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Short-term synaptic plasticity (STP) can significantly alter the amplitudes of synaptic responses in ways that depend on presynaptic
history. Thus, it is widely assumed that STP acts as a filter for specific patterns of presynaptic inputs, and as a result can play key roles in
neuronal information processing. To evaluate this assumption and directly quantify the effects of STP on information transmission, we
consider a population of independent synaptic inputs to a model neuron. We show using standard information theoretic approaches that
the changes in synaptic response amplitude resulting from STP interact with the related effects on fluctuations in membrane conduc-
tance, such that information transmission is broadband (no frequency-dependent filtering occurs), regardless of whether synaptic
depression or facilitation dominates. Interestingly, this broadband transmission is preserved in the postsynaptic spike train as long as the
postsynaptic neuron’s baseline firing rate is relatively high; in contrast, low baseline firing rates lead to STP-dependent effects. Thus,
background inputs that control the firing state of a postsynaptic neuron can gate the effects of STP on information transmission.
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Introduction
Short-term synaptic plasticity (STP) acts on a variety of time-
scales to change the amplitude of postsynaptic responses to pre-
synaptic spike trains (Abbott and Regehr, 2004; Morrison et al.,
2008). The functional roles that STP is thought to play depend on
the nature of the presynaptic inputs. STP can enhance the detec-
tion of transient inputs, such as presynaptic bursts and abrupt
changes in input rate (Abbott et al., 1997; Lisman, 1997; Puccini
et al., 2007). In the case of stationary presynaptic inputs (i.e.,
inputs with constant mean rate), STP is generally thought to lead
to high-pass or low-pass filtering (Dittman et al., 2000; Fortune
and Rose, 2001; Abbott and Regehr, 2004). This idea is based on
the changes in synaptic response amplitude (synaptic gain) dur-
ing stimulation of presynaptic inputs at different rates (Dittman
et al., 2000; Lewis and Maler, 2002; Klyachko and Stevens, 2006):
facilitation leads to increases in amplitude with increasing input
rate, while short-term depression leads to decreases, suggesting
high-pass and low-pass filtering, respectively.

A description of such changes in synaptic amplitude is not
sufficient, however, to fully describe information transmission
across a synapse. To do this, one must also consider changes in
synaptic amplitude in the context of accompanying noise sources
(Rieke et al., 1996; Gabbiani and Koch, 1998; Stein et al., 2005).
Under natural conditions, synaptic inputs can involve popula-
tions of asynchronously firing presynaptic neurons, with the re-
sulting synaptic activity providing a major source of membrane

voltage fluctuations, or noise (Jacobson et al., 2005). In addition,
one must consider how time-dependent synaptic amplitudes and
associated fluctuations are affected by time-varying inputs. Fi-
nally, the influence of these dynamic synaptic inputs on postsyn-
aptic spike trains must be understood. Fluctuations in membrane
voltage near spiking threshold can greatly influence postsynaptic
spike trains (Chance et al., 2002; Kuhn et al., 2004; Stein et al.,
2005). How these different features interact to influence informa-
tion transmission across the synapse is not clear.

In this study, we investigate how STP shapes information trans-
mission in a spiking model neuron receiving input from a popula-
tion of independent synapses using a common formalism to model
synaptic plasticity (Abbott et al., 1997; Tsodyks and Markram, 1997;
Dittman et al., 2000; Lewis and Maler, 2002; Abbott and Regehr,
2004; Puccini et al., 2007; Mongillo et al., 2008; Morrison et al.,
2008). We first characterize the synaptic activity in the context of
spontaneous background inputs, and then quantify information
transmission of a signal encoded by a rate-modulated input. We
show that information transmission across a synapse can be inde-
pendent of the frequency of this rate-modulated input regardless of
whether facilitation or depression dominates. Information trans-
mission is thus broadband, with no STP-dependent filtering. Inter-
estingly, the expression of this effect in a postsynaptic spike train
depends on the state of the postsynaptic neuron: broadband coding
is preserved when the neuron is firing at moderate to high rates, but
STP-dependent filtering occurs when the neuron is firing at low
rates. These results suggest the intriguing possibility that the back-
ground synaptic inputs shown to be involved in controlling firing
rate, response gain, stochastic resonance, and phase locking (French
et al., 1972; Knight, 1972; Longtin, 1993; Doiron et al., 2001; Chance
et al., 2002; Le Masson et al., 2002; Stein et al., 2005), can also play a
more complex role in neural coding by controlling a switch between
broadband information transmission and STP-dependent filtering.
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Materials and Methods
Our overall approach involves well established techniques to model and
quantify short-term synaptic plasticity, neuronal firing dynamics, and
information transmission (Rieke et al., 1996; Gabbiani and Koch, 1998;
Dayan and Abbott, 2001). We summarize the important aspects below
and include additional technical details in the Appendix.
FD-modeling formalism and LIF neuron model. In the first part of our
study, we consider only spontaneous background synaptic inputs. In this
case, a population of inputs (N � 100) are described by Poissonian
presynaptic spike trains denoted by �j(t) � �i �(t � ti,j), where ti,j is the
ith spiking time of the jth presynaptic input and the mean firing rate for
each input is r � ��j(t)� (chosen to be equal for all synapses and thus
independent of j). Here and in the following, �� denotes an ensemble
average. The synaptic amplitude due to the ith input spike at the jth
synapse is given by the product Fi,jDi,j, where Fj(t) and Dj(t) are the
facilitation and depression variables of the jth synapse following the dy-
namics given by the following equations:

Ḋj �
1 � Dj

�D
, t � ti, j f Dj3 Dj�1 � Fj� (1)

Ḟj �
F0 � Fj

�F
, t � ti, j f Fj3 Fj � � (2)

Fj�t� � 1fFj�t�3 1. (3)

At the time of an input spike (t � ti,j), D is first updated (decreased by an
amount Fi,jDi,j); then F is updated by an increment �; for the synaptic
amplitudes, we take the values at a time ti

� just before these updates, i.e.,
Fi,j � Fj(ti

�), Di,j � Dj(ti
�). We have introduced an upper bound for F,

i.e., F � 1, to prevent negative values of the update factor of the depres-
sion variable. For very low input spike rates, F � F0 and D � 1. The
FD-modulated synaptic input at the jth synapse is xj(t) � �i Fi,jDi,j�(t �
ti,j) and the total synaptic input (summed over all N � 100 synapses) is
denoted by X(t) � �i,j Fi,jDi,j�(t � ti,j). The mean amplitude at low input
rate can be approximated by the following (see Appendix):
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The formula fits the simulation results even at larger rates (compare Fig.
1 B).

The postsynaptic conductance due to the total synaptic input X(t) is
given in our model by Ġ � �G/� 
 ( g0/N )X(t), where � � 5 ms and
g0/N � 4 nS. This conductance then drives a leaky integrate-and-fire
(LIF) model neuron described by CmV̇ � �gL(V � VL) � G(t)(V � VE)

 	 and a fire-and-reset rule. Here, V̇ represents the time derivative of V;
VL � �70 mV and VE � 0 mV denote the leak and the excitatory reversal
potentials, respectively; gL � 100 nS is the leak conductance, Cm � 1 nF
is the membrane capacitance, and 	 is a constant bias current. The firing
threshold is Vthr � �65 mV, and after firing the voltage is reset to Vreset

� �70 mV. We denote the LIF output spike train by y(t) � �k �(t � tk).
Spectral measures of membrane conductance fluctuations. To quantify

the membrane fluctuations at different frequencies, we use the power
spectrum. Given a certain time series Z(t) (input or output spike train or
conductance fluctuations) in a time window [0, T], we can determine its

Fourier transform by Z̃ � �
0

TdtZ�t�e2
ift; its power spectrum is then

defined as the scaled variance of the Fourier transform

SZZ� f � �
�Z̃Z̃*	

T
, (5)

where the asterisk denotes complex conjugation. Since the conductance
dynamics is just a linear filter acting on the total synaptic input, the power
spectra of the conductance fluctuation SGG and that of the total input SXX

are related by

SGG� f � �
��g0/N�2

1 � �2
f��2SXX� f �. (6)

For the latter spectrum, we find for low input rate r the following approx-
imation (see Appendix):

SXX � rN� Ai, j
2 	 � 2r2N� Ai, j	 � � ��F

1 � �2
f�F�
2 �

F0
2�D
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f�D�2

�
�F0�̃

1 � �2
f�̃�2� , (7)

where Ai,j � Fi,jDi,j and �̃ � (�F
�1 
 �D

�1) �1. An approximation for the
second moment of the synaptic amplitude needed in this formula is
sketched in Appendix.

Rate-modulated input and quantifying information transmission. We
modulate the rate of the Poisson process that drives the synaptic input in
two different ways: first, by a sinusoidal signal Rsin(t) with frequency fs,
and then by a band-limited Gaussian signal Rran(t) (cutoff frequency 50
Hz). For sinusoidal signals, we use the signal-to-noise ratio (SNR) to
quantify the response (McNamara and Wiesenfeld, 1989; Gammaitoni et
al., 1998). For weak periodic driving, the power spectrum contains peaks
at the driving frequency (inversely proportional to the frequency bin)
and the negative driving frequency, on top of a continuous background
spectrum (noise floor Sbackground). For a finite simulation time Tsim �
�f

�1, the spectrogram of the conductance SGG ( f � if � �f) reads

SGG � Sbackground�if � �f� �
�2

4�f
g1

2��if,ifs � �if,�ifs�, (8)

where �i,j is the Kronecker function and g1 is the amplitude of the time-
dependent mean value of the conductance. The signal-to-noise ratio is
calculated by dividing the peak at the driving frequency by the continu-
ous background spectrum which we obtain from an interpolation over
the frequency bins surrounding ifs

.
For the Gaussian signals, we measured the cross-spectra between the

rate-modulated input and the outputs (conductance or output spike
train of the LIF model) and calculated from these the coherence function
(Rieke et al., 1996; Gabbiani and Koch, 1998):

CZR �
	SZR� f �	2

SZZ� f �SRR� f �
, (9)

where SZR( f ) is the cross-spectrum and SZZ( f ) and SRR( f ) are the re-
spective power spectra of the output Z and the input Rran(t).

For the coherence data we simulated 5000 realizations over a time
window of �10 6 time steps of �t � 4 � 10 �4 s; cross-spectra and power
spectra were averaged over 20 frequency bins (we ensured that this did
not smooth out any true frequency dependencies) to obtain smooth
estimates of the coherence function.

Designing static synapses for comparison to dynamic synapses. We want
to compare the statistics of a postsynaptic spike train generated by an LIF
with FD dynamics (i.e., with dynamic synapses) to the same kind of
statistics for static synapses, i.e., synapses without FD dynamics. A first
approach might be to use a constant synaptic amplitude equal to the
mean amplitude of the FD synapse in the conductance dynamics (i.e., g0

� �FD�). It turns out that the resulting variability of the conductance in
this case is much lower (because the amplitude of the presynaptic input
does not vary); thus, the LIF output and consequently the LIF’s coher-
ence with the rate modulation is drastically lower as well. A better ap-
proach is to set up the synaptic conductance dynamics such that the
mean and variance of the conductance are approximately the same for
static and dynamic synapses. To this end we proceed as follows. In a first
simulation, mean and variance of the conductance �G� and ��G 2� are
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measured for a population of dynamic synapses. For the static-synapse
setup, we then choose the following dynamics for gs(t):

ġs � �
gs � �1

�
� �2


i, j

��t � ti, j�. (10)

The task solved in the following is to determine the parameters �1 and �2

such that

�gs	 � �G	, ��gs
2	 � ��G2	. (11)

The first condition together with a steady-state average of Equation 10
[the left-hand side (lhs) vanishes] yields

�1 � �G	 � �2�Nr (12)

(here we also assumed that any rectification of the rate modulation can be
neglected and hence the mean firing rate over N synapses is just the
N-fold baseline rate r). To obtain a second relation, we express the vari-
ance of gs by the integral over the power spectrum

��gs
2	 ��

�



df Sgsgs
. (13)

We can easily determine the conductance spectrum Sgsgs
from the spec-

trum of the summed constant-amplitude input spike trains �(t) �
�j�j(t), denoted by S��, via Fourier transforming Equation 10:

Sgsgs
�

��2��2S��

1 � �2
f��2. (14)

theoryDDR

FDR

0

0.002

0.004
FDR
DDR
theory

0

0.01

0.02

0.03
co

nd
uc

ta
nc

e 
sp

ec
tru

m

100 101 102

frequency (Hz)

0

0.01

0.02

0.03

0.04

r =1Hz

r =10Hz

r =100Hz

Figure 1. Properties of synaptic dynamics for constant mean input rates. A, Schematic illustration of the influence of a single presynaptic spike train (pre) on the synaptic response in a
postsynaptic neuron (post), under two different synaptic conditions. Top, Static synapse, with no short-term plasticity and constant synaptic response amplitude; Bottom, Dynamic synapse, with
facilitation– depression FD-dependent plasticity and varying synaptic amplitude. B, Mean of the synaptic amplitude (dynamic synapse) versus mean input rate r of the Poissonian synaptic inputs.
Parameters are �� 0.05, F0 � 0.3 for the depression-dominated regime (DDR, green) and �� 0.23, F0 � 0.1 for the facilitation-dominated regime (FDR, red); �F � 79 ms, �D � 83 ms for both
regimes. Each point for the simulations (symbols) was calculated over 10 5 input spikes. The theory (dashed line) is outlined in Appendix. C, Schematic illustration of the influence of a population of
presynaptic spike trains (pre) on the net synaptic conductance G(t) in the postsynaptic neuron (post), under FD-dependent plasticity (different colors emphasize the independence of the individual
inputs; every synaptic input fires independently with mean rate r). D, Frequency content (power spectra) of the fluctuations in net synaptic conductance G(t) due to N � 100 independent synapses,
for the two different parameter sets used in Figure 1 B (DDR, green; FDR, red). Mean input rate r was 1 Hz (top), 10 Hz (mid panel), and 100 Hz (bottom); theory (dashed lines) is compared with
simulation results as indicated. Since the theory assumes small input rate, it fails at 100 Hz (and is therefore not shown; bottom). See Materials and Methods for details.
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The spectrum of the summed rate-modulated Poisson process reads [see
related calculations by Gabbiani and Koch (1998)]

S�� � Nr � ��Nr�2� s̃ s̃*	 � Nr � ��Nr�2��Fc � f ���Fc � f �.

(15)

Here the product of the Heaviside function �(�) implements the band-
pass limitation to frequencies between the cutoffs �Fc and Fc. Inserting
the full formula for the spectrum Sgsgs

into Equation 13, performing the
integral, setting the resulting variance equal to that of the dynamic vari-
ance, and solving finally for �2 yields

�2 � � 2��G2	
/�

2�N�r�2atan�2
Fc� � Nr
�
1/ 2

. (16)

Using Equations 16 and 12, �1 and �2 can be determined. We note that in
all our simulations the static and the dynamic synapses showed very
similar mean and variance for the conductance (�2% difference);
higher-order statistics as well as the tail (e.g., the stationary probability
density at high G values) differed slightly.

Results
Modeling short-term facilitation and depression
The short-term dynamics of a wide range of synapses are well
described by a combination of facilitation and depression, the
so-called FD formalism (Abbott et al., 1997; Tsodyks and
Markram, 1997; Dittman et al., 2000; Dayan and Abbott, 2001;
Lewis and Maler, 2002; Abbott and Regehr, 2004). In FD models,
F describes a facilitation process that tends to increase synaptic
strength, and D a depression process that tends to decrease syn-
aptic strength, with the net synaptic strength given by the product
FD. The dynamics of F and D arise from how they change after a
presynaptic input spike (Dayan and Abbott, 2001). At the time of
each presynaptic spike, F is incremented by a fixed amount � and
then decays exponentially toward a baseline value of F0 with a
time constant �F. Thus, F can be directly related to the transient
increase in calcium concentration due to an action potential in
the presynaptic terminal and the associated change in transmitter
release probability (Zucker and Regehr, 2002); F0 is then the base-
line probability of release. Similarly, at each presynaptic spike, D
is multiplied by (1 � F), then decays back toward 1 with a time
constant �D. The variable D reflects presynaptic Ca 2
 channel
inactivation (Mochida et al., 2008) and the amount of available
transmitter, which is depleted by a fraction (1 � F) after each
presynaptic spike (Zucker and Regehr, 2002). While the relation
to biophysical quantities is not precise, it is important to realize
that such models are able to capture a wide range of the short-
term synaptic dynamics observed experimentally (Abbott and
Regehr, 2004; Morrison et al., 2008).

In general, as F0 increases from 0 to 1, a synapse changes from
being facilitation dominated to depression dominated. Typically,
synapses in different neural pathways are dominated by either
facilitation or depression, but in some cases can transition be-
tween the two regimes over longer timescales (Markram and Tso-
dyks, 1996; Abbott and Regehr, 2004; Lewis and Maler, 2004). In
principle, multiple F and D processes can be used to describe a
particular synapse, but we consider here just one of each. As is the
convention, we use FD to scale an excitatory synaptic conduc-
tance, G, having a time constant � (see Materials and Methods). A
population of these synaptic conductances (N � 100), each with
independent FD dynamics and independent Poissonian input
spike trains, provides the input to an LIF model neuron. To
investigate the specific effects of synaptic dynamics without
the additional nonlinearities associated with action potential
generation, we first consider the condition when spiking is

blocked, and then subsequently we describe the effects on
output spike trains.

It is important to note that our approach (1) is directly related
to many previous studies of synaptic dynamics (Abbott et al.,
1997; Tsodyks and Markram, 1997; Dayan and Abbott, 2001;
Abbott and Regehr, 2004, and references therein), (2) allows us to
consider a range of relative strengths of facilitation and depres-
sion in a synaptic pathway, and specifically focuses on two dis-
tinct regimes: facilitation-dominated or depression-dominated,
and (3) does not address the issues of a single synaptic pathway
dynamically switching between facilitation and depression, nor
the stochastic nature of synaptic transmission.

Dynamics of synaptic amplitudes with facilitation
and depression
Our analysis focuses first on the mean synaptic amplitude (synaptic
gain) as a function of the mean rate r of a single presynaptic input
(Fig. 1A,B). Previous studies have shown this relationship to take
two qualitatively different forms (Abbott and Regehr, 2004), which
we illustrate in Figure 1B with two different parameter sets. The first
(red circles) is taken from a experimentally based model described
previously (Lewis and Maler, 2004). Here, the amplitude grows with
increasing input rate, reaches a maximum at �20 Hz, and then
drops to 0 for high rates. Up to an input rate of 20 Hz, facilitation
dominates in the sense that increases in input rate lead to a larger
mean synaptic amplitude. We refer to the parameter range of (F0,�),
in which the mean amplitude grows with input rate r, as the
facilitation-dominated regime or FDR. Strictly speaking, this will of
course depend on r, but here the definition applies for low to mod-
erate rates. A second parameter set (green squares) results in a
monotonic decrease in mean synaptic amplitude with input rate r. In
this case, depression dominates for the entire range of input rates.
We refer to this parameter range as the depression-dominated re-
gime or DDR. Such dynamics in the synaptic amplitudes have led to
the hypothesis that facilitation acts as a high-pass filter, and depres-
sion acts as a low-pass filter (for review, see Abbott and Regehr,
2004). In this context, high-pass and low-pass refer to the range of
input rates for which the mean synaptic amplitude (or gain) is large
relative to that for other rates. Later, we will also consider high-pass
and low-pass in the context of the frequency at which a baseline
Poisson rate is modulated.

Facilitation and depression differentially influence
fluctuations in synaptic conductance
We now consider the effects of a population of synaptic inputs on
fluctuations in membrane conductance (Fig. 1C); this is analo-
gous to recording synaptic current in a voltage-clamp experi-
ment. (Note: the context here involves spontaneous activity due
to Poisson inputs with constant mean rate; encoding a rate-
modulated signal is considered later.) While the synaptic ampli-
tude is a conventional measure of synaptic efficacy and can indi-
cate whether facilitation or depression dominates at a synapse (as
illustrated in the previous section), it does not reveal anything
about the temporal fluctuations introduced by STP (FD dynam-
ics). Likewise, it does not reveal how these fluctuations shape the
noise background at different frequencies, which is relevant for
signal detection and transmission. Instead, to investigate these
features we use the power spectrum. The power spectrum de-
scribes any time-varying signal (membrane current, spike train,
etc.) in terms of the relative strength of different frequency com-
ponents; note that we will reserve the use of the term frequency
for this context, and will use rate exclusively to refer to the num-
ber of input or output spike events per unit time.
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From the power spectrum of the total membrane conductance
G(t), we see that the main effect of STP at low and moderate input
rates (e.g., mean rate, r � 10 Hz) is different for the FDR and DDR
(Fig. 1D, middle). In the FDR, conductance fluctuations (spectral
power) in the low-frequency ranges are large relative to those in the
DDR. Further, in the FDR, spectral power decreases with increasing
frequency, whereas in the DDR, spectral power first increases then
decreases, with a spectral peak near 7–10 Hz. Note that for low to
moderate frequencies, the effect of facilitation and depression is the
opposite of that observed for the mean synaptic amplitude (Fig. 1B):
here, facilitation leads to low-pass filtering, while depression imple-
ments a high-pass filter. At very high input rates (r � 100 Hz) how-

ever, depression dominates for both parameter sets, resulting in low
power in the low-frequency ranges for both conditions (Fig. 1D,
bottom). In all cases, the loss of power in the high-frequency range
(�30 Hz) is due to depression in combination with the conductance
dynamics, which effectively low-pass filter the input spike train (see
Materials and Methods).

Sinusoidal modulation of input rate and the
postsynaptic conductance
We now consider a simple example in which a sinusoidal signal is
transmitted across the synapse. We assume the signal is initially
encoded by a sinusoidal modulation of the presynaptic spike rate;

Figure 2. Sinusoidal rate-modulated input signal and the synaptic conductance. A, A schematic illustrating the sinusoidal rate modulation Rsin(t) of a population (N � 100) of independent
presynaptic inputs onto a postsynaptic neuron. Each input spike train is independent and Poissonian with a mean rate r that is modulated by the signal Rsin(t) as r[1 
 �Rsin(t)], where Rsin(t) is a
unit-amplitude sine wave with frequency fs. We apply the same rate modulation to the input spike trains of all synapses, although each is independent. The output in this scenario is the total
postsynaptic conductance, G(t). B, Representative time series of the amplitude of one FD-modulated synaptic input (top) and the total postsynaptic conductance G(t) (bottom; in nS), for two values
of sinusoidal rate modulation, fs � 0.5 Hz (left) and fs � 50 Hz (left) with r � 10 Hz and �� 0.1. C, Frequency content (power spectra) of the fluctuations in net synaptic conductance G(t) for three
different forcing frequencies ( fs � 0.5 Hz, black; fs � 10 Hz, red; fs � 50 Hz, blue), using FDR parameters (left) and DDR parameters (right) as in Figure 1. Also indicated is the power at each forcing
frequency, S( fs), and the corresponding signal-to-noise ratio, SNR, as defined in Materials and Methods.
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this rate modulation is referred to as Rsin(t), which denotes a pure
sine wave of amplitude 1 and frequency fs. In other words, the
Poisson firing rate of the population of 100 synaptic inputs is
modulated by Rsin(t), as r[1 
 �Rsin(t)], where r is the mean input
rate and � is the amplitude of the rate modulation. This scenario
is outlined schematically in Figure 2A. Figure 2B shows the FD
dynamics (FDR) for a single input (synaptic amplitudes) and the
total postsynaptic conductance G(t) for two different sinusoidal
rate modulations ( fs � 0.5 and 50 Hz; mean rate r � 10 Hz; � �
0.1). Because of the large fluctuations involved, it is difficult to
visually assess the transmission of the sinusoidal signal. In this

context, signal transmission can be quantified by the conduc-
tance power spectra and the signal-to-noise ratio, SNR (Fig. 2C,
left) (see also Materials and Methods). Note that the SNR varies
very little for the three sinusoidal frequencies tested (SNR � 156,
153, and 148 for fs � 0.5, 10, and 50 Hz, respectively; FDR). This
is also true in the DDR (Fig. 2C, right), although comparatively,
the SNR is slightly greater (SNR � 170, 169, 171 for fs � 0.5, 10,
and 50 Hz, respectively; DDR). As we will show in the following
sections, the fact that these different rate-modulated signals re-
sult in a relatively constant SNR (for both FDR and DDR) has
important implications for synaptic information transmission.

Figure 3. Information transmission of a rate-modulated signal via the synaptic conductance. A, A schematic illustrating the rate modulation Rran(t) of a population (N � 100) of independent
presynaptic inputs onto a postsynaptic neuron. Each input spike train is independent and Poissonian with a mean rate r that is modulated by the signal Rran(t) as r[1 
 �Rran(t)], where Rran(t) is
band-limited [0 –50 Hz] Gaussian white noise and � � 0.03 [corresponding to a 30% change in the input rate for one SD of Rran(t)]. The same rate modulation is applied to the input spike trains of
all synapses, although each is independent. B, The squared cross-spectra of the rate modulation Rran(t) with the total synaptic conductance for the DDR (green) and the FDR (red); parameter values
are as in Figure 1 with baseline (mean) input rate r as indicated. Note the great similarity to the power spectra shown in Figure 1 D. C, Information transmission between band-limited rate modulation
Rran(t) and synaptic conductance G(t) as quantified by the coherence function. As in B, the two parameter sets from Figure 1 B are used for the DDR (green) and FDR (red). Also shown is the coherence
for synaptic input with constant amplitude (static synapses, in black). Baseline rates are r � 1 Hz, 10 Hz, and 100 Hz as indicated.
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Information transmission of a rate-modulated signal to the
postsynaptic conductance
While sinusoidal rate modulations can be instructive, to quantify
information transmission in a general sense, we use a more com-
plex signal to drive the rate modulation of the presynaptic input
spike trains. Specifically, this signal is taken as a band-limited [0,
50 Hz] Gaussian random signal Rran(t). The Poisson firing rate of
the population of 100 synaptic inputs is then modulated by
Rran(t), as r[1 
 �Rran(t)]. To quantify information transmission
between the input signal Rran(t) and a particular output Z(t), we
use the spectral coherence, CZR (Eq. 9) (Rieke et al., 1996; Gab-
biani and Koch, 1998). The coherence CZR( f) is a measure that
ranges, at each frequency, between 0 (in which case the output is
not linearly related to the input at that frequency, due to noise or
nonlinearity) and 1 (in which case there is perfect linear trans-
mission of the input stimulus at that frequency). For weak stim-
uli, a lower bound on the mutual information rate is directly
related to the spectral coherence (Rieke et al., 1996). As in the
previous sections, we consider the total synaptic conductance

G(t) as our output measure (Fig. 3A), and thus the cross-spectra
SGR( f) of the rate modulation with the synaptic conductance.
Note that the cross-spectrum is directly proportional to the
frequency-dependent gain of the system (also commonly referred
to as the transfer function). Surprisingly, for both FDR and DDR,
the shape of the squared cross-spectra (Fig. 3B) is very similar to
that of the power spectra SGG seen for the unmodulated condition
(i.e., Poisson inputs with fixed mean rate) (Fig. 1D). In the FDR,
the cross-power decreases with frequency for low and moderate
input rates (r � 1 and 10 Hz); in this case, the synaptic dynamics
act as a low-pass filter on the rate modulation. In the DDR, power
is relatively suppressed in the low-frequency range for moderate
to high input rates (r � 10 and 100 Hz); the synaptic dynamics, in
this case, act as a high-pass filter from the cross-spectral point of
view. For very low input rate (r � 1 Hz), low-pass behavior is also
seen for DDR. We note for reference that a static synapse (con-
stant synaptic amplitude with Poisson input spike train; see
Materials and Methods) leads to a flat cross-spectrum which,

Figure 4. Information transmission of a rate-modulated signal via the output spike train. A, The extended scheme that includes an LIF model neuron generating an output spike train. B, The
coherence between the rate modulation of the input spike trains Rran(t) and the output spike train of the LIF, for different values of a constant bias current 	 applied to the LIF neuron (all for the DDR
parameter set, r � 10 Hz). At zero bias current 	 (top), the coherence for the FD-modulated synapse (green) is lower at low frequencies than for static synapses (blue) and much lower than for the
conductance (black; same as Fig. 3C). With increasing value of the bias current (	 � 250, 500, 750 pA) and thus of the output firing rate, the coherence increases and becomes flat, similar to the
conductance coherence; the difference between static and dynamic (FD-modulated) synapses consequently vanishes. C, Same as in B except for the FDR parameter set. At zero bias current, there is
higher coherence at low frequency for the dynamic (FD-modulated) synapses than for the static synapses. Again, with increasing 	, the differences vanish; the coherence increases and approaches
the coherence of the conductance, thus indicating a linear transfer of information.
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for a weak rate modulation, can also be derived analytically
(Gabbiani and Koch, 1998).

The important consequences of the similarities between Fig-
ures 1D and 3B become evident when we consider the coherence
between the rate modulation and the conductance, CGR. First,
overall coherence increases with growing mean input rate r (Fig.
3C). More importantly however, for both FDR and DDR, the
coherence is flat with respect to the rate modulation of the input
[frequency content of the signal Rran(t)]. In other words, the FD
dynamics do not result in a frequency-dependent transfer of in-
formation. Such a flat, or broadband, coherence coding property
is usually expected for a linear system with additive white noise
and white input signal. In particular, the static synapse case
shown in Figure 3C is a close approximation of this linear case;
the coherence is flat because the cross-spectrum and power spec-
trum are similarly low-pass (data not shown). However, in the
present context (a band-limited signal encoded in presynaptic
spike trains driving nonlinear synaptic dynamics), this broad-
band property is unexpected. Indeed, it arises because the power
spectra of the membrane conductance fluctuations G(t), with
and without the signal Rran(t), are both similar in shape to the
cross-spectra between Rran(t) and G(t); thus, their ratio in the
coherence function cancels out any frequency dependence. In
other words, in the FDR/DDR, STP not only results in increases/
decreases in mean synaptic amplitude, but it also acts to low-pass/
high-pass filter the rate-modulated signal. The combination of
these two directly related effects results in a frequency-
independent transfer of information to the postsynaptic
conductance.

Further, a peak in the power spectra of the conductance fluc-
tuations at frequencies near 10 –20 Hz is seen for the DDR (Fig.
1D, middle and bottom), as well as for the FDR (at high rates
when depression dominates) (Fig. 1D, bottom). Such a peak is
also present in the cross-spectra (Fig. 3B) for the same mean rates,
r. These peaks, being associated with dominant-depression, sug-

gest an increased sensitivity to the high-
frequency content of a rate-modulated sig-
nal. This is in contrast to the synaptic
amplitude-versus-input rate plots (Fig.
1 B), which show a peak for the FDR and
low-pass behavior for the DDR. These
contrasting behaviors (Figs. 1 D, 2 B) are
at the root of the previously observed
enhanced response of depressing syn-
apses to abrupt changes in the input rate,
when firing rates are sufficiently high
(Abbott et al., 1997; Abbott and Regehr,
2004).

Information transmission of a rate-
modulated signal to the output
spike train
Thus far, our analyses have been limited to
information encoded in the synaptic con-
ductance. In the context of information
transfer, it is of course critical to consider
the membrane potential fluctuations and
the spiking dynamics of the postsynaptic
neuron. Under conditions in which spik-
ing is blocked (subthreshold membrane
potential), the membrane potential be-
haves similarly to the synaptic conduc-
tance (data not shown).

We now consider a spiking LIF neuron being driven by dy-
namic synaptic inputs (Fig. 4A). This situation is identical to that
described for the synaptic conductance (Fig. 3), but with the
conductance now driving the membrane potential and an LIF
spiking mechanism (see Materials and Methods). In addition, we
consider both the DDR (Fig. 4B) and the FDR (Fig. 4C) com-
pared with static synapses having no STP but causing conduc-
tance fluctuations with the same mean and variance as the respec-
tive dynamic synapses (see Materials and Methods). To separate
out the effects of the LIF itself from the synaptic dynamics arising
from STP, we also apply different levels of a constant bias current
(	). In doing so, we find that the coherence between the input
rate modulation and the spike output depends on the firing re-
gime of the LIF. When the bias current is large, causing the neu-
ron to fire at a high rate, the broadband coding observed for the
synaptic conductance (Fig. 3) is preserved for both DDR and
FDR (and is essentially the same as that for the static synapses).
However, for decreasing levels of bias current, such that the mean
firing rate of the LIF neuron decreases, the STP-dependent filter-
ing becomes apparent in the low-frequency range (compare with
static synapse, 	 � 0 pA) (Fig. 4B,C). In addition, the increased
nonlinearity of the LIF in this regime (	 � 0 pA) results in a drop
in coherence in the high-frequency range for both DDR and FDR.
Figure 5 illustrates that the LIF firing rates for the FDR and DDR,
both in the unmodulated and rate-modulated cases, are essen-
tially identical to their respective matched static synapses, for a
given bias current 	, and thus cannot be the cause of any differ-
ences between static and dynamic synapses. However in general,
the lower coherence for the FDR is due to a slightly lower firing
rate of the LIF in the FDR (Fig. 5).

Thus, we find that information transmission via the output
spike train depends on the state of the LIF neuron: broadband
coding is preserved when the neuron is well above threshold, but
filtering due to both STP and LIF dynamics is apparent when the
neuron is near threshold (	 � 0 pA), in the so-called fluctuation-

Figure 5. LIF model neuron firing rate under different synaptic input conditions Firing rate versus constant bias current 	 for
the different conditions considered in the present analyses; FDR and DDR indicate the particular parameter sets as in previous
figures; mean input rate r � 10 Hz. FDR, DDR synapse: stationary input as in Figure 1; FDR, DDR synapse rate modulation: random
rate modulation as in Figure 4; FDR, DDR static synapse: static synapse with same mean and variance as FD-modulated synapse for
each regime (as in Fig. 4) (see Materials and Methods for additional details). Arrows indicate the values of bias current used in
Figure 4.
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driven regime (where spike threshold is crossed only for suffi-
ciently large fluctuations). In this latter case (	 � 0 pA), the LIF
spike train is dominated by fluctuation-driven firing such that its
power spectrum is whitened (i.e., it becomes flatter indicating
more Poisson-like firing). We illustrate the significance of this for
the FDR in Figure 6 (DDR is similar). Example LIF spike trains
are shown for 	 � 150 pA (low-firing state, fluctuation-driven
firing) (Fig. 6A) and 	 � 500 pA (high-firing state) (Fig. 6B).
Note that we use intermediate values of 	 to make it easier to
compare the two spike regimes on the same timescale. The LIF
spike train power spectra for low- and high-firing states are
shown in Figure 6, C and D (top); it is clear that the spectra are
more flat for 	 � 0 pA. Figure 6, C and D (bottom), shows the
cross-spectra between the input, Rran(t), and the LIF spike trains.
Now, recall that coherence is related to the ratio of the cross-
spectrum and power spectrum (Eq. 9). The consequence of the
flat power spectra (Fig. 6C, top) is that the coherence now reflects
the filtering properties exhibited by the cross-spectra (Fig. 6C,
bottom). On the other hand, when the power spectra reflect the

same frequency dependencies as the cross-spectra, the coherence
is flat. In a more natural condition, this bias current could arise
from populations of independent background, or feedback, in-
puts (mediated through glutamatergic synapses), and thus would
not be constant but would include additional fluctuations and
noise. If these inputs had zero mean (similar to the 	 � 0 pA
case), the output spike train power spectra would be even more
flat, such that the coherence would reveal the same filtering ef-
fects shown by the cross-spectra (data not shown). For large
mean input levels (similar to 	 � 750 pA), the main effect of
adding noise would be to drastically decrease the overall coher-
ence; for the remaining coherence, a modest effect of the synaptic
filter, in terms of suppression or enhancement of coherence at
low frequencies, can be observed (data not shown).

Overall, these results suggest that synaptic filtering depends
critically on the state of the postsynaptic neuron and thus may be
actively controlled by background synaptic inputs. More specif-
ically, when a neuron is tonically firing at a high rate, neural
coding will not be influenced by STP, whereas in the low-firing-

Figure 6. Spectral features of the LIF output spike train in low- and high-firing states. A, B, Example traces of LIF output spike trains in a low-firing state (	�150 pA) and a high-firing state (	�
500 pA), respectively. Both are responses to the rate-modulated input Rran(t) with mean input rate r � 10 Hz and � � 0.03 using the FDR parameter set. As is the convention for LIF model spike
trains, spikes are drawn in as vertical lines at the times when the membrane potential reaches threshold. Note that these intermediate values of bias current were chosen for illustrative purposes;
	� 0 pA and 	� 750 pA result in firing rates that are too low and too high, respectively, to be easily compared on the same timescale. C, The spike train power spectra (top) and the cross-spectra
(bottom) between the input rate modulation and the output spike train for a low-firing state (	 � 0 pA). D, The spike train power spectra (top) and the cross-spectra (bottom) between the input
rate modulation and the output spike train for a high-firing state (	 � 750 pA). In both C and D, the rate modulation Rran(t) is the same as that used in Figure 4, with mean input rate r � 10 Hz;
the dynamic synapse refers to the facilitation-dominated parameter regime (FDR, in red), with the static synapse shown in blue.
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rate regimes, more likely associated with spike-timing codes, STP
could play an important role in shaping coherence, especially at
low frequencies.

Synaptic properties related to the FDR and DDR
Given that the broadband effect we describe depends on the in-
teraction between synaptic gain (amplitude) (Fig. 1B) and fluc-
tuations (conductance spectrum) (Fig. 1D), it is important to
consider the different parameter regimes more carefully. To do
this, we again consider the effects of spontaneous background
inputs (as in Fig. 1). Figure 7 shows the (F0, �) parameter space
for both the FDR and DDR (for the related theoretical analyses,
see Appendix). By moving along a horizontal line in this plot (at
some fixed value of �), for instance, it is easy to see how changes
in F0 alone can change a synapse from being facilitation-
dominated to depression-dominated; in other words, this illus-
trates how increasing the baseline probability of transmitter re-
lease increases the tendency for a synapse to show depression.
Most importantly, the diagram illustrates that the distinct behav-
iors, observed in FDR and DDR, for both the mean synaptic
amplitude versus input rate r (existence of a maximum or mono-
tonic decrease) (Fig. 1B) and the conductance fluctuations (rel-
ative increase or decrease in power at low frequencies) are directly
related. Indeed, we find the same simple analytical condition on
the synaptic parameters for each (gray line in Fig. 7) (see Appen-
dix). The condition for dominating facilitation reads as follows:

� �
F0

2�1 � �D/�F�

1 � �F/�D � F0
. (17)

The presence of finite timescales �D and �F is essential for a non-
trivial separation of the parameter space: taking one of them to
zero we obtain either the trivial condition � � 0 (for �D30) or
the nonsatisfiable condition � �  (for �F30).

We also observed the broadband coherence effect with various
combinations of �D and �F. When these time-constants are �500
ms, however, a high-pass effect is found (data not shown). To-
gether, these results show that the relationship between synaptic

gain (amplitude) and conductance fluctuations is not due to a
delicate balance of parameter values, but rather is expected for a
large range of parameters and is thus likely to play a role at many
different types of synapses. It should also be noted that a synapse
can exhibit facilitation and depression having multiple timescales
through distinct overlapping dynamic mechanisms (Zucker and
Regehr, 2002; Abbott and Regehr, 2004). The impact of these
more complicated scenarios is beyond the scope of the present
study and will be addressed in future work.

Discussion
STP is thought to play various computational roles in neural
processing (Abbott and Regehr, 2004). In particular, the notion
of synaptic filtering is often used generically to describe how dy-
namic synapses shape synaptic inputs (Dittman et al., 2000; Lewis
and Maler, 2002; Zucker and Regehr, 2002; Abbott and Regehr,
2004; Destexhe and Marder, 2004). The results we present here
suggest that this notion, at least under conditions involving the
responses to time-varying inputs, should be considered carefully.
Indeed, our results suggest that the filtering effects of synaptic
dynamics can be controlled by independent inputs via their in-
fluence on postsynaptic neuron firing rate.

Given that STP results in synaptic amplitudes that vary with
input rates over different timescales, it is reasonable to assume
that information transfer through synapses will vary accordingly,
with suppression of either high or low frequencies. However, this
is not true with respect to the spectral coherence between a rate-
modulated input and the STP-modulated postsynaptic mem-
brane conductance. The coherence, which provides a signal-to-
noise measure, is flat and independent of frequency. This is
because signal transfer (synaptic amplitude) and noise trans-
fer (conductance fluctuations) are increased or decreased in
equal proportions at each frequency. Thus, the postsynaptic
conductance resulting from a rate-modulated input reflects
broadband coding regardless of whether facilitation or depres-
sion dominates (Fig. 3).

These results also extend to the dynamics of the subthreshold
membrane potential, even though the synaptic conductance is
multiplied by the driving force voltage in the Hodgkin–Huxley
formalism (see Materials and Methods). However, the threshold
dynamics resulting from spiking provide the interesting possibil-
ity for the postsynaptic control of synaptic filtering (e.g., through
parameters that govern the mean output firing rate). Our results
indicate that when the postsynaptic neuron is above threshold
and firing autonomously, the broadband coding observed in the
membrane conductance and voltage is preserved. However,
when the neuron is below threshold and firing is dominated by
membrane fluctuations (fluctuation-driven firing, resulting in a
flat power spectrum), the synaptic filtering expected from the
transfer functions (cross-spectra) in Figure 3B becomes evident.

Previous studies have investigated the effects of STP on input
spike trains (Goldman et al., 2002) and information transmission
(Fuhrmann et al., 2002). In theory, STP adds a history-dependent
amplitude to each spike, so it is expected that in certain cases the
correlations of the spike train with the rate modulation will in-
crease. Here, we have shown that this is not equivalent to an
increase in information about a time-varying rate signal. Infor-
mation transmission relies on measuring the signal with respect
to a noise background, and thus both signal and noise amplitude
are important. From a signal-to-noise perspective, we found that
information transfer can be broadband (independent of fre-
quency) in terms of the coherence, even though STP-dependent
filtering is present in the transfer function (cross-spectra) (Fig.

Figure 7. Illustration of parameter space separating DDR and FDR. For the regions in the (F0 ,
�) parameter plane below the curved gray line (DDR), the mean synaptic amplitude drops
monotonically as a function of the Poisson input rate (inset), and the spectral power of the
FD-driven synaptic conductance decreases at low frequencies. The curved gray line is defined in
Equation 17. In the area above the curve (FDR), the synaptic amplitude displays a maximum
versus input rate and the spectral power increases at low frequencies. The parameter sets used
in Figure 1 (and in all subsequent analyses) are indicated by the solid circle (FDR) and the open
square (DDR); see also Materials and Methods.
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3B). Interestingly, our results in Figures 1D and 3B reveal that
STP in combination with membrane conductance, results in a
resonance for both DDR and FDR (r � 100 Hz). In addition,
while the coherence exhibits minimal STP-dependent effects, the
different features evident in the power spectra and cross-spectra
(r � 10 Hz) could provide a method to assess the relative levels of
facilitation and depression affecting the synapses onto a neuron
of interest.

Short-term plasticity is ubiquitously expressed in neuronal
networks. And because our approach is generic and the results do
not depend on specific parameter choices, the broadband coding
we describe is likely to be operating in a variety of contexts. This
has widespread implications for neuronal information process-
ing. First, the fact that the firing state of the postsynaptic neuron
can control the influence of STP also presents interesting possi-
bilities for feedback control and the evolution of network orga-
nization. Synaptic inputs with identical presynaptic properties
could confer differential plasticity solely due to differences in
baseline firing rates of postsynaptic neurons. Thus, networks
could evolve to extract different information from presynaptic
inputs in parallel through postsynaptic neurons with different
mean firing rates alone (making distinct control over the presyn-
aptic neurons themselves unnecessary). Second, our results show
that any steady-state changes in synaptic gain, due to depression
for example (Abbott et al., 1997; Tsodyks and Markram, 1997),
will not affect information transmission when the postsynaptic
neuron is in the high-firing state. Thus, the prediction follows
that pathways where information transmission is important, for
example at early stages of sensory processing, will have neurons in
a relatively high-firing state, whereas those involved in feature
extraction (Gabbiani and Koch, 1998) will comprise neurons in a
low-firing state.

One particular example where these issues are relevant is in
the electrosensory system of weakly electric fish, the study of
which provided the initial motivation for our current analyses
(Lewis and Maler, 2002, 2004). The first central nucleus in the
electrosensory pathway, the ELL (electrosensory lateral line
lobe), receives primary sensory input as well as extensive feed-
back input. Two classes of ELL projection neurons, the deep
(DP) and superficial (SP) pyramidal neurons, are differenti-
ated by their baseline firing rates and the extent to which
long-term synaptic plasticity plays a role in their response to
feedback inputs (Bastian et al., 2004): DP neurons have high
firing rates and are considered nonplastic, whereas SP neurons
have low firing rates and very plastic feedback inputs. In light
of our present results, DP neurons could reliably encode the
rate-modulated feedback inputs across all frequencies (i.e., in
a broadband manner), whereas SP neurons could extract par-
ticular features of the feedback inputs (Bastian et al., 2004;
Oswald et al., 2004).

It is important to realize that our results pertain to time-
varying, but statistically stationary modulations of the firing
rate of the presynaptic population. Other coding schemes
(e.g., a signal encoded in temporal or spatial correlations in
firing) or the detection of transient inputs (i.e., abrupt
changes in firing rate) may be enhanced by the FD dynamics
(Abbott et al., 1997; Lisman, 1997; Abbott and Regehr, 2004).
Specifically, STP in excitatory and feedforward inhibitory in-
puts has been shown to regulate the postsynaptic response to
transient inputs (Lewis and Maler, 2002; Klyachko and
Stevens, 2006). In such cases, we may see a frequency depen-
dence in information transmission, but appropriate quantifi-
cation methods are lacking at present. It is also possible that

signals much stronger than those we consider here may be able
to profit from the information stored in the synaptic ampli-
tudes. Regardless, our results illustrate the potential complex-
ities brought about by synaptic dynamics, and emphasize that
appropriate quantitative methods will be essential for evalu-
ating neural coding and transmission of both stationary and
transient, nonstationary inputs. More intriguing though, is
the possibility that, under some stimulus conditions, the fil-
tering effects of STP can be switched on and off by external
inputs simply through their influence on postsynaptic firing
rate. The latency of this switch would be short, limited only by
the intrinsic neural dynamics. Such a switch is yet another
dynamic feature that could be coopted by the neural code.

Appendix
Here, we derive the statistics of the FD-modulated Poissonian
spike train: mean and variance of the amplitude of the synaptic
input, as well as its power spectrum. Also derived is the condition
Equation 17 for dominating facilitation (i.e., that defines the
facilitation-dominated regime, FDR, and the depression-
dominated regime, DDR).

Mean synaptic amplitude
For the dynamics of a single FD model (a single synaptic input j),
we can relate the values of Fj(t) and Dj(t) right before the ith and
(i 
 1)th input firing times (ti,j, ti
1,j), denoted by Fi,j, Di,j and
Fi
1,j, Di
1,j, respectively. Neglecting the constraint that F(t) � 1
and omitting the second index j (which indicated the synapse),
we obtain the following maps:

Fi
1 � F0 � �Fi � F0 � ��e�Ti/�F (18)

Di
1 � 1 � �Di � 1 � FiDi�e�Ti/�D, (19)

where Ti � (ti
1 � ti) denotes the ith interspike interval (ISI).
These maps will be a good approximation as long as �Fi� 
 � � 1
(see also below).

We can use the maps to estimate the mean and variance of
the synaptic amplitude Ai � FiDi as follows. We can assume
that for a renewal spike train (with constant rate) (1) mean
values of the form Fi
1

n Di
1
m (with n, m being integer values)

will not depend on the index i and thus �Fi
1
n Di
1

m � � �Fi
nDi

n�
and (2) the value of a synaptic variable Fi (or Di) is statistically
independent of the subsequent interval Ti. By multiplying
powers of the two maps with each other, we obtain a hierarchy
of equations for the moment �Fi

nDi
n� containing also averages

over the exponentials of the ISI. The latter can be readily
calculated for a Poisson process, e.g.,

�e�
T

�D,F� � �
0



dTrexp� � T�r �
1

�D,F
�� �

r

r � 1/�D,F
.

(20)

Using this relation and averaging the stochastic maps, we obtain
the relations

�Fi	 � F0 � �r�F, (21)

�Di	 � 1 � r�D�FiDi	. (22)

From Equation 21 we can conclude that the map Equation 18 is a
good approximation as long as

2086 • J. Neurosci., February 18, 2009 • 29(7):2076 –2088 Lindner et al. • Broadband Coding with Dynamic Synapses



F0 � ��1 � r�F�  1. (23)

Multiplying the lhs and right-hand side (rhs) of both maps in
Equations 18 and 19, followed by averaging, yields the equation

�Fi
1Di
1	 � �FiDi	 � ��F0 � �Fi � F0 � ��e�
Ti

�F�

� �1 � �Di � 1 � FiDi�e�
Ti

�D�	

� F0 � �e�
Ti

�F	��Fi	 � F0 � �� �

�e�
Ti

�D	F0��Di	 � 1 � �FiDi	� �

�e�Ti� 1

�D



1

�F
� 	��F0 � ���1 � �Di	 � �FiDi	� �

�FiDi	 � �Fi	 � �Fi
2Di	]. (24)

This equation (and all higher-order equations) contain a higher
power on the rhs (the term �Fi

2Di�). In other words, the hierarchy
of equations for the moments is not closed, and therefore we have
to make an approximation. Here we choose a cumulant expan-
sion (Stratonovich, 1967; Gardiner, 1985). Our strategy is to ne-
glect all cumulants higher than of second order, i.e., we make a
Gaussian approximation for the joint probability density of Di

and Fi:

��Fi
nDi

m		 � 0,n � m � 2, (25)

where the double brackets indicate the cumulant of the respective
quantity. To express the cumulants by moments, one can use a
procedure due to van Kampen [see Gardiner (1985), sec. 2.7.1].
Specifically for the product Fi

2Di, the cumulant reads

��Fi
2Di		 � �Fi

2Di	 � �Fi
2	�Di	 � 2��Fi	

2�Di	 � �Fi	�FiDi	�. (26)

Using Equation 25, we thus approximate the moment �Fi
2Di� as

follows:

�Fi
2Di	 � 2�Fi	�FiDi	 � 2�Fi	

2�Di	 � �Di	�Fi
2	. (27)

Inserting this expression into Equation 24, solving it for the mean
�Fi

2Di�, using Equations 21 and 22, and finally, calculating the
different exponentials of the ISI Ti by means of Equation 20, we
arrive at the approximate formula for the mean value (Eq. 4).

The second moment of the amplitude
To calculate the variance of the spike train’s amplitude, we need
to calculate the second moment of FiDi, i.e., �Fi

2Di
2�. We use again

Equation 25 to approximate �Fi
2Di

2� and �FiDi
2� by lower-order

moments, yielding

�Fi
2Di

2	 � �Fi
2	�Di

2	 � 6�Fi	
2�Di	

2 �

2��Fi	
2�Di

2	 � �Fi
2	�Di	

2 � �Di	�Fi
2Di	 �

4�Fi	�Di	�FiDi	 � �Fi	�FiDi
2	 � �FiDi	

2] (28)

and

�FiDi
2	 � �Fi	�Di

2	 � 2��Fi	�Di	
2 � �Di	�FiDi	�. (29)

Furthermore, from the stochastic maps, we can obtain equations
for the second moments of Fi and Di, reading

�1 � �e�2
Ti

�F�� �Fi
2	 � 2F0��Fi	 � � � F0��e�

Ti

�F� � F0
2 �

�2�Fi	�� � F0� � �� � F0�
2��e�2

Ti

�F� (30)

�1 � � e�2
Ti

�D�� �1 � 2�Di	 � �Di
2	� � ��Fi

2Di
2	 � 2�FiDi

2	

� 2�FiDi	��e�2
Ti

�D� . (31)

The resulting five linear equations (Eqs. 27–31) uniquely deter-
mine the unknown moments �Fi

2�, �Di
2�, �FiDi

2�, �Fi
2Di�, and �Fi

2Di
2�.

The resulting expression for the second moment of �Fi
2Di

2� is too
cumbersome to be presented here. It can, however, be readily
obtained by solving the above equations using computer algebra
software. Comparisons to simulation data show excellent agree-
ment as long as the condition in Equation 23 is not violated (data
not shown).

Power spectrum of the amplitude-modulated spike train
Here we calculate an approximation for the power spectrum Sxx

at a single synapse xj(t) (the index j is omitted again in the follow-
ing). If the set of input spike times {ti} corresponds to a Poisso-
nian point process, we can write the power spectrum of a single
synaptic input as follows (using the index k in place of i to avoid
confusion with the imaginary i):

Sxx � r� 

l��



AkAk
le
2
if�tk
l�tk�	

� � Ak	
2r �

r� 

l��



� AkAk
1 � � Ak	� Ak
1	�e2
if�tk
1�tk�	, (32)

where we used the abbreviation for the synaptic amplitude Ak �
FkDk (k refers to the spike time, not to the synapse). In deriving
Equation 32, we assume that the number of spikes divided by the
time window gives the spike rate r in the limit. The triple corre-
lations in the last line are hard to calculate. For low input rate,
though, only correlations between Ai
1 and the previous ISI Ti

dominate. This assumption leads to the following expression for
the spectrum:

Sxx � r� Ak
2	 � 2r� Ak	�ℜ� Ak
1e2
ifTk	 �

r

2
f
��Ak
1e2
ifTk	� . (33)

Using the maps in Equations 18 and 19, the synaptic amplitude at
the k 
 1 spike can be expressed by the values of the synaptic
variables at the kth spike:

Ak
1 � Fk
1Dk
1 � �F0 � �Fk � F0 � ��e�Tk/�F�

� �1 � �Dk � 1 � FkDk�e�Tk/�D�. (34)

After multiplying the last equation with e2
ifTk, we can separately
average all terms consisting of products of the synaptic variables
and all exponentials containing the subsequent ISI (which is in-
dependent of Fk and Dk and their products). With SXX � NSxx,
for statistically independent inputs [see also Lindner (2006) for a
recent discussion], we obtain a lengthy expression for the power
spectrum with Lorentzian correction terms, the prefactors of
which contain the averages �Dk	, �Fk	, �FkDk	, and �F2

kDk	 (see
previous sections):

Sxx � Nr� Ak
2	 � 2Nr2� Ak	 �

� ��Fk	 � � � F0��F

�1 � r
F�
2 � �2
f�F�

2 �
F0�D��Dk	 � �FkDk	 � 1�

�1 � r�D�2 � �2
f�D�2

�
�FkDk	�1 � F0 � �� � �Fk	 � �F0 � ���1 � �Dk	� � �Fk

2Dk	

�1 � r�̃�2 � �2
f�̃�2 � . (35)
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This expression and Equation 6 have been used in Figure 1D to
calculate the theoretical curves of the conductance spectrum. If
we set r � 0 in the square bracket in Equation 35, we obtain the
more instructive expression given in the main text in Equation 7
in which the Lorentzian correction terms are given in a simple
way by the synaptic parameters. At low rate (r � 1 Hz in Fig. 1D),
Equations 35 and 7 yield very similar spectra. Quantitative devi-
ations between these approximations have been observed for the
FDR at r � 10 Hz.

Separating FDR and DDR
Here, we sketch out the derivation of Equation 17. We first inves-
tigate whether the mean synaptic amplitude increases or de-
creases by increasing the input’s firing rate. This will depend on
the rate itself (the amplitude can go through a maximum as a
function of rate) (see Fig. 1B), and to be definite, we study the
sign of the mean’s derivative at zero rate. Taking the derivative of
Equation 4 with respect to r at r � 0 yields

d�FiDi	

dr
� r�0 � � F0

2�D � ��F�1 �
F0

1 � �F/�D
� , (36)

and the condition that this is positive (the synapse is dominated
by facilitation) leads to Equation 17.

Second, we may ask under which condition the modification
of the power spectrum by the three Lorentzian terms is positive at
zero frequency and for low input rate. Subtracting from the
power spectrum (Eq. 7) its high-frequency limit rN �A2

i	, we find
that the resulting difference is positive at zero frequency if

��F � F0
2�D � �F0�̃ � 0, (37)

which indeed corresponds to Equation 17. Hence, dominating
facilitation is necessarily associated with increase of power at low
frequencies.
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