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Accurate detection of sensory input is essential for the survival
of a species. Weakly electric fish use amplitude modulations of
their self-generated electric field to probe their environment.
P-type electroreceptors convert these modulations into trains
of action potentials. Cumulative relative refractoriness in these
afferents leads to negatively correlated successive interspike
intervals (ISIs). We use simple and accurate models of P-unit
firing to show that these refractory effects lead to a substantial
increase in the animal’s ability to detect sensory stimuli. This
assessment is based on two approaches, signal detection
theory and information theory. The former is appropriate for
low-frequency stimuli, and the latter for high-frequency stimuli.
For low frequencies, we find that signal detection is dependent
on differences in mean firing rate and is optimal for a counting
time at which spike train variability is minimal. Furthermore, we
demonstrate that this minimum arises from the presence of
negative ISI correlations at short lags and of positive ISI corre-
lations that extend out to long lags. Although ISI correlations

might be expected to reduce information transfer, in fact we
find that they improve information transmission about time-
varying stimuli. This is attributable to the differential effect that
these correlations have on the noise and baseline entropies.
Furthermore, the gain in information transmission rate attribut-
able to correlations exhibits a resonance as a function of stim-
ulus bandwidth; the maximum occurs when the inverse of the
cutoff frequency of the stimulus is of the order of the decay time
constant of refractory effects. Finally, we show that the loss of
potential information caused by a decrease in spike-timing
resolution is smaller for low stimulus cutoff frequencies than for
high ones. This suggests that a rate code is used for the
encoding of low-frequency stimuli, whereas spike timing is
important for the encoding of high-frequency stimuli.
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Detecting external stimuli is essential for an animal to survive in
its environment. A variety of methods have been used to quantify
information transmission in sensory systems, such as information
theory (Borst and Theunissen, 1999; Burac̆as and Albright, 1999),
signal detection theory (Green and Swets, 1966; Gabbiani and
Koch, 1998), and stimulus reconstruction (Rieke et al., 1997;
Gabbiani and Koch, 1998). Information theory makes no assump-
tions on the nature of the neural code and uses mutual informa-
tion to quantify information transfer in sensory systems. The
mutual information I(X,Y) between two random variables X and
Y is equal to H(X)2H(XuY), where H(X) is the entropy of X, and
H(XuY) is the conditional entropy of X given Y. Because entropy
increases with variability, it is clear that I(X,Y) will increase if the
variability of X is high and the variability of X given Y is low. In
neural systems, we can identify a time-varying stimulus with Y
and a spike train with X. Thus, information theory suggests that
high variability of the spike train in the absence of the stimulus,
combined with low variability in the presence of the stimulus, will
maximize information transmission. In particular, because corre-

lations are known to reduce entropy (Shannon, 1948), one might
expect that the correlations in a spike train will degrade infor-
mation transmission.

On the other hand, signal detection theory in the context of
neural spike trains aims to determine the presence versus the
absence of a stimulus that is based on differences between the
number of spikes counted in an interval of length T. The discrim-
inability d between the two cases is given by the absolute value of
the difference between the mean of these spike counts with and
without stimulus, divided by the square root of the summed vari-
ances of these spike counts (see Eq. 6). It is clear that discrim-
inability is enhanced by a low variability in the spike train, because
this will result in low variability of spike count (low variance) over
the counting window. In this paper, we show that negative inter-
spike interval (ISI) correlations, i.e., the tendency for long ISIs to
be followed by short ISIs (and vice versa), reduce spike count
variability, whereas positive ISI correlations increase spike count
variability. Together, these effects lead to an optimal spike count-
ing time at which discriminability is maximal.

Contrasting the information theoretic and signal detection ap-
proaches points to an apparent contradiction with respect to spike
train variability: information theory requires high variability,
whereas we have just shown that signal detection requires low
variability. However, we will show, in the context of the elec-
trosensory system, that each approach is best suited to a particular
stimulus frequency range. Also, we will show that negative ISI
correlations enhance both the mutual information I and the
discriminant measure d.
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Gymnotiform weakly electric fish are particularly adept at
detecting prey (Nelson and MacIver, 1999) and each other (Dulka
et al., 1995; Bastian et al., 2001). They emit a sinusoidal time-
varying electric field through their electric organ discharge
(EOD; frequency, 600–1200 Hz). P-type electroreceptors on
their skin detect amplitude modulations (AMs) of this field
caused by nearby objects or conspecifics (for review, see Bastian,
1981; Zakon, 1986). These P-units fire action potentials when
driven only by the EOD, i.e., without AMs. Therefore, detection
of external stimuli is based presumably on a change from this
baseline activity (Ratnam and Nelson, 2000). Furthermore, these
P-units exhibit negative ISI correlations at low lags (Longtin and
Racicot, 1997; Chacron et al., 2000; Ratnam and Nelson, 2000),
resulting from cumulative relative refractoriness (Chacron et al.,
2000).

For Apteronotus leptorhynchus (Brown ghost knife fish), P-unit
spike train variability decreases (as measured by the Fano factor;
see Materials and Methods) by as much as two orders of magni-
tude for counting times varying between 40 and 1000 EOD cycles
(Ratnam and Nelson, 2000) before increasing again. Our compu-
tational study provides an explanation for this result and for the
fact that P-units can transmit information about both low- and
high-frequency stimuli. Our study uses simple and accurate bio-
physically plausible models for P-unit activity to generate the
large data sets necessary for mutual information analysis and for
establishing the role of the ISI correlations in the enhancement of
stimulus coding.

MATERIALS AND METHODS
Interspike interval analysis
Let us denote by {Ij} the ISI sequence with mean ^I& and variance
VAR(I). The coefficient of variation (CV) of the interspike interval
histogram (ISIH) provides a good measure of spike train variability on
time scales of the order of the mean ISI. If {Ij} is stationary, then the
coefficient of variation is defined as:

CV 5
ÎVAR~I!

^I&
.

Serial correlation coefficients
One common measure of memory effects in a time series of events is the
serial correlation coefficients (SCCs) rj defined for lag j by:

r j 5
^Ij1kIk& 2 ^Ik&

2

VAR~I!
.

The SCCs are a measure of linear ISI correlations in the spike train.

Spectral density function
The spectral density function (SDF) is the discrete Fourier transform of
the SCCs (Cox and Lewis, 1966) and is defined for positive frequencies
f as:

SDF~ f ! 5
1
p S1 1 2 O

j51

`

rjcos~2pjf !D .

This formula can be inverted using the inverse Fourier transform to yield
an expression for rj (Cox and Lewis, 1966):

r j 5 2p E
0

1/2

SDF~ f !cos~2pjf !df.

The spectral density function is always positive (Cox and Lewis, 1966).
Moreover, specifying the SCC sequence allows us to uniquely determine
the SDF and vice versa. The two quantities are thus completely equiva-
lent (Cox and Lewis, 1966).

Pulse number distributions and the Fano factor
time curve
The pulse number distribution (PND) (Barlow and Levick, 1969a,b;
Teich and Khanna, 1985) P(n,T) is defined as the probability of observ-
ing n spikes during a counting time T (the PND is sometimes referred to
as the spike count distribution). It is calculated by first dividing the spike
train into nonoverlapping time windows of length T and then counting
the number of action potentials in each window. A normalized histogram
of these numbers then yields the PND. The Fano factor (Fano, 1947) is
defined as the variance to mean ratio of the PND:

F~T! 5
s2~T!

m~T!
,

and has units of spikes. The Fano factor curve F(T) gives a measure of
spike train variability on all time scales T.

The Fano factor always approaches unity for small T (Teich et al.,
1997). For a Poisson process, we have F(T) 5 1 for any T (Cox and Lewis,
1966). Processes with F(T) , 1 are thus considered less variable than
Poisson, whereas those with F(T) . 1 are more variable (Gabbiani and
Koch, 1998). The asymptotic value F` of the Fano factor is related to the
SCCs of the ISI sequence (Cox and Lewis, 1966) according to:

limT2.`F~T! 5 F` 5 CV2S1 1 2 O
j51

`

rjD , (1)

where we have assumed that the series is convergent. Note that positive
and negative ISI correlations increase and decrease, respectively, the
asymptotic value F`.

Signal detection theory
The ideal observer paradigm is based on the optimal discrimination
between PNDs obtained in the presence and absence of a stimulus
(Green and Swets, 1966) for examples of applications to neural systems
(see Nachimas, 1972; Shofner and Dye, 1989; Gabbiani and Koch, 1998;
Gabbiani and Metzner, 1999). Let P0(n,T) be the PND obtained without
stimulus and let P1(n,T) be the one obtained in the presence of stimulus.
Then, we define the probability of false alarm PFA, i.e., of reporting a
signal when it is not there, as (Gabbiani and Koch, 1998):

PFA~T! 5 O
n$m

P0~n,T!,

and the probability of correct detection PD as:

PD~T! 5 O
n$m

P1~n,T!,

where m is some threshold. The overall performance of the detector is
characterized by varying m between zero and infinity and plotting PD as
a function of PFA. This curve is called the receiver operating character-
istic (ROC) of the detector (Green and Swets, 1966; Gabbiani and Koch,
1998). The further this curve lies above the diagonal PD 5 PFA (which
corresponds to chance detection), the better the performance of the
detector for a counting time T (Gabbiani and Koch, 1998).

Information theory
The entropy of a discrete random variable X with probability density
function P(X) is defined as (Shannon, 1948; Cover and Thomas, 1991):

H~X! 5 2 O
X

P~X!log2~P~X!!,

and is measured in bits.
The variability of the neural response to an ensemble of stimuli is

characterized by the total entropy Htotal (Strong et al., 1998; Burac̆as and
Albright 1999) and is estimated from the neural response to an unre-
peated Gaussian stimulus. The trial-to-trial variability of the neural
response to a repeated stimulus is characterized by the noise entropy
Hnoise (Strong et al., 1998; Reinagel and Reid, 2000) defined as the
conditional entropy of the spike train given a stimulus (previously re-
ferred to as H(XuY) in the introductory remarks). Thus Hnoise represents
the variability (“noise”) in the spike train that cannot be accounted for by
the stimulus.
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A good stimulus encoder must have a neural response that varies
highly in response to different stimuli while having a very reliable
response to repeated presentations of the same stimulus. In the case of
neurons that are silent in the absence of sensory input, an estimate of the
mutual information about the stimulus is given by (Strong et al., 1998):

Iest 5 Htotal 2 Hnoise .

This measure gives a lower bound for the mutual information, as the
estimate for Htotal will be lower than the value obtained for all possible
stimuli. For P-type electroreceptors, the absence of stimulus corresponds
to the fish’s EOD that is unmodulated by extrinsic signals. The resulting
spike train defines the baseline activity of the P-unit. P-units display a
phase-locked random skipping pattern (CV 5 0.44 on average) (Ratnam
and Nelson, 2000) to this EOD (Xu et al., 1996; Nelson et al., 1997;
Chacron et al., 2000). A decision about whether a stimulus is present or
not must thus presumably be made on the basis of a change from this
baseline activity (Ratnam and Nelson, 2000). Hence, it is natural in our
case to estimate mutual information I as the difference between the
entropy of the baseline activity and the entropy estimated from the
trial-to-trial variability of the neural response to a repeated stimulus:

I 5 Hbaseline 2 Hnoise .

Note that we have I 5 0 when no stimulus is present. We divide
information and entropy by stimulus duration measured in EOD cycles
and express the results in bits per EOD cycle. To estimate these quan-
tities, we divide the spike train into bins of length Dt. If n spikes occurred
between i Dt and (i 1 1) Dt, then the value assigned to bin i is n. The
entropy of words comprising L bins is given by (Strong et al., 1998):

H~L,Dt! 5 O
weW~L,Dt!

2 P~w!log2P~w!,

where w is a word of length L and W(L,Dt) is the set of all possible words
of length L. If the correlations have finite range, then we can expand
H(L,Dt) as a Taylor series in powers of L 21 (Strong et al., 1998):

H~L,Dt! 5 H~Dt! 1
C1

L
1

C2

L2 · · ·, (2)

where H(Dt) is the entropy rate for infinite word length and C1 and C2
are constants. In some cases the L 21 term is sufficient (Strong et al., 1998;
Reinagel and Reid, 2000). However, this is not the case here; rather we
performed quadratic fits of the H(L,Dt) versus L 21 data obtained to get
the entropy rates and infer the information rate. We used our models to
generate 1,000 realizations, each containing 10,000 successive EOD
cycles with the same repeated stimulus (note that such amounts of data
would have to be obtained from recordings lasting in excess of 2–3 hr,
which is not currently feasible for electrosensory afferents). The baseline
entropies were estimated in the same way, except that no stimulus was
present.

Modeling
Because we are interested in understanding how correlations of P-unit
ISIs affect information transfer, we use two models of P-type electrore-
ceptors. The Nelson model (Nelson et al., 1997) accounts for first-order
ISI statistics (i.e., the ISIH) and for the gain and phase response to
sinusoidal AMs; however, it is memoryless in the sense that the signifi-
cant ISI correlations displayed by experimental data are absent (see Fig.
1 and Chacron et al., 2000). The other model uses the filtering property
of the Nelson model to extend the model proposed by Chacron et al.
(2000). The latter model was shown to reproduce first- and second-order
statistics of experimental data, namely the ISIH, ISI return map (Ij11 as
a function of Ij ), and the ISI correlations as measured by the SCCs. We
start with a description of the Nelson model and then describe ours. For
convenience, a list of all symbols and acronyms used in this paper is
provided in appendix A, whereas appendix B summarizes all equations
used for both models.

The Nelson model
It is known from experiments that various filtering mechanisms are at
work inside a P-unit (Hopkins, 1976; Bastian, 1981; Wessel et al., 1996;
Xu et al., 1996; Nelson et al., 1997). Nelson et al. (1997) measured the
gain and phase response characteristics of P-units to sinusoidal AMs of

frequencies in the range 0.1–200 Hz, leading to the following set of
differential equations:

Ẋa 5 2
Xa

ta
1

Ga

ta
A~t! (3)

Ẋb 5 2
Xb

tb
1

Gb

tb
A~t! (4)

X~t! 5 2 Xa 2 Xb 1 ~Ga 1 Gb 1 Gc! A~t!, (5)

where the dot denotes differentiation with respect to time, A(t) is the
stimulus (i.e., the time-varying EOD amplitude minus its baseline value),
and X(t) is the filtered stimulus. The G values are gains in units of spikes
per second per millivolt, and the t values are time constants in units of
seconds. A baseline firing rate rbase is added then to X(t), and the sum
Z(t) is passed through a clipping nonlinearity to account for saturation
effects (Nelson et al., 1997):

r~t! 5 H 0 Z~t! , 0
fEOD Z~t! . fEOD

Z~t! otherwise.

The probability p(t) of firing per EOD cycle is thus r(t)/fEOD, where fEOD
is the EOD frequency. At each maximum of the EOD, the P-unit has
probability p(t) of firing. If the unit fires, jitter is added to the spike time
in the form of Gaussian white noise of zero mean and standard deviation
0.04 EOD cycles. Throughout this paper, we take fEOD 5 1000 Hz, hence
an EOD cycle corresponds to 1 msec. Furthermore, to reduce the
coefficient of variation of the ISIH, it is possible to implement m
independent random subprocesses, each with an event rate equal to the
spike rate r(t) (Nelson et al., 1997). Each subprocess is simulated as
described above, and output spikes are generated at the time of occur-
rence of every mth subprocess event. The model gives an ISIH similar to
the data but does not display the correlations seen experimentally (see
Fig. 1 and Chacron et al., 2000). The model was constructed to give the
correct responses to sinusoidal AMs (Nelson et al., 1997) and was used to
give the firing dynamics in response to changes in transdermal potential
caused by a prey (Nelson and MacIver, 1999).

A modified integrate-and-fire type model
Biophysical justification. We begin with a description of P-type electro-
receptors to biophysically justify our model. A P-unit is composed of
25–40 receptor cells and a nerve fiber making synaptic contact onto at
least 16 active neurotransmitter release sites per receptor cell (Bennett et
al., 1989). Although it is currently impossible to record intracellularly
from these cells, there is much indirect evidence that the EOD amplitude
changes individual receptor potentials that govern the rate of release of
neurotransmitter onto the afferent nerve. Fluctuations in this rate are
thus one expected source of variability in such systems (Stein, 1965;
Nelson et al., 1997). Another possible source is the conductance fluctu-
ations of the ionic channels at the spike initiation zone in the axon.

As mentioned above, we expect relative refractoriness to be important
at such high firing rates (Stein, 1965). It leads to negative SCCs for the
ISIs at low lags (Geisler and Goldberg, 1966; Chacron et al., 2000).
Because there is currently no biophysical characterization of the ionic
conductances inside the P-unit, we can only speculate as to the possible
mechanisms responsible for this experimentally observed relative refrac-
toriness. The physiological mechanisms responsible for these correlations
could be presynaptic in origin; for example, long-term depression at the
synapses connecting the receptor cells to the afferent nerve (Bennett et
al., 1989; Hausser and Roth, 1997) would lead to relative refractoriness.
However, the recovery time constant of the neurotransmitter at typical
synapses is usually in the thousands of milliseconds range (von Gerns-
dorff et al., 1997), which is much too long for the phenomenon at work
here because serial correlations are significant only up to lag 2 (Chacron
et al., 2000) (see Fig. 1). Thus, we are looking at a time scale of about 10
EOD cycles (twice the mean ISI, which is 5 EOD cycles long for the unit
considered here). A likely candidate would be a postsynaptic spike-
activated potassium channel that slowly deactivates and thus summates to
produce a negative adaptation current. The KV3.1 channel has the right
activation and deactivation kinetics (Wang et al., 1998). Members of the
KV3 family are richly expressed in the electrosensory system (A. J.
Rashid, personal communication), but it remains to be shown whether
similar channels are present in P-units.
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From the foregoing discussion, we feel that the best approach for
studying the effects of correlations on information transfer and signal
detection is to use a simple yet biophysically plausible model that repro-
duces the essential features of P-unit baseline and evoked discharge.

Description. First, we will give an expression for the synaptic current at
the spike initiation zone in the axon and then describe the spiking
mechanism. We use the simple model in Chacron et al. (2000) that has
been proposed to model the baseline firing dynamics of P-type electro-
receptors and extend it to get the proper responses to time-varying AMs
of the EOD amplitude. We write the transdermal potential on the fish’s
skin as (A(t)1A0 ) sin(2 p fEODt), where A0 is the constant EOD ampli-
tude corresponding to baseline firing dynamics (this is similar to rbase in
Nelson’s model) and A(t) is the AM. The stimulus A(t) is filtered using
Equations 3–5. Because many receptors rectify a periodic input (French
et al., 1972; Gabbiani, 1996), we take the total synaptic current to be:

Isyn 5 ~bX~t! 1 gA0!Q~bX~t! 1 gA0!sin~2pfEODt! 3

Q~sin~2pfEODt!!~1 1 l1! 1 l2 ,

where b and g are constants to make units match, l1 and l2 are noise
terms, and Q is the Heaviside function (Q(x) 5 1 if x $ 0 and Q(x) 5 0
if x , 0) to account for rectification. Thus, the deterministic component
of the synaptic current is zero whenever sin(2pfEODt) is negative or
bX(t) 1 gA0 is negative. This is to ensure that firings will always occur
near the maxima of the EOD sine wave, as experimentally observed
(Scheich et al., 1973). Because our model is phenomenological, we take
the synaptic current to be dimensionless. Noise sources including con-
ductance and synaptic fluctuations are modeled by two Ornstein–Uhlen-
beck processes l1 and l2 given by:

l̇1 5 2
l1

t1
1 ÎD1j1

l̇2 5 2
l2

t2
1 ÎD2j2 ,

where j1 and j2 are two independent Gaussian random variables of zero
mean and variance unity, D1 and D2 are constants proportional to the
intensities of l1 and l2 , and t1 and t2 are time constants. Figure 2a gives
a time series for l1 and l2. It can be shown (Gardiner, 1985) that l1 and
l2 are stationary Gaussian random variables with zero mean and respec-
tive variances D1 t1 /2 and D2 t2 /2. However, unlike Gaussian white noise,
l1 and l2 are correlated in time, and their correlation functions decay
exponentially with respective time constants t1 and t2. We take t1 to be
much less than an EOD cycle; hence, l1 can be thought of as “fast”
compared to the model dynamics (it is almost white noise in fact) (see
Fig. 2a). It could thus model fluctuations that occur on time scales much
faster than the EOD cycle (e.g., membrane noise caused by channel
flicker low-pass filtered by the membrane capacitance) (Manwani and
Koch, 1999). In this case, D1 would be related to the strength of the
membrane noise.

In contrast, we take t2 to be much greater than the EOD cycle. Hence,
this noise term can be thought of as “slow” compared with the model
dynamics (it is almost constant for time scales much smaller than t2 ) (see
Fig. 2a). It thus models fluctuations on slow time scales (e.g., fluctuations
in vesicular release rate; see below). This term is needed to accurately
reproduce the Fano factor curve as shown in Results.

The spiking mechanism is a simple extension to the leaky integrate-
and-fire (LIF) model in which a spike is said to have occurred when the
membrane potential V reaches a constant threshold u. Immediately
afterward, the voltage is reset to its resting value (usually taken to be 0).
LIF models are memoryless in the sense that consecutive ISIs are not
correlated (ri 5 0 for all i . 0). To include refractory effects, we make u
also a dynamical variable (Geisler and Goldberg, 1966). But instead of
making it random (Gestri et al., 1980; Gabbiani and Koch, 1996, 1998),
we let it carry the memory by the following firing rule (Chacron et al.,
2000): when voltage equals threshold, it is reset to zero as in the LIF
model, whereas threshold is incremented by a constant amount Du and
kept constant for the duration of the absolute refractory period Tr, after
which it relaxes exponentially toward its equilibrium value u0 until the
next spiking time. The equations for voltage and threshold between times

of occurrence of action potentials and after the absolute refractory
period are thus:

v̇ 5 2
v
tv

1
Isyn

tv

u̇ 5 ~u0 2 u!/tu .

Like the synaptic current, v and u are dimensionless. A stretch of
simulation showing v and u is shown in Figure 2b. The filter given by
Equations 3–5 gives the linear transfer properties of the afferent, whereas
our spiking mechanism gives the correct baseline dynamics. We thus
combine the two to get the correct responses to AMs. Kreiman et al.
(2000) had a similar approach to model the P-type electroreceptors of
another species of weakly electric fish (Eigenmannia); they used a high-
pass filter to give proper AM response characteristics and fed the output
to an LIF model. However, because their LIF model had a random
threshold, it did not take into account the relative refractory effects that
could exist in this species.

For the remainder of this paper, we refer to our model as the leaky
integrate-and-fire with dynamic threshold (LIFDT) model. Note that our
dynamic threshold can model the aforementioned KV3.1 channel but
could also result from any current that leads to an increase in the effective
distance between voltage and threshold immediately after a spike. It is
thus very general and is used here to model cumulative refractory effects
and consequently endow the ISI sequence with proper second-order
statistics (Chacron et al., 2000) (Fig. 1). The experimentally obtained
SCC at lag 1 for the P-receptor data was 20.35 (Chacron et al., 2000),
whereas it is 20.385 for the model. Note that the three parameters for the
spiking mechanism (u0 , tv, and tu) can be adjusted to give the proper
first- and second-order statistics (ISIH, ISI return map, and SCCs) for
other P-units with different firing rates (data not shown). This spiking
model could thus be used to model other neural systems in which
negative ISI correlations at short lags have been observed (e.g., the
auditory system) (Lowen and Teich, 1992). The reason explaining why
the dynamic threshold gives rise to negative ISI correlations can be
understood as follows: suppose an ISI shorter than ^I& just occurred, then
the threshold (having had less time to decay) will typically be high after
the spike and will thus take a long time to decay. Consequently, the next
ISI will (on average) be longer than ^I&. This gives rise to a negative SCC
at lag 1. This is also the case when an ISI longer than ^I& occurs; as a
result, the threshold will now be lower, and the next ISI will be shorter
than ^I&. However, because of the strong noise l1 , negative ISI correla-
tions at longer lags will be washed out. An extended explanation of the
role of the noise in the model and why the dynamic threshold leads to
negative ISI correlations in the presence of noise can be found in
Chacron et al. (2001).

Also, our extended model gives the correct responses to sinusoidal
AMs (see Fig. 3 and the next section).

Stimulation
Baseline firing statistics were computed for both models. Their ability to
encode time-varying stimuli was tested using AMs of the EOD ampli-
tude. For the LIFDT model, the EOD amplitude minus its baseline value
was given by:

A~t! 5 sstims~t!,

where s(t) is the stimulus and sstim is the contrast. To calibrate the model,
we first used sinusoidal AMs of different frequencies and intensities to
construct the phase and gain response curves (see Fig. 3). We took the
baseline transdermal potential to have a root mean squared value of
0.566 mV, which is in the physiological range (Xu et al., 1996; Nelson et
al., 1997). The gain and phase curves were constructed then using the
method outlined in Nelson et al. (1997). The gain for sinusoidal AMs of
frequency 1 Hz was 1060 spikes per second per millivolt, which is in the
experimentally observed range of values (Nelson et al., 1997).

The stimulus c sstims(t) was presented then to the Nelson model, and
the constant c was adjusted so that both models gave identical gains and
phases over the frequency range of the sinusoidal AMs. For the purpose
of quantifying the amount of information transmitted, we then took s(t)
to be low-pass filtered Gaussian white noise of mean 0 and variance 1. A
Butterworth fourth-order filter was used with cutoff frequency fc (Wessel
et al., 1996). As mentioned above, this type of stimulus has been used
widely in quantifying the ability of neurons to encode time-varying
stimuli by means of the stimulus reconstruction technique (Gabbiani,
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1996; Gabbiani and Koch, 1996, 1998; Wessel et al., 1996; Chacron et al.,
2000; Kreiman et al., 2000).

RESULTS
We first explain how negative ISI correlations (Fig. 1) lead to a
decrease in spike train variability and how positive ISI correla-
tions increase this variability. We then show how a combination of
strong negative ISI correlations at short lags and weak positive ISI
correlations induced by a weak correlated noise (Fig. 2) and
extending out to long lags gives rise to the minimum in the Fano
factor curve F(T) seen experimentally by Ratnam and Nelson
(2000). We consider the role of these ISI correlations for signal
detection using the ideal observer paradigm by considering two
models (see Materials and Methods) that have identical responses
to sinusoidal AMs (Fig. 3). We then study their contribution to
the ability of the receptor to encode time-varying stimuli in the
form of low-pass filtered Gaussian white noise. This will be done
by computing the mutual information rate as a function of stim-
ulus contrast and cutoff frequency. Finally, we show that signal
detection is best suited for low-frequency stimuli (e.g., electrolo-
cation signals) (Nelson and MacIver, 1999) because spike train
variability is low on long time scales, and that information theory
is best suited for high-frequency stimuli (e.g., electrocommunica-
tion signals) (Zupanc and Maler, 1993; Bastian et al., 2001)
because spike train variability is high on short time scales.

Fano factor
The Fano factor curve obtained for the LIFDT model with D2 5
0 is plotted in Figure 4 (triangles). We see that the electroreceptor
is more regular at all time scales than a Poisson process because
F(T) , 1 (Cox and Lewis, 1966). F(T) decreases for T in the
1–5000 EOD cycle range and has an asymptotic value of 0.00685
(n 5 5 line). If we take only the SCCs to be nonzero up to lag 5,
then we get F` 5 0.00681 from Equation 1, which is very close to
the observed asymptotic value of 0.00685. For comparison, the
Fano factor time curve obtained by random shuffle of the ISI
sequence is also plotted in Figure 4 (diamonds). Because all ISI
correlations have been eliminated by this operation, we now have
a renewal process (Cox and Lewis, 1966) for which F(T) tends
toward CV2 from Equation 1 (CV2 line in Fig. 4). Note that
because CV2 ' 0.0436 , 1 in our case, hence we have F` , 1
even in the absence of ISI correlations. The two curves (triangles
and diamonds) are almost on top of one another for short count-
ing times (,10 EOD cycles), implying that correlations do not
play a significant role over this range from the Fano factor curve
perspective; however, as we will see below, this is not the case
from an information theoretic perspective. However, they become
different for longer times; the Fano factor curve without correla-
tions tends toward CV2, whereas the one with correlations has a
lower asymptotic value. We plot the Fano factor curve that was
obtained with the Nelson model in Figure 4 (squares). We see that
it matches the one obtained for randomly shuffled ISI sequences
from the LIFDT model. This match is not surprising, because the
two models have for all practical purposes identical ISI distribu-
tions and thus identical CVs (Fig. 1). Furthermore, it demon-
strates that there are no significant ISI correlations in the Nelson
model. Because the SCCs are effectively negligible beyond lag 5
in the model, the Fano factor tends toward a constant for long
counting times given by Equation 1; this is not what is observed
experimentally.

We now plot the Fano factor curve obtained with D2 5 9 3
1026 (EOD cycles)22 in the LIFDT model. This curve is on top

of the other ones for short counting times. In particular, the noise
l2 is weak (Fig. 2a) and has negligible effect on the ISIH and the
SCCs at low lags (see below). However, the Fano factor curve
differs from the others by increasing in a power law fashion for
long counting times before saturating. The behavior can be un-
derstood from a plot of the mean and variance of the PND (Fig.
5). The mean increases linearly with counting time; this is be-
cause the mean number of spikes that is expected in a time
window of length T is equal to the length of that window multi-
plied by the mean firing rate. However, the variance is almost
constant for short counting times; hence, F(T) decreases. The
variance then increases at a greater rate than the mean; hence,
F(T) increases. Finally, the variance and mean both increase with
the same rate, and the Fano factor is constant.

We now show that the increase in the Fano factor at long
counting times is caused by the presence of weak positive SCCs
that extend out to long lags. These positive correlations are
extremely small and cannot be seen from a plot of the SCCs rj as
a function of j. However, their presence is revealed by the
increase of the spectral density function at low frequencies (Cox
and Lewis, 1966) (Fig. 6). This can be seen on the following
simple example in which the following form for the SCCs at lags
.0 is assumed:

Figure 1. Comparison of the two models used in our study. a, ISIH
obtained from the analysis of 10,000 consecutive ISIs from the LIFDT
model [^I& 5 4.9912 EOD cycles, VAR(I ) 5 1.1449 EOD cycles 2, CV 5
0.2143]. b, SCCs obtained with the model. c, ISIH obtained from 10,000
consecutive ISIs with Nelson’s model [^I& 5 4.9982 EOD cycles, VAR(I )
5 1.1003 EOD cycles, CV 5 0.2098]. d, SCCs obtained. Note that both
models have the same distribution of ISIs but that the Nelson model does
not exhibit any significant ISI correlations; the small negative SCC at lag
1 is not significant because the model has the same Fano factor curve as
our model with shuffled ISIs (Fig. 4).
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r j 5 2 0.385d1j 1 0.00225e2
j

4000 , (6)

where dij is the Kronecker delta function (dij 5 1 if i 5 j and dij 5
0 if i Þ j). The corresponding spectral density function is plotted
in Figure 6. We have only retained the negative SCC at lag 1
because it is dominant. We see that the spectral density function
corresponding to the SCCs given by Equation 6 is very similar to
the one obtained with our model for D2 5 9 3 1026 (EOD
cycles)22. Because the SDF and the SCC sequence are completely
equivalent (Cox and Lewis, 1966) (see also “Signal detection
theory”), this justifies our assumptions. These positive correla-
tions at lags .1 sum up according to Equation 1 to give the
increase in the Fano factor. Thus, adding a slow additive noise to
the membrane voltage increases spike train variability at long
counting times. ISI sequences obtained from other neural systems
have been shown in some cases to display negative ISI correla-
tions at short lags and positive ISI correlations at long lags
(Lowen and Teich, 1992). Furthermore, an increase in the Fano
factor curve has been observed in many preparations (Teich,
1992; Lowen and Teich, 1992, 1996; Teich et al., 1996, 1997;
Turcott and Teich, 1996) and has been modeled by driving the

rate of a Poisson spike generator with colored noise (Teich, 1992;
Teich et al., 1996, 1997). This is a feature of our biophysically
plausible simple model of the P-unit. An intuitive explanation of
this interesting phenomenon is given in appendix C while a full
explanation is beyond the scope of this paper and will be pre-
sented elsewhere.

It is known experimentally that the Fano factor curves ob-
tained for different P-units have the same qualitative shape,
although their minimum occurs between 40 and 1000 EOD cycles
(Ratnam and Nelson, 2000). Our model produces Fano factor
curves quantitatively similar to those obtained experimentally.
Furthermore, the location of the minimum is found to be depen-
dent mainly on D2; in fact, by a suitable choice of D2, we can
obtain Fano factor curves matching the full experimental range
(data not shown). For example, if we take D2 5 1024 (EOD
cycles)22, then the minimum of the Fano factor curve is at T 5 40
EOD cycles. On the other hand, if we take D2 5 1026 (EOD
cycles)22, then the minimum is at T 5 1000 EOD cycles.

These results imply that the remarkable regularity of P-unit
spike trains at counting times of ;250 EOD cycles (within the
experimentally observed range) (Ratnam and Nelson, 2000) can
be entirely explained by negative ISI correlations that are present

Figure 2. a, Noise terms l1 (top curve) and l2 (bottom curve) as a
function of time. l2 varies more slowly than l1 and is four orders of
magnitude smaller. b, Voltage (bottom curve) and threshold (top curve)
trace obtained with the LIFDT model for baseline activity (no AMs)
showing the firing rule. When voltage equals threshold, a spike is said to
have occurred, and voltage is reset to zero, whereas threshold is incre-
mented by a constant Du. The threshold is kept constant to simulate the
absolute refractory period Tr (equal to one EOD cycle) and then decays
exponentially with time constant tu to its equilibrium value u0. Parameter
values used are given in Appendix A.

Figure 3. Gain and phase response curves obtained with both models for
sinusoidal AMs of various frequencies. The root mean squared baseline
transdermal potential is A0 /=2 5 0.566 mV, which is in the physiological
range (Xu et al., 1996; Nelson et al., 1997; Nelson and MacIver, 1999). As
in Nelson et al. (1997), we say that a sinusoidal AM has 0 dB intensity
when it produces a 1 mV change (RMS) in transdermal potential. SAMs
of various frequencies were presented to the model with the same inten-
sities used in Nelson et al. (1997) to construct the phase and gain curves.
The gains have been normalized by the value 1060 spikes per second per
millivolt (this value is in the physiological range) obtained for fstim 5 1 Hz.
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experimentally and in the LIFDT model at low lags. These arise
from cumulative relative refractoriness exhibited by our dynamic
threshold. We have shown here that negative SCCs contribute to
the reduction of the Fano factor and that positive SCCs increase
the Fano factor according to Equation 1. Ratnam and Nelson
(2000) have shown that modeling the ISI sequence by a first-order
Markov chain gave the correct SCC at lag 1. However, their SCCs
at longer lags had higher absolute values than observed experi-
mentally and alternated in sign. As a consequence, the SCC sum
for their model was greater (less negative) than the one calculated
from the experimental data. Thus, the Fano factor calculated with
their Markov chain model did not decrease as much as the Fano
factor from their experimental data. In contrast, our model re-
produces the descending part of the Fano factor curve seen
experimentally [compare our Fig. 4 with Ratnam and Nelson
(2000), their Fig. 11F].

We now discuss the power law increase of the Fano factor curve
in more detail. We first note that because we are using Ornstein–
Uhlenbeck noise, which has a finite correlation time t2 , the Fano
factor will eventually saturate to a finite value. This value is equal
to 0.36188 (Fig. 4, n 5 4000 line) and is given approximately by
taking the SCCs up to lag 4000 in Equation 1 (hence rj 5 0 for j .
4000). This implies that the 4000th ISI is still correlated to the
first one. Ratnam and Nelson (2000) found that, for many P-units,
the ISI sequence cannot be modeled by a Markov process of order

,10. Our results suggest that a Markov chain of ISIs of order at
least 4000 would be required to correctly reproduce this feature
of the Fano factor curve. In contrast, our simple dynamical model
accurately accounts for the full behavior of the Fano factor curve.
One plausible origin of the slow Ornstein–Uhlenbeck noise might
be fluctuations in synaptic neurotransmitter secretion rates that
exhibit long-term correlations (Lowen et al., 1997). However, it
could also be caused by slow drifts in EOD amplitude or fre-
quency (Moortgat et al., 1998).

Figure 4. Fano factor curve obtained with the models. The Nelson model
has no significant serial correlations amongst ISIs; hence, the Fano factor
tends toward the coefficient of variation squared. Random shuffling of the
ISI sequence obtained with the LIFDT model removes ISI correlations
and gives the same results as the Nelson model. The negative ISI corre-
lations decrease the Fano factor, resulting in a lower asymptotic value.
However, adding a weak noise with a long correlation time leads to an
increase in the Fano factor at higher counting times (see text and Ap-
pendix C for an explanation).

Figure 5. Mean and variance of the PND as a function of counting time
T for the LIFDT model with slow noise intensity D2 5 9 3 10 26 (EOD
cycles)22. The mean increases linearly with counting time. The variance
is at first almost constant, which leads to a decrease in F(T); it then
increases faster than the mean [F(T) increases]. At long counting times,
both increase at the same rate; hence F(T) is constant.

Figure 6. Spectral density function obtained with the LIFDT model with
D2 5 0 and D2 5 9 3 10 26 (EOD cycles)22. Power law behavior is
observed with D2 5 9 3 10 26 (EOD cycles)22 for low frequencies. The
spectral density function obtained by assuming a form for the SCCs (see
text) is also shown (solid line) and matches the curve obtained for D2 5
9 3 10 26 (EOD cycles)22.
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Pulse number distributions and ROC curves
We show in Figure 7 the PNDs that were obtained in the pres-
ence and absence of ISI correlations for four different counting
times for the LIFDT model. We see that ISI correlations have
minimal effects at short counting times such as 20 EOD cycles
(Fig. 7a). The effect of negative ISI correlations increases with
counting time (Fig. 7b). It is very important around 255 EOD
cycles (Fig. 7c), at which the variance of the PND is reduced
while the mean is left unchanged. This effect diminishes for
longer counting times (Fig. 7d) at which positive ISI correlations
contribute to the broadening of the PND.

This has implications for weak signal detection using the ideal
observer paradigm (Green and Swets, 1966). Intuitively, if P0(n,T)
and P1(n,T) do not overlap much, then we have a very good
detector (Gabbiani and Koch, 1998). As mentioned previously, a
good measure for this is the discriminant measure d (Green and
Swets, 1966; Nachimas, 1972; Snippe and Koenderink, 1992)
defined by:

d 5
um1 2 m0u
Îs1

2 1 s0
2 , (7)

where the vertical bars denote the absolute value and si
2 and mi

are the respective variance and mean of Pi(n,T). We have as-
sumed in Equation 7 that the Pi(n,T) are Gaussian (i.e., we have
neglected their third and higher moments). This is not too re-
strictive as they approach Gaussian distributions for high T by the
central limit theorem. Furthermore, the PNDs obtained with the
models are bell shaped (Fig. 7), and the Gaussian approximation
is reasonable. Optimal discrimination, and hence detection, re-
quires d to be higher than some threshold dcrit. Let f0 be the
baseline steady-state firing rate of the electroreceptor and sup-
pose that the stimulus varies slowly with time and leads to a new
steady-state firing rate f1. Here, we do not consider transients in
P-unit firing rate that can occur after a change in EOD amplitude

(Xu et al., 1996; Nelson et al., 1997), but rather only the new
steady-state firing rate. Furthermore, suppose that the signal is
weak, and that as a consequence, the variances of the PNDs are
approximately equal. Hence, m1(T) 5 (f1 /f0) m0(T) and s1

2(T) >
s0

2(T) and using Equation 7, the inequality d $ dcrit becomes:

F~T! # U f1

f0
2 1U s0~T!

Î2dcrit
, (8)

because F(T) 5 s0
2(T)/m0(T). Furthermore, s0(T) does not vary

much if we consider low counting times (Fig. 5), hence it can be
considered constant to a first approximation. From Equation 8,
the lower the Fano factor, the better the detector. A good value
for dcrit that gives almost no overlap between the P0(n,T) and
P1(n,T) distributions is three. Using this value, one can find a
lower bound for u(f1 /f0) 2 1u from Equation 8. From the data for
T 5 255 EOD cycles, s0(255) 5 0.78, F(255) 5 0.012, hence a
single P-unit can near perfectly discriminate steady-state re-
sponse to slow amplitude modulations as low as 6.5% from
baseline firing. The negative ISI correlations at low lags make the
PNDs narrower and lead to a significant improvement in the
ROC curve (Fig. 8). These fish are very good at detecting prey
using their electrosensory system (Nelson and MacIver, 1999).
Because there are relatively few numbers of false strikes (Nelson
and MacIver, 1999), PFA must be low (Ratnam and Nelson, 2000).
Our results show that the improvement in the detection proba-
bility PD attributable to ISI correlations is in fact greatest for low
PFA. Thus, the animal significantly improves its chances at detect-
ing prey by having negatively correlated ISIs.

In the above analysis, we did not consider the effect on signal
detection of transients in firing rates that are associated with
changes in EOD amplitude (Xu et al., 1996; Nelson et al., 1997).
Transients will help the animal in detecting weak signals by
increasing or decreasing the firing rate, thus shifting the mean of

Figure 7. PNDs obtained for both models for various counting times: (a)
20, (b) 90, (c) 255, (d) 3000 EOD cycles. ISI correlations reduce the
variance of the PND while keeping the mean unchanged. This effect is
maximal at counting times in which the Fano factor is minimal.

Figure 8. ROC curve obtained for both models. Correlations improve
the ROC curve by decreasing the variance of the PNDs, leading to a
better discriminability between the distributions. The stimulus was a 4%
step increase in EOD amplitude (the new amplitude value is equal to 1.04
times the old value). Including the transients leads to a further increase of
the mean of the PND with stimulus, which further increases discrim-
inability and, hence, improves further the ROC curve.
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the PND with stimulus away from the baseline PND. This is
confirmed in Figure 8 in which the transients resulting from a 4%
step increase in EOD amplitude lead to a near perfect detection
of the signal. These transients are present in both models because
both incorporate the filter given by Equations 3–5. A full explo-
ration of their effects will be done elsewhere.

Thus, there are two phenomena at work here: transients result-
ing from a change in EOD amplitude will shift the mean of the
PND, whereas negative correlations will reduce the variance. The
combined effect is better discriminability between the PNDs,
hence a better ROC curve and a lower stimulus contrast threshold
for signal detection.

Usually, fluctuations caused by noise average out over time,
and the ROC curve improves (Gabbiani and Koch, 1998). In our
case, the ROC curve becomes worse at longer counting times as
the positive ISI correlations increase variability (Fig. 7d). Thus,
there is a time window in which signal detectability is optimal for
the animal, and it corresponds to the counting time at which the
Fano factor is minimal. This optimal counting time has been
shown to vary between 40 and 1000 EOD cycles (Ratnam and
Nelson, 2000) within the P-unit population.

Entropy
All the previous analysis assumed a rate code, and thus spike
timing was considered unimportant. A recent study on the elec-
troreceptors of a very similar electric fish (Kreiman et al., 2000)
showed that significant jitter could be added to the spike train
without affecting the quality of encoding by using the stimulus
reconstruction technique (Rieke et al., 1997; Gabbiani and Koch,
1998) when the stimulus cutoff frequency was low (,20 Hz). This
suggests that a rate code might be more relevant for the encoding
of low-frequency stimuli.

However, electrocommunication signals contain much higher
frequency components (Metzner and Heiligenberg, 1991; Zupanc
and Maler, 1993; Dulka et al., 1995). In fact, the animal can detect
AM frequencies .200 Hz (Bastian et al., 2001). We use informa-
tion theoretic measures to assess the quality of encoding time,
varying stimuli by P-units at such frequencies. In particular, we
will assess the role of ISI correlations by comparing the informa-
tion rates obtained with and without their presence.

To assess the ability of the P-unit to encode different frequency
stimuli, we used low-pass filtered Gaussian white noise with a
variable cutoff frequency fc (Wessel et al., 1996). The same
stimulus was presented to both models, and the resulting baseline
and noise entropies for word lengths up to 16 were calculated.
Because the unit can fire at most once per EOD cycle, it is natural
to make the bin size Dt equal to one EOD cycle. We have also
plotted results obtained with a binomial process (each bin has
probability p of being assigned the value 1 and probability 1 2 p
of being assigned the value 0, p being the probability of firing per
EOD cycle equal to 0.2 in our case). For such a process, the
entropy of words of length L as a function of L21 is constant
(Shannon, 1948; Cover and Thomas, 1991); this permits us to
verify the accuracy of our algorithm. The calculated entropy for
the binomial process was significantly lower than the true value
(Fig. 9) for words of length .6. This is attributable to the finite
length of the spike train that is considered, which leads to under-
sampling for words of longer lengths (Strong et al., 1998). We thus
only considered words up to length 6 (i.e., 1/L goes from 1 to 1/6).
We plot the baseline entropies obtained for each model in Figure
9. Because a clear deviation from linearity can be seen in each
case, we performed a quadratic fit according to Equation 2. Note

that the baseline entropy values for our model are always lower
than for Nelson’s as correlations reduce entropy (Shannon, 1948;
Cover and Thomas, 1991). However, noise entropies will also be
lower for our model for the same reason. It is thus not clear a
priori what effect correlations will have on information transfer.

We thus calculated the information rates at different stimulus
contrasts sstim for both models. The baseline and noise entropy
rates for different contrasts were calculated at a fixed cutoff fre-
quency fc 5 100 Hz to assess the capacity of the P-unit to encode
high-frequency stimuli (as discussed above). We plot in Figure 10
the information rate for both models. As expected, it increases with
stimulus contrast for both models; however, the information for the
LIFDT model is always higher than the one obtained for Nelson’s
model. For example, for stimulus contrasts between 0.04 and 0.05
mV, the gain in information rate is approximately 0.04 bits per
EOD cycle, which corresponds to 40 bits per second. For both
models, the correlation between successive spikes in the presence
of a stimulus increases with sstim, resulting in a decrease in noise
entropy rate. This leads to an increase in the information rate.
However, this correlation is higher for the LIFDT model because
of the dynamic threshold, which reduces the noise entropy even
more and leads to a higher information rate.

We now look at the dependence of information rate on stim-
ulus cutoff frequency fc. We thus construct an “information tuning
curve” for the two models (Fig. 11a), i.e., the dependence of
information rate on stimulus cutoff frequency. For both models,
information rates are small at low cutoff frequencies and increase

Figure 9. Baseline entropies of words of length n calculated from 1000
realizations of duration 10,000 EOD cycles each for both models. Com-
parison with a binomial process for which these entropies should be
constant is shown to verify the accuracy of the results. Finite sampling
errors occur for words of length .7 and lead to results that are lower than
the true value (Strong et al., 1998). We thus take only the results for words
up to n 5 6 for the fits. Clear deviation from linearity is still seen for the
first few points in both cases. Entropies are lower for the LIFDT model
due to correlations. Also shown are the best fits obtained for the data.
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for higher cutoff frequencies, such as those near the mean base-
line firing rate of the neuron (200 Hz in our case). The general
shape is attributable to the fact that the noise entropy decreases
as a function of fc (over the range of interest). This decrease may
be attributable in part to the high-pass filter characteristics of
both models (Eqs. 3–5) over the range of frequencies considered.
A more complete analysis of this result will be presented
elsewhere.

Information rates were higher for the LIFDT model, compared
with the Nelson model over the full range considered. A surpris-
ing result is the fact that the gain in information caused by ISI
correlations exhibits a maximum at frequencies ;100–150 Hz
(Fig. 11b). Hence, our dynamic threshold enhances the informa-
tion tuning curve, and this effect is maximal for stimuli with a
cutoff frequency fc of the order of the inverse of the decay time
constant of the dynamic threshold tu. This effect can be under-
stood intuitively as follows: cumulative relative refractoriness
leads to a less variable neural response to repeated stimuli; if the
unit fires on the rising phase of the stimulus, then it has time to
recover and fire on the next rise of the stimulus, which occurs on
average at least after one correlation time fc

21. One thus expects
this effect to be maximal when fc

21 is on the order of the time
constant of the cumulative relative refractoriness (modeled here
by our dynamic threshold). If fc is too low, then the dynamic
threshold does not enhance information transmission, because
the stimulus dynamics occur on a much longer time scale. Hence
the information rates obtained with both models are approxi-
mately the same (Fig. 11a, less than fc 5 50 Hz). For fc high, the
dynamic threshold cannot follow the fast stimulus variations, and
the two information rates are again the same. There is thus a

resonance in the gain in information rate at ;100 Hz because of
cumulative relative refractoriness. The maximum gain is ;0.03
bits per EOD cycle, which corresponds to 30 bits per second.

Behavioral experiments have demonstrated that the animal can
reliably detect AMs with 100–200 Hz frequencies and that this
might be relevant for courtship behavior (Bastian et al., 2001). We
hypothesize that the resonance in the P-unit information tuning
curve caused by our dynamic threshold may be responsible for
this observed sensitivity.

Note that if the stimulus correlation time fc
21 is high, then one

might expect that the information rate over an EOD cycle would
be lower than the one obtained if fc

21 was low. This is attributable
to oversampling. Note also that for a stimulus cutoff frequency fc,
the electrosensory system might integrate the input using a time
window proportional to fc

21. These possible effects can be elimi-
nated by dividing the information rate by fc. This results in an
estimate (Ic) of the average information transmitted during a
time window equal to the correlation time fc

21 of the stimulus.
This quantity is shown to increase as a function of fc for both
models (Fig. 12a) but saturates for high fc. Thus, more informa-
tion is transmitted about high-frequency stimuli as compared to
low ones, even when the integration times are normalized. This
occurs because the increase in Ic is limited by the sampling rate
allowed by the baseline firing rate of the P-unit (Nyquist theo-

Figure 10. Information rate as a function of stimulus contrast for both
models. The stimulus is low-pass filtered Gaussian white noise with cutoff
frequency 100 Hz and has mean of zero and SD sstim. Information rate
increases with contrast for both models, but it is higher in the LIFDT
model than in the Nelson model. Figure 11. a, Mutual information rate as a function of stimulus cutoff

frequency. The stimulus contrast was sstim 5 0.03 mV. The information
rate increases with frequency for both models. However, information rate
is higher for the LIFDT model than for the Nelson model. b, Difference
between the information rate for the LIFDT model and the Nelson model
DI as a function of fc. This quantity displays a resonance for frequencies
on the order of the inverse of the decay time constant of the dynamic
threshold tu.
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rem). However, Ic is still higher for the LIFDT model. The gain
also has a resonance with the maximum ;100 Hz (Fig. 12b).

Effect of blurring on information rate
Finally, we show that the importance of spike timing increases
with stimulus cutoff frequency. We introduce “blurring” in the
spike train by making the bin width Dt greater and studying the
incurred loss in potential information for different cutoff frequen-
cies of the stimulus. We see that this loss is greater for higher
cutoff frequencies (Fig. 13). This suggests that spike timing has
minimal contributions in encoding information about slowly vary-
ing stimuli. Furthermore, this finding agrees with the fact that
significant jitter does not affect the quality of the reconstructed
stimulus for low stimulus cutoff frequencies (Kreiman et al.,
2000). However, spike timing is important for high-frequency
time-varying stimuli, and our results show in fact that electrore-
ceptors can encode stimuli that vary on time scales at least as fast
as 5–10 EOD cycles. This agrees with the results from a previous
study that found that spike timing jitter in electroreceptors was on
the order of one to two EOD cycles (Kreiman et al., 2000). This
also justifies our use of PNDs for low-frequency stimuli.

Contrasting signal detection and information theory
As the fish swims by a prey, it will experience a small change in
transdermal potential in a time window of ;200 EOD cycles
(Nelson and MacIver, 1999). However, information rates are
almost zero for such low cutoff frequencies (this corresponds to

frequencies of ;5 Hz, the information rate is almost zero for fc ,
50 Hz for the particular P-unit cell modeled here) (Fig. 11a). The
fact that the animal can readily detect these signals (Nelson and
MacIver, 1999) suggests that the mutual information rate that was
calculated using baseline entropy is poorly suited for coding of
these low-frequency stimuli. This is also the case after the corre-
lation time of the stimulus has been taken into account (Fig. 12a).
However, we have shown that measures based on signal detection
theory were adept at quantifying the ability of the electroreceptor
to transmit information about this type of stimuli (Figs. 7, 8). It is
thus more natural to analyse slow time-varying stimuli by looking
at the trial-to-trial variability of the PND.

We use a weak, slow time-varying stimulus (sstim 5 0.01 mV,
fc 5 1.96 Hz) and look at the PND in a time window of 255 EOD
cycles. The portion of stimulus used is shown in Figure 14a. The
PNDs obtained with both models are shown in Figure 14b. Note
that for each model, the PNDs with and without stimulus have
almost the same variances. Thus, the main factor for discriminat-
ing between the two distributions is the difference in their means.
This is not captured by entropy measures because they do not
depend on the mean of the distribution used (Shannon, 1948).

However, as shown previously (Fig. 7), the variance of the
PNDs that were obtained with the LIFDT model are smaller
than those obtained with the Nelson model. Note that the means
are separated by as few as three spikes in both cases (as low as 6%
difference). The lesser overlap for the LIFDT model results in a
dramatic improvement in discriminability. For example, the prob-
ability of obtaining 53 spikes for the LIFDT model is 0.3 with
stimulus and 0.05 without stimulus, corresponding to a ratio of 6.
For the Nelson model, this ratio is 2.5. Our results thus show that
a single P-unit could discriminate as few as two extra spikes in a

Figure 12. Average information transmitted Ic during a time window
whose length is equal to the stimulus correlation time fc

21 as a function of
cutoff frequency fc. This quantity increases with fc (see text for
explanation).

Figure 13. Information loss caused by blurring the spike train. We
counted the number of spikes that occurred in successive time intervals of
six EOD cycles in length and computed the information rate for that spike
train. We can see that fractional loss of information increases with fc.
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time window of 255 EOD cycles as already suggested by Ratnam
and Nelson (2000). Their first-order Markov process was not able
to reproduce the experimentally observed probabilities of correct
detection. This is because the Fano factor for their model was
higher than the one for the experimental data. The key factor in
this remarkable sensitivity is the negative ISI correlations that
were observed experimentally and that result from cumulative
relative refractoriness exhibited by our simple model with dy-
namic threshold.

DISCUSSION
Using two models, one with baseline ISI correlations and one
without, we have shown that negative ISI correlations that are
present experimentally play an important role in the animal’s
ability to detect both slowly and rapidly time-varying stimuli. A
first analysis based on signal detection theory, which assumes rate
coding, revealed that the ISI correlations dramatically enhanced
the detectability of low-frequency weak signals. We then used
information theory to quantify the ability of the afferents to
encode time-varying stimuli with various cutoff frequencies. We
found that ISI correlations also helped in this case and that the
effect was maximal for cutoff frequencies on the order of the
inverse of the decay time constant of our dynamic threshold that

was used to include cumulative relative refractoriness. By com-
paring both approaches, our study suggests that a rate code can be
assumed for low-frequency stimuli, whereas spike timing is im-
portant for high-frequency signals.

Comparison of models
Our previous simple model (Chacron et al., 2000) reproduced
baseline first- and second-order ISI statistics that were seen ex-
perimentally, such as the ISI correlations. Here, this model was
extended to include experimentally measured linear response
properties to sinusoidal AMs by Nelson et al. (1997). To quantify
the effects of correlations, we used a second model proposed by
Nelson et al. (1997) that gave identical first-order statistics and
responses to sinusoidal AMs, except that there were no ISI
correlations.

Spike train variability and signal detection
Spike train variability as measured by the Fano factor was com-
puted for both models at various time scales. Although able to
reproduce first-order ISI statistics as well as responses to AMs,
the Nelson model did not reproduce experimentally observed
spike train variability as measured by the Fano factor at counting
times .10 EOD cycles (Fig. 4) (Ratnam and Nelson, 2000). The
asymptotic value of the Fano factor for the Nelson model was
shown to equal the square of the coefficient of variation of the
ISIH as expected from Equation 1 in the absence of ISI correla-
tions. The Fano factor obtained from our LIFDT model also
tends toward this value when the ISI sequence is randomly
shuffled to eliminate ISI correlations, thus proving that the Nel-
son model did not display any significant ISI correlations.

The negative ISI correlations obtained with our simple LIFDT
model bring the Fano factor down (Cox and Lewis, 1966) (Eq. 1)
to experimentally determined values for longer counting times; a
discrepancy was, however, observed for counting times .150
EOD cycles as the Fano factor decreased monotonically instead
of increasing. To get this increase in variability at long counting
times, it was necessary to add a weak noise with a long correlation
time to the model dynamics. This noise had no effect at low
counting times, as explained in “Fano factor” and in Appendix C.
However, it led to positive ISI correlations extending to long lags
as seen by the increase of the spectral density function at low
frequencies (Fig. 6). The positive ISI correlations were weak,
decayed exponentially up to long lags, and summed up according
to Equation 1 to give the increase in the Fano factor. This
increase has been observed in many neurons and may be of
synaptic origin or attributable to drifts in EOD amplitude or
frequency. These ISI correlations make modeling of electrore-
ceptors by Markov chains of ISIs difficult because ISI correlations
can extend out to lags in the thousands. However, the addition of
an extra noise term in our simple model gave quantitatively
accurate results and could be used to incorporate these effects
into other neuron models.

We used the ideal observer paradigm (Green and Swets, 1966)
to optimally discriminate between pulse number distributions
with and without stimulus (Gabbiani and Koch, 1998). It was
shown that negative ISI correlations reduced the variance of
these pulse number distributions without changing their means
significantly, hence increasing their discriminability. This led to
an improvement in the receiver operating characteristic curve
that was maximal at counting times at which the Fano factor was
minimal. A criterion for near perfect discrimination was derived,
and it was shown that signals leading to a 6.5% increase in firing

Figure 14. a, A realization of low-pass filtered Gaussian white noise with
cutoff frequency fc 5 1.96 Hz and contrast sstim 5 0.01 mV. The counting
time window is between the horizontal lines (from 500 to 755 EOD
cycles). b, PND obtained with this portion of stimulus as compared with
the one obtained from baseline dynamics. The variances of the PNDs are
nearly identical and low, whereas the means are very different, which leads
to a good discriminability d. The difference between the means is not
captured by entropy measures, because they do not depend on the mean
and also assume infinite spike trains. Because there is no averaging over
the stimulus in this case, signal detection yields better results than infor-
mation theory.
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rate would be discriminated in this manner on the basis of
steady-state dynamics alone. Transients caused by the filter fur-
ther lowered this detection threshold by increasing or decreasing
the firing rate computed over the duration of the stimulus, thus
leading to a further increase in discriminability. Signal detection
analysis is not appropriate for zero mean high-frequency signals
(e.g., beat frequencies generated by fish with high EOD frequency
differences) because spike train variability is high at low counting
times (Softky and Koch, 1993; Borst and Theunissen, 1999). It is,
however, appropriate for low-frequency signals such as those
caused by prey.

Using information theory to quantify the coding of
time-varying stimuli
The trial-to-trial variability of the neural response to a repeated
stimulus was characterized by the noise entropy rate. The entropy
rate of the baseline spike train was estimated, and the difference
between baseline and noise entropy rates was used to quantify the
information transfer rate about the stimulus. This definition is
natural in our case because we have baseline firing activity and
signal detection must be based on a change from this baseline
activity (Ratnam and Nelson, 2000). We compared the informa-
tion rates obtained with our model and Nelson’s. It was shown
that the information rate increased in both cases with stimulus
contrast. This agrees with the fact that the electroreceptor is
better at encoding stronger stimuli (Wessel et al., 1996). However,
negative ISI correlations could help the electroreceptor in the
coding of fast time-varying stimuli because information rates
computed with our model were higher. This is caused by the fact
that correlations reduce the noise entropy even more than the
baseline entropy. We note that our results are consistent with
previous studies that have demonstrated that a refractory period
can improve the linear correlation between the stimulus and the
instantaneous firing rate (Chialvo et al., 1997) as well as the
neural precision (and hence the mutual information) (Berry and
Meister, 1998). However, the models did not incorporate ISI
correlations. Furthermore, in Berry and Meister (1998), the in-
crease in refractory period led to a decrease in mean firing rate,
and the causes of the increase in mutual information were not
clear. In our analysis, we examined the effect of ISI correlations
on mutual information and signal detection without concomitant
changes in the mean firing rate.

Information rates as a function of stimulus cutoff frequency
were also computed. Our results show that the information rate
increased with cutoff frequency as expected from the high-pass
characteristics of P-afferents (Xu et al., 1996). Information rates
were higher for the LIFDT model, and the gain attributable to
correlations exhibited a resonance with a maximum of ;100 Hz.
This frequency corresponds to the inverse of the decay time
constant of our dynamic threshold. Remarkably, there is evidence
that these fish respond preferentially to electrocommunication
signals with a frequency content of ;100 Hz (Bastian et al., 2001).

Comparing signal detection and information theory
Finally, we have shown that the loss of information about the
stimulus incurred by decreasing the spike-timing resolution in-
creases with cutoff frequency (Fig. 13). This suggests that spike
timing is not as important for low-frequency stimuli as it is for
high-frequency stimuli. However, signal detection theory assumes
a rate code and can be applied in cases in which spike timing is
not important. Our results show that an optimal detector receiv-
ing a single P-unit spike train with baseline negative ISI correla-

tions can detect the presence of stimuli that would give rise to as
few as two extra spikes over a counting time of ;250 EOD cycles,
as suggested by Ratnam and Nelson (2000). For low-frequency
stimuli, signal detection theory is appropriate because the change
in mean firing rate (computed over an appropriate time window)
without a concomitant change in firing rate variance can signal
the presence or absence of the stimulus. Without a change in
variance, there will be no change in entropy (because the entropy
of a random variable does not depend on its mean) (Shannon,
1948) and thus almost no mutual information as per our measure.
For zero-mean high-frequency stimuli, there may be almost no
change in mean firing rate computed over a long time window;
hence, signal detection theory is not appropriate. However, be-
cause baseline entropy is high (this is caused by the high variabil-
ity at short counting times) and because ISI correlations reduce
the noise entropy, the mutual information will be high. The ideas
presented above are compatible with a recent analysis by Salinas
and Sejnowksi (2000) in which neurons can be driven either by the
mean excitatory level (mean firing rate as assessed by the PND in
our case) or by fluctuations around this mean (as assessed by
mutual information in our case). Hence, the high variability of
P-afferent spike trains observed for short counting times gives a
high mutual information when looking at high-frequency stimuli,
whereas the low variability at longer counting times caused by
negative ISI correlations at short lags improves signal detectabil-
ity at low frequencies.

Conclusion and outlook
We have shown that negative ISI correlations that are seen
experimentally can improve the ability of a neuron to code both
slow and fast time-varying stimuli. The P-units we have studied
are known to converge onto basilar pyramidal cells of the elec-
trosensory lateral line lobe (ELL) (Bastian, 1981). Population
averaging is thus expected and might explain the extreme behav-
ioral sensitivity to AMs, down to 0.1% of baseline EOD (Knud-
sen, 1974; Nelson and MacIver, 1999). Also, as mentioned before,
the position of the minimum of the Fano factor is highly variable
(40–1000 EOD cycles). Moreover, it is possible that different
P-units (probability of firing per EOD cycle ranges from 0.1 to
0.5) (Nelson et al., 1997) will have different cumulative relative
refractoriness decay time constants. It will thus be very interesting
to study ELL decoding of slowly versus rapidly time-varying input
processed by this heterogeneous P-unit population.

APPENDIX A
In this appendix, we give a list of all the symbols and acronyms
used in this paper. When a symbol is constant throughout the
paper (e.g., model parameter), its value is given. Units are only
given for symbols.

Symbol/
acronym Description Value/units

b Constant 1 (spikes/EOD cycle)21

Dt Bin width 1 EOD cycle
Du Constant by which threshold

is incremented
0.05

g Constant 0.3266 (mV)21

j1 Uncorrelated Gaussian
random variable

Dimensionless

j2 Uncorrelated Gaussian
random variable

Dimensionless
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Symbol/
acronym Description Value/units

l1 Ornstein–Uhlenbeck process Dimensionless
l2 Ornstein–Uhlenbeck process Dimensionless
m Mean of the spike count Spikes
rj Serial correlation coefficient

at lag j
Dimensionless

s SD of the spike count Spikes
sstim Stimulus contrast mV
u Threshold for the LIFDT

model
Dimensionless (see text)

u0 Equilibrium value of the
threshold

0.03

t1 Time constant of l1 0.025 EOD cycles
t2 Time constant of l2 50,000 EOD cycles
ta Time constant in Equation 3 0.0026 sec
tb Time constant in Equation 4 0.21 sec
tv Voltage decay time constant 1 EOD cycle
tu Threshold decay time constant 7.75 EOD cycles
Q Heaviside function Dimensionless
A(t) Amplitude modulation of the

EOD
mV

A0 Baseline EOD amplitude 0.8 mV
AM Amplitude modulation

(of the EOD)
c Constant 0.84
C1 Fitting constant Dimensionless
C2 Fitting constant Dimensionless
CV Coefficient of variation Dimensionless
d Discriminability Dimensionless
dcrit Discriminability threshold 3
D1 Intensity of l1 8 (EOD cycles)22

D2 Intensity of l2 0 or 9 3 10 26 (EOD
cycles)22

dt Integration time step 0.0025 EOD cycles
EOD Electric organ discharge
F Fano factor Spikes
f Frequency Hz
fc Stimulus cutoff frequency Hz
fEOD EOD frequency 1000 Hz
Ga Gain term in Equation 3 14,100 spikes/sec/mV
Gb Gain term in Equation 4 470 spikes/sec/mV
Gc Gain term in Equation 5 670 spikes/sec/mV
H Entropy or entropy rate Bits or bits/EOD cycle
I Mutual information or mutual

information rate
Bits or bits/EOD cycle

Ic Average information transmit-
ted during the correlation

Bits

time of the stimulus
Ii ith ISI EOD cycles
Isyn Synaptic current in LIFDT

model
Dimensionless (see text)

^I& Mean of the ISI distribution EOD cycles
ISI Interspike interval
ISIH Interspike interval histogram
L Word length Dimensionless
LIF Leaky integrate-and-fire
LIFDT Leaky integrate-and-fire with

dynamic threshold

Symbol/
acronym Description Value/units

m Number of subprocesses used
in Nelson’s model

18

p Probability of firing per
EOD cycle

Dimensionless

PD Probability of correct
detection

Dimensionless

PFA Probability of false alarm Dimensionless
PND Pulse number distribution
r Time-dependent firing rate in

Nelson’s model
Hz

rbase Baseline firing rate in Nelson’s
model

200 Hz

ROC Receiver operating
characteristic

s Time-varying stimulus Dimensionless
SCC Serial correlation coefficient
SDF Spectral density function Dimensionless
T Counting time window length EOD cycles
Tr Absolute refractory period

duration in LIFDT
1 EOD cycle

v Membrane voltage in the
LIFDT model

Dimensionless (see text)

VAR Variance of the ISI
distribution

(EOD cycles)2

X Filtered stimulus Spikes/EOD cycle
Xa Filter variable in Equation 3 Spikes/EOD cycle
Xb Filter variable in Equation 4 Spikes/EOD cycle

APPENDIX B
In this appendix, we summarize the equations used for both
models.

Nelson model
The AM A(t) is filtered using the following set of equations:

Ẋa 5 2
Xa

ta
1

Ga

ta
A~t!

Ẋb 5 2
Xb

tb
1

Gb

tb
A~t!

X~t! 5 2 Xa 2 Xb 1 ~Ga 1 Gb 1 Gc! A~t!.

A baseline firing rate rbase is added to X(t) and Z(t) 5 X(t) 1 rbase

is rectified according to:

r~t! 5 H 0 Z~t! , 0
fEOD Z~t! . fEOD

Z~t! otherwise.

The probability of firing per EOD cycle is p(t) 5 r(t)/fEOD. Thus,
at each maximum of the EOD, the P-unit has probability p(t) of
firing. If there is a firing, jitter is added to the spike time in the
form of Gaussian white noise of zero mean and SD 0.04 EOD
cycles. The ISIH can be made more regular by simulating m
copies of the subprocess and generating action potentials at the
time of occurrence of the mth event (Nelson et al., 1997).
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LIFDT model
In our model, the AM A(t) is filtered using the same set of
equations as for the Nelson model:

Ẋa 5 2
Xa

ta
1

Ga

ta
A~t!

Ẋb 5 2
Xb

tb
1

Gb

tb
A~t!

X~t! 5 2 Xa 2 Xb 1 ~Ga 1 Gb 1 Gc! A~t!.

The total nondimensionalised synaptic current arriving at the
spike initiation zone is given by:

Isyn 5 ~bX~t! 1 gA0!Q~bX~t! 1 gA0!sin~2pfEODt! 3

Q~sin~2pfEODt!!~1 1 l1! 1 l2 ,

where b and g are constants to ensure units are matched, A0 is the
baseline EOD amplitude, fEOD is the EOD frequency, and Q is
the Heaviside function used for rectification [Q(x) 5 1 if x $ 0
and Q(x) 5 0 if x , 0]. The noise sources l1 and l2 are
Ornstein–Uhlenbeck processes given by [see text for a brief
introduction and Gardiner (1985) for further information]:

l̇1 5 2
l1

t1
1 ÎD1j1

l̇2 5 2
l2

t2
1 ÎD2j2 .

The noise sources l1 and l2 are shown in Figure 2a. For example,
the synaptic current for baseline dynamics is just a rectified
sine-wave (i.e., the negative part is set to zero) perturbed by
noise. In the time window between action potentials and after the
absolute refractory period, the voltage v and the threshold u are
given by:

v̇ 5 2
v
tv

1
Isyn

tv

u̇ 5 ~u0 2 u!/tu .

A spike is said to have occurred when v 5 u. Immediately
afterward, v is reset to zero, and u is incremented by a constant
Du. The threshold is then maintained constant for the duration of
the absolute refractory period Tr before decaying exponentially
until the next spike time. A stretch of simulation showing voltage
and threshold is shown in Figure 2.

APPENDIX C
In this appendix, we give an intuitive explanation of why adding
a slow noise to our model will give rise to positive ISI
correlations.

We first recall that the Ornstein–Uhlenbeck process l2 varies
on a time scale much greater than either the voltage or threshold
variables in the LIFDT model because t2 5 50,000 EOD cycles is
much greater than an EOD cycle. Thus, we can treat l2 as a
quasistatic variable with respect to voltage and threshold because
it is almost constant when considering time scales much smaller
than t2. Because the mean ISI is five EOD cycles long, many ISIs
(10,000 on average) will have occurred during a time window of
length t2. Let us imagine that l2 has some value; then l2 will have
that value (approximately) for a long time. If the value is positive,
then the synaptic current Isyn is bigger than it would be if l2 5 0
and we thus expect a long sequence of ISIs of shorter duration
(but not much shorter because l2 is weak) than on average (when

l2 5 0). When l2 has a negative value, one can expect sequences
of ISIs longer than average by the same argument. Thus, we will
get long sequences of ISIs that are shorter than average and long
sequences of ISIs that are longer than average. It is these long
sequences that will lead to positive SCCs (the SCC at a given lag
is positive only when two ISIs separated by this lag are both
shorter or longer than average). Because those sequences can be
very long, the ISI correlations extend to long lags. As mentioned
in the text, a full mathematical explanation will be presented
elsewhere.
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