realizations ‘‘see’’ a constant
threshold and hence in this limit the CV tends to one.
On the other hand, beyond the respective ‘‘optimal’’ value
of m or s the threshold decay starts to look slow, most
realizations will pass the threshold before it has appreci-
ably changed; also in this case the irregularity will tend to
that of the Poisson process. The reason that the Poisson
limit is actually not approached in this case is evident:
going beyond small base current and small noise
intensities brings all the internal dynamics into play, again.

Certainly, the minimum in the CV seen while varying
externally controllable parameters like input current or
input noise is the most pronounced manifestation of the
threshold decay. Such minima have been actually
observed experimentally (Goldberg et al., 1984) and in
other models (Smith and Goldberg, 1986) although not
in the Poissonian firing regime but for regularly firing
neurons. The dynamical mechanism thus seems to be
quite different from the one observed here.
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5. Summary and conclusions

In this paper, we have studied the effect of an
exponentially decaying threshold on the ISI statistics for
both perfect and leaky IF models driven by white
Gaussian noise.

In the case of the perfect IF model, we have shown
that the mean ISI is generally slightly increased while the
variance can be either increased (at low decay rates) or
decreased (at large decay rates) due to the threshold
decay. The variance attains a minimum for a decay rate
that is of the same order of magnitude as the firing
rate of the neuron. Remarkably, the CV which
quantifies the relative variability is, however, always
smaller than for a constant threshold. In this sense, the
exponentially decaying threshold introduces an addi-
tional relative refractory period into the dynamics of a
perfect IF model. We furthermore demonstrated that
the transfer function shows a turnover between two
linear curves with increasing input (or base) current.
Varying the input current we also found that the effect
of the threshold decay on the CV is maximized if the
firing rate of the neuron matches the decay rate of the
threshold. It is important to note, however, that all of
these effects are comparably weak: a 20% change in the
threshold amplitude yields only a change of the CV by a
small fraction.

For the leaky IF model, we found an increase in both
mean and variance of the ISI; only a very small decrease
of the variance was seen at large decay rates of the
threshold. The CV is in this case reduced for moderate
up to large decay rates; an increase of the CV at low
decay rates could be explained by the effect of an
increased quasi-static threshold for low decay rates. The
influence of the decaying threshold on the transfer
function is—as in the case of the perfect IF model—
fairly weak. Considering the CV as a function of
base current or noise intensity we uncovered an
interesting effect at low decay rate. In a regime at
low base current or small noise intensity, the CV shows
a minimum whenever the firing rate is of the same
order of magnitude as the decay rate. The minimum can
be considerably deeper than the CV for constant
threshold (which is about one) already for amplitudes
of the decaying threshold that have in all other
parameter regimes a negligible effect on the ISI
statistics. We note that considering the CV vs. noise
intensity, the novel minimum is observed at much lower
noise intensity than the well-known coherence-reso-
nance minimum.

The calculation of the ISI’s mean and variance
presented in this paper can be regarded as a first step
for the analytical treatment of the non-renewal LIFDT
model mentioned in the introduction. In the latter
model, the threshold decays exponentially like in our
model; the threshold is, however, increased by a
constant A whenever the neuron fires instead of being
reset to a fixed value. Consequently, the initial value of
the threshold 1 þ �i will be a random variable depending
on the spike history. For a fixed value of �i we can
use the formulas for mean and variance derived in
this paper; the random nature of the initial value �i

then requires an additional average that is beyond the
framework of the present paper. It is, however, not
too hard to see that for small jump amplitude A we
have �i � A; in this case, the corrections to the mean
and variance will only depend on the mean value of
the initial value of the threshold h�ii: Therefore, at
fixed system parameters, the mean and variance of
the LIFDT model equal those of a renewal leaky IF
model with decaying threshold with an effective
amplitude h�ii:

The reduction in rate and CV demonstrated for
both the perfect and leaky IF models, may have an
effect on the neural signal transmission. The reduction
in rate will certainly diminish the susceptibility of
the neuron, i.e. its spectral sensitivity with respect to a
weak time-dependent modulation of the input current.
It will, however, also strongly reduce the noise floor
since, at low frequencies, this is given by the product
CV 2r (Cox and Lewis, 1966). Which of these effects is
stronger in affecting the spectral signal-to-noise ratio
will certainly depend on the model and its parameters;
this remains an interesting questions for a future
investigation.
Appendix A. Optimizing the perturbation result for the

leaky IF model

Here we first show that if l takes on one of the
specific values in Table 1, Eqs. (38) and (39) with the
values of c1 and c2 taken from Table 1 will lead to
exact solutions for mean and variance of the ISI.
Furthermore, we derive the formulas for c1 Eqs. (41)
and (42) that give a good approximation for the
respective quantities (hTi or hDT2i) for an arbitrary
value of l:

As a matter of fact, for the leaky IF model with
constant threshold and drift term, each moment and
also every function of the moments (e.g. the variance)
can be written as a function of two effective parameters
f ðx1; x2Þ with

x1 ¼
m� vT

s
; x2 ¼

m� vR

s
; (47)

where vT and vR are constant (but arbitrary) threshold
and reset voltages, respectively. This follows readily
from the fact that the Laplace transform of the
ISI density r0ðlÞ (see Eq. (31)) from which the moments
can be derived does only depend on these two
parameters.



ARTICLE IN PRESS
B. Lindner, A. Longtin / Journal of Theoretical Biology 232 (2005) 505–521 519
Next, we rewrite Eqs. (38) and (39) in the general form

F ¼ f x1 ¼
mþ �c1 � ð1 þ �Þ

sð1 þ �c2Þ
; x2 ¼

mþ �c1

sð1 þ �c2Þ

� �

þ
�

1 þ �

l� 1

l
df ðlÞ þ ð1 � c1Þ

@f

@m̂
� sc2

@f

@ŝ

� �
: ð48Þ

Here F denotes either mean or variance, f is the
respective quantity in the unperturbed case, and df ðlÞ
stands for the linear correction due to the time-
dependent drift.

The exact solutions for F at l ¼ 0 and 1 and at l ¼ 1
can be inferred from the rescaled parameters of the
standard leaky IF in Eqs. (1), (2), and (22), respectively

F ¼ f x1 ¼
m� ð1 þ �Þ

s
;x2 ¼

m
s

� �
; l ¼ 0; (49)

F ¼ f x1 ¼
ðmþ �Þ=ð1 þ �Þ � 1

s=ð1 þ �Þ
; x2 ¼

ðmþ �Þ=ð1 þ �Þ

s=ð1 þ �Þ

� �

¼ f x1 ¼
m� 1

s
;x2 ¼

ðm� ð��ÞÞ

s

� �
; l ¼ 1; ð50Þ

F ¼ f x1 ¼
m� 1

s
;x2 ¼

m
s

� �
: l ! 1: (51)

In words: (i) for l ¼ 0; the function F corresponds to the
function with constant threshold and constant drift but
with a threshold vT ¼ 1 þ �; (ii) for l ¼ 1; F corresponds
to the unperturbed system with an reset point at vR ¼

��; (iii) for l ! 1; the function F is equal to that of the
standard leaky IF, namely f with standard parameters.

Comparing the values of x1 and x2 in the first term of
Eq. (48) to those in Eqs. (49)–(51), we can solve for c1

and c2 and find the values that are displayed in Table 1.
Next we show that for a parameter set taken from
Table 1, the second term in Eq. (48) (the linear
correction) vanishes.

For l ¼ 0; c1 ¼ 0; and c2 ¼ 0 the exponential forcing
turns into a static forcing, implying that the linear
correction with respect to the time-dependent drift must
approach the linear correction with respect to a static
change of the base current multiplied by the decay rate

df ðlÞ ! l
@f

@m̂
as l ! 0; (52)

which leads in Eq. (48) to

½� � � �l¼0 ¼ �
@f

@m̂
þ

@f

@m̂
¼ 0 (53)

as asserted.
For l ¼ 1 and c1 ¼ 1; c2 ¼ 0 according to Table 1, all

terms in the squared bracket vanish because of the
vanishing prefactors. Thus also in this case the assertion
holds true.

Finally, for l ! 1 the dynamical correction df

approaches the linear correction with respect to a static
change in the initial point; recall that df was the
response to l expð�ltÞ that tends for l ! 1 to a d spike
at t ¼ 0: It is readily seen that the linear correction with
respect to a change in the initial point can be expressed
as follows according to Eq. (47) (note that we dropped
the dependence on vR in Eq. (48) by setting vR ¼ 0)

lim
l!1

df ðlÞ ¼
@f

@vR

¼ �
1

ŝ
@f

@x2
: (54)

Expressing now the derivatives with respect to m and s
as derivatives with respect to x1 and x2; we obtain with
the values c1 ¼ m and c2 ¼ 1; that m̂ ¼ m and ŝ ¼ s . The
second term in Eq. (48) reads now

½� � � �l!1 ! �
1

s
@f

@x2
þ

1 � m
s

@f

@x1
þ

@f

@x2

� �

þ
1

s
ðm� 1Þ

@f

@x1
þ m

@f

@x2

� �
¼ 0 ð55Þ

as asserted.
After having shown that the values of c1 and c2 in the

Table 1 lead to the exact results at the specific values of
l; we turn now to the question of how c1 and c2 should
be chosen if l is arbitrary. Note first that the values in
Table 1 have in common that the linear correction (the
square bracket in Eq. (48)) vanishes. For an arbitrary
value of l; it is thus reasonable to demand that the
absolute value of the linear correction should
be minimized with respect to c1 and c2: To simplify
the matter we require furthermore that (i) c2 ¼ 0
(corresponding to the optimized values of c2 at l ¼ 0
and l ¼ 1) and (ii) the value c1 does not depend on the
amplitude �: We note that an optimization with respect
to c1 and c2 is possible; the resulting formulas are,
however, not unique (there are two different solutions
for small l each of which covers one of the exact
solvable cases l ¼ 0 and l ¼ 1) and also too cumber-
some to be of much practical use. If c2 ¼ 0; we obtain
from setting the square bracket in Eq. (48) to zero
(which is obviously the minimum of the absolute value)

c1 ¼ 1 þ
ðl� 1Þdf

l@f =@m̂
: (56)

In general, also the right-hand side of this equation does
depend on c1 and also on � through the effective
parameter m̂: The condition that c1 should be indepen-
dent of � then leads to the simple conclusion to take the
r.h.s. of Eq. (56) at vanishing amplitude. With this we
obtain Eqs. (41) and (42).

Finally, we show in Fig. 14 the CV for the leaky IF
model vs. decay rate l in order to illustrate the different
approximations discussed above. The line correspond-
ing to the optimized values of c1;T and c1;DT2 (which are
functions of l; m and s) describes reasonably well the
simulation data. This is even the case for large l where
the approximation does not reproduce the exact result
(here the dotted line for c1 ¼ m and c2 ¼ 1 gives the
correct result). Each of the approximations with pairs c1
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and c2 taken from Table 1 reproduces the data for
values of l close to the respective special value from
Table 1. While the approximations resulting from c1 ¼

1; c2 ¼ 0 and c1 ¼ m; c2 ¼ 1 deviate significantly only for
small decay rate l; the approximation c1 ¼ c2 ¼ 0
(dashed line) deviates strongly for all l above a very
small critical value ( 10�1).

The formulas for mean and variance derived cover a
large area in the parameter space, including moderate up
to large noise intensity s; small positive (subcritical) up
to large (supracritical) base currents m; and the entire
range of decay rates. Caution must be used, however, in
a specific parameter range. If the base current is
subthreshold (mo1), the decay of the threshold is slow
(l51), the formulas for mean and variance fail in the
weak noise limit s ! 0 in the sense that we have to
choose smaller and smaller amplitude � to achieve an
agreement between theory and simulation results. The
simple reason is that in this regime the dependence of the
ISI moments on the time-dependent threshold becomes
strongly nonlinear. To illustrate this consider the mean
ISI in the small noise limit at a static threshold vT þ �: If
mo1 the mean approaches asymptotically

hTi � exp
ðvT þ �Þ2

s2

� �
(57)

and the ratio between perturbed and unperturbed mean
becomes

hTi=hTi0 � exp
2�vT

s2

� �
; (58)

where we have only taken into account the leading order
in �: It is easily seen from the latter relation that the ratio
can become arbitrary large as we let s ! 0; i.e.
perturbed and unperturbed mean diverge exponentially
and any perturbation calculation based on only a small
difference between hTi and hTi0 must fail.
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