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a b s t r a c t

We investigate the mode locking properties of simple dynamical models of pulse-coupled neurons to
two tones, i.e., simple musical intervals. A recently proposed nonlinear synchronization theory of musical
consonance links the subjective ranking from consonant to dissonant intervals to the universal ordering
of robustness of mode locking ratios in forced nonlinear oscillators. The theory was illustrated using
two leaky integrate-and-fire neuron models with mutual excitatory coupling, with each neuron firing
at one of the two frequencies in the musical interval. We show that the ordering of mode locked states
in such models is not universal, but depends on coupling strength. Further, unless the coupling is weak,
athematical models
hase locking
onsonance
issonance
oise
oupled oscillators

the observed ratio of firing frequencies is higher than that of the input tones. We finally explore generic
aspects of a possible synchronization theory by driving the model neurons with sinusoidal forcing, leading
to down-converted, more realistic firing rates. This model exhibits one-to-one entrainment when the
input frequencies are in simple ratios. We also consider the robustness to the presence of noise that is
present in the neural firing activity. We briefly discuss agreements and discrepancies between predictions
from this theory and physiological/psychophysical data, and suggest directions in which to develop this

theory further.

. Introduction

.1. Theories of consonance

Despite centuries of theories and experiments, the precise neu-
al basis for our perception of consonance and dissonance is still
argely unknown. This is so for both the mechanisms involved
nd their location. Studies of consonance have focused almost
xclusively on the perception of two simultaneous tones. This
uperposition can include only the two fundamental frequencies,
r these frequencies plus their harmonics with a specified ampli-
ude distribution for these harmonics. Each such sound is termed
s a complex tone, and the presence of two tones, pure or complex,
onstitutes a dyad or a musical interval.
The problem of the mechanism underlying subjective ranking
f an interval along the consonance to dissonance axis has received
ost attention at the psychophysical level, since experimental work

nvolving the simultaneous processing of two periodic stimuli is
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ttawa, Canada. Tel.: +1-613-562-5800.
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challenging and limited by available recording technologies and
suitable experimental preparations at the neuronal level. Yet the
solution of this problem offers the exciting possibility of explaining
a connection between simple subjective percepts and simple stim-
ulus combinations in biophysical terms, and accordingly there are
ongoing efforts to expose the neural basis of consonance evalua-
tions.

In this work, we explore nonlinear dynamical models of neu-
rons driven by periodic stimuli making up a musical interval, but
also driven by each another through mutual excitatory coupling.
The hope is to improve the biophysical realism of these models,
explore the issues involved in mapping their modeled activity onto
experimentally measurable activity, and reveal what aspects of
synchronization—if any—may be at play.

The simplest and probably the oldest theory of consonance is
that of Pythagoras. He observed that consonant mixtures of two
tones occurred when the frequencies were in simple integer ratios.
Helmholtz (1877) discussed consonance in the more general con-
text of complex tones, which differ from pure tones in that they

have power at harmonics of the fundamental. He proposed that
dissonance is proportional to the number of frequency compo-
nents present in the two complex tones that produce beats, i.e.,
whose frequency difference is within the so-called critical band-
width (Kameoka and Kuriyagawa, 1969; Plomp and Levelt, 1965;

http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:bheff028@uottawa.ca
mailto:alongtin@uottawa.ca
dx.doi.org/10.1016/j.jneumeth.2009.06.041
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oderer, 1995). For example, the sum of two such pure tone com-
onents of frequencies f1 and f2 and identical amplitude A can be
ritten as:

sin 2� f1t + A sin 2� f2t = 2A cos
(

f1 − f2
2

)
sin

(
f1 + f2

2

)
(1)

When the frequencies are sufficiently close, this superposition
roduces a single perceived pitch at the average frequency (f1 + f2)/2
ith a slowly varying intensity modulation known as the beat.

Another recent approach, based on timing nets, involves the
nalysis of population level distributions of all-order interspike
ntervals between firings (Cariani, 2001, 2004; Tramo et al., 2005). It
elies on putative computations in the time domain with filters and
oincidence detectors; the locus is not defined, but is thought to lie
omewhere beyond the cochlear nucleus. It is based on the notion
hat harmonically related pitches share firing intervals at their com-

on sub-harmonics. For example, in the case of a Perfect 5th, we
ave 2f1 = 3f2, and thus f1/3 = f2/2 are common sub-harmonics of the
wo tones. The presence of these common sub-harmonics causes
eural firings to be more correlated in time than for the case of
on-harmonically related pitches. This in turn produces maximal
itch salience that can plausibly account for consonance of pairs of
ure and complex tones.

Indeed, the simplicity of frequency ratios has played a central
ole in theories of intervallic consonance and dissonance. Sen-
ory consonance is often distinguished from musical consonance.
he former refers to consonance based on physical (i.e., acous-
ic) factors, and is, therefore, independent of musical conventions.
ensory consonance, which is considered to be a function of the
forementioned critical bandwidth, refers to the absence of ampli-
ude fluctuations in two simultaneously sounded tones (because
f their non-overlapping critical bands). Sensory dissonance refers
o the “roughness” (very rapid amplitude fluctuations) that can
esult from simultaneously sounded tones with overlapping critical
ands. By contrast, musical consonance is considered to result from
one compatibility, which is dependent on culture, convention, and
ontext.

Moreover, musical consonance is applicable to sequential as
ell as simultaneous tones. From a psychoacoustic perspective,

onsonant intervals occur between ‘compatible’ tones and pro-
uce a ‘feeling of stability’, whereas dissonant intervals occur
etween ‘incompatible’ tones and cause instability (e.g., Aldwell
nd Schachter, 1989). Although the concepts of sensory and musical
onsonance differ, they are not completely independent (Bregman,
990). For example, octaves have never been considered musically
issonant, and tones related by simple ratios, such as 2:3 and 1:2,
re considered to be “stable” intervals across several musical cul-
ures (Meyer, 1956).

Apart from issues of definition, there are outstanding problems
n terms of the class of mechanisms that may underpin conso-
ance ranking. As beating phenomena essentially arise from linear
uperposition of two sinusoidal waveforms, this concept of conso-
ance and dissonance is a linear one. It has its limitations, which
re nicely summarized in Shapira Lots and Stone (2008): conso-
ance ratings can change beyond the critical bandwidth, can occur
ithout the presence of harmonics, and cortical lesions reveal

hat there are specialized neuronal pathways dedicated to disso-
ance/consonance assessments (Peretz et al., 2001; Tramo et al.,
001). Sequential processing of tones also suggest that consonance
oes not rely as much on beats as on simple frequency ratios
Schellenberg and Trehub, 1994a,b), and EEG responses seem to

mply that consonance ratings are formed by processing of pitch
elationships in the auditory cortex (Itoh et al., 2003). So it is clear,
iven the range of subtly nuanced psychophysical phenomena and
f outstanding problems, that much work is needed to link elec-
rophysiological recordings, biophysical models and psychophysics.
cience Methods 183 (2009) 95–106

The work presented here offers one direction towards this goal, in
the context of synchronization theory.

1.2. Possible contributions of nonlinearity

Shapira Lots and Stone (2008) recently proposed a synchro-
nization theory of consonance that goes beyond the linear beating
theory of Helmholtz. It is based on a striking observation made on
numerical simulations of excitatorily pulse-coupled neuron models
(see below): the progression from consonant to dissonant intervals
is similar to the progression of step sizes on a ‘Devil’s Staircase’—the
step sizes themselves being proportional to the width of Arnold
tongues in nonlinear coupled oscillators. These technical concepts
refer to the range of parameters over which a given mode locking
of firing patterns is seen. A mode is defined as the frequency of one
oscillator (e.g., a periodically firing neuron). Mode locking describes
the phenomenon where the frequencies of two oscillators remain
in a given ratio for some finite range of parameters. The fact that
the oscillators adjust their frequency to maintain the same ratio is
a sign of nonlinear synchronization.

For example, imagine neuron A firing at a fixed frequency. If it
becomes excited periodically by neuron B, it may tend to synchro-
nize its firings with that of neuron B. In the simplest case, there
is a one-to-one correspondence between the firings of neurons A
and B, i.e., one-to-one (1:1) mode locking. Alternately, for another
parameter setting such as a lower amplitude of coupling, neuron A
may fire only once for every two firings of neuron B, i.e., there is a
1:2 mode locking.

The general theory of nonlinear oscillators states that a ratio of
n + n′:m + m′ can be found at parameters between those for which
n:m and n′:m′ occur (the so-called Farey sequence—see, e.g., Hilborn
(1994) for a general theory, and Glass and Mackey (1988) for spe-
cific applications to neuron models). There is in fact a universal
sequence of mode locking ratios that appear as the ratio of the
driving frequency (neuron B’s frequency fB) to the natural fre-
quency (that of neuron A, i.e., fA, in the absence of input from B)
is increased—independently of the details of the models for the
oscillators. Note here that fB is not influenced by neuron A, i.e., the
coupling is one-directional. One can then make a plot where the
abscissa is the ratio of natural frequencies fA/fB, and the ordinate
is the ratio of actual firing frequencies of the two coupled oscilla-
tors. Such a plot (examples are shown below) is known as a Devil’s
Staircase. This is called a staircase because it exhibits flat “steps”
(actually, an infinite number of them) in which each corresponds to
a mode locking. In other words, each step corresponds to a param-
eter range (e.g., a range of forcing frequencies) over which the same
ratio of firing frequencies is seen at the output of the coupled oscil-
lators. Strictly speaking the standard Devil’s Staircase is defined for
the so-called sine circle map (Glass and Mackey, 1988). In decreas-
ing order of width, the steps correspond to 1:1, 1:2, 1:3 and 2:3
(same width), 2:5 and 3:5, etc., i.e., the steps decrease in width as
higher integers occur in their fractional representation of the mode
locking.

Conversely, the width of each step is also a measure of how
robust a mode locking ratio is, i.e., of how easy it is to observe given
variations in system parameters. The 1:1 step (unison in musical
terms) is larger than the 2:1 step (octave), which is larger than the
3:2 step (Perfect 5th), larger than the 4:3 step (Perfect 4th) and so
on. Shapira Lots and Stone (2008) observed that this sequence had
notable similarity with the subjective ranking of consonance for
musical dyads (see Table 1).
There have been recent dynamical approaches to perception, in
which for example pitch perception relies on stable neural activity
patterns known as dynamical attractors (Cartwright et al., 2001).
The emphasis of such approaches is the nonlinearity of the com-
plex neuronal systems at work. The perception of a beat frequency
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Table 1
Mode stability as measured according to the authors’ simulation results (column 4), and as measured by Shapira Lots and Stone (2008), for similar parameter values (˛ = 100,
ε = 0.5). Neither presents a strong correspondence with global subjective consonance rankings.

Interval Ratio Consonance ranking
(Schwartz et al., 2003)

Ranking of mode
stability (ε = 0.5)

Ranking of mode stability
(Shapira Lots and Stone,
2008) (ε = 5)

Unison 1:1 1 1 1
Octave 1:2 2 3 2
Perfect 5th 2:3 3 2 3
Perfect 4th 3:4 4 4 4
Major 6th 3:5 5/6 5 5/6/7
Major 3rd 4:5 6/5 6 5/6/7
Minor 3rd 5:6 8 7 5/6/7
Minor 6th 5:8 7 10 8
Major 2nd 8:9 10/11 9 9
Major 7th 8:15 12 13 10
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a Here, we have measure the stability of the mode corresponding to 5:7, as the re

equires nonlinearity in the auditory periphery (such as at the
ochlea), since the beat frequency is not present in the linear
uperposition of two pure tones. The combination of sub-threshold
ctivity with sufficient neuronal noise is thought to enable the
etection of the missing fundamental through the so-called ‘ghost
tochastic resonance effect’ (Chialvo et al., 2002; Chialvo, 2003).
he detection by neurons of slow envelopes associated with nar-
owband signals relies on nonlinear thresholding with low noise
Middleton et al., 2006). The proposal by Shapira Lots and Stone
2008) follows this nonlinear trend, and is interesting given its fresh
pproach to the consonance problem.

.3. Further explorations of a synchronization theory

Our study focuses on simple neuron models with excitatory
ulse-coupling, as was used in the work of Shapira Lots and Stone
2008). In the discussion we comment on possible future extensions
f our work to include inhibitory connections. The mode locking
aradigm of Shapira Lots and Stone (2008) has not been tested
gainst the recorded activity of nerve cells in the presence of dyads.
heir scheme has only been illustrated numerically, assuming that
ach of two neurons fire, in the absence of coupling, at one of the
requencies present in the dyad. For example, for a Perfect 5th with
256 Hz fundamental, the bias current of one neuron is adjusted
ntil it fires periodically 256 times per second, and the other is
djusted to fire periodically 384 times per second (2:3). However,
o our knowledge, neurons that fire periodically at the frequency of
tone stimulus have not been found in the cortex nor elsewhere

Tramo et al., 2005). In fact, cortical firing rates are typically low
xcept when responding transiently to inputs. This model is thus
een more as a caricature of how nonlinearity and synchronization
ay arise in, e.g., auditory cortex, serving as a basis for exploring

his theory of consonance.
Also, while it is clear that most neurons do exhibit a stochastic

omponent to their firing, it is not clear what the balance of deter-
inism and noise is needed to replicate the activity of cells involved

n the ranking of consonance. There are numerous cell populations
nd intricate circuitry from the cochlear nucleus up to the auditory
ortex (Tramo et al., 2005; Joris et al., 2003). The auditory afferents
mpinging on the cochlear nucleus already exhibit significant ran-
omness in response to a pure tone. The firings are phase locked to

he tone, but are separated by a random integer number of periods
f the tone. This down-conversion of the input frequency to the out-
ut frequency is reproducible in terms of mathematical models that
ix determinism and noise (see, e.g., Longtin, 1993 and references

herein, and Cariani (2001) in the context of musical perception).
12 11
11 (12)
8a (13)

g difference in the second tone is imperceptible (less than 8 cents!)

Other questions arise. How closely does the consonance rank-
ing match psychophysical data for different coupling strengths and
fundamental frequencies? How does it behave when neuronal noise
is present? From the point of view of nonlinear dynamics, Devil’s
Staircases with strict universal properties are limited to weak cou-
pling scenarios where one oscillator is driven by another (Glass and
Mackey, 1988; Coombes and Bressloff, 1999). There is little known
about the general properties of such “staircases” in the context of
mutually coupled leaky integrate-and-fire neurons. Hereafter we
nevertheless refer to the ensuing staircases as “Devil’s Staircases”
for simplicity. In fact, we notice in Shapira Lots and Stone (2008) that
the stability measures are based on mode locking ratios that dif-
fer from the actual ratio of natural frequencies driving the neurons
(see Section 3.2). For example, the step corresponding to the octave
ratio (the neurons are mode locked 1:2) is seen when the input
frequencies are in a ratio of around 1:3. Associating mode locking
at one interval to the consonance of another interval undermines
the theory. Further, there is little known about the synchroniza-
tion properties of coupled oscillators, when each one is driven at
substantially different frequencies (Pikovsky et al., 2003). Here we
explore these properties further numerically in the context of con-
sonance.

Finally we will consider an elaboration of the synchronization
theory in which the neurons do not individually (i.e., without cou-
pling) fire at the tone frequency. The higher processing pathways,
in auditory and other similar pathways such as the electrosensory
system (Berman and Maler, 1999), implement a kind of down-
conversion of the frequency representation to bring it into line
with the dynamical capabilities of the neurons. In fact much may
be gained by looking at other senses, such as the electric sense
and mechano-reception, that also deal with multiple inputs of a
harmonic nature (Eggermont, 1990). While a full modeling of the
neurons in the auditory pathway is beyond the scope of our work, it
is possible to ask what the study of simple generic neuron models
driven by sinusoids can bring to our understanding of consonance,
on the road to more realistic models. Resulting observations and
predictions could help refine experiments to validate this or other
theories.

Section 2 exposes the methods used to explore how simple
neuron models can serve as investigative tools for the study of
consonance phenomena. Results on mode locking as a function of
coupling strength and noise, along with more realistic sinusoidally

forced models with lower rates are presented in Section 3. This
section also includes an analysis of the correspondence between
consonance rankings and mode locking ratios. A discussion of our
results and outlook onto future investigations are the subjects of
Section 4.
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The leaky integrate-and-fire (LIF) model is a simple neuron
odel that retains the minimal ingredients of membrane dynamics,

ut whose behaviors nonetheless map onto many known proper-
ies of real neurons. They are sufficient to mimic basic sub-threshold
roperties of neurons. They incorporate supra-threshold spiking
rtificially: when the voltage reaches a fixed threshold, chosen
qual to 1 in our work, a firing (or spike or action potential) is said
o have occurred, and is represented graphically either by a point or
y a vertical arrow on top of voltage time series plots (see below).
t the next numerical integration time step, the voltage is reset

o a value chosen here as 0. The threshold and reset voltages can
e rescaled to realistic values for a given cell without qualitatively
ffecting results. For example the threshold can be set at −55 mV as
he Na+ activation voltage, and the reset can equal a resting poten-
ial of, e.g., −70 mV. The dynamics of the coupled LIF model can be
ritten as:

dV1

dt
= −V1

�1
+ I1 + εE2→1(t)

dV2

dt
= −V2

�2
+ I2 + εE1→2(t)

(2)

ere �1 and �2 are membrane time constants, chosen equal to 1
elow. E2→1(t) represents the effect of neuron 2 (LIF2) on neuron
(LIF1), and vice versa for E1→2(t). The parameter ε represents the

trength of coupling between the neurons. I1 and I2 represent the
ias to the cells (in units of current divided by capacitance C, where
is set to 1). I1 is chosen so that the neuron fires (reaches threshold)
eriodically at frequency f1 = 256 Hz, the fundamental tone chosen
or our study, and I2 is chosen so that it fires at the other frequency
2 in the interval. In general, the frequency of firing of an LIF model
s related to the bias current I by the formula:

−1 = � ln
I�

I� − 1
(3)

or I� > 1 which is the neural oscillator regime. This can be found
imply by looking at the solution of a single LIF model (with ε = 0):
(t) = I�(1 − e−t/�) and equating it to the threshold value after one
eriod T = f−1. When a neuron fires, an action potential is assumed
o propagate to the other neuron, where it causes a synaptic current
n the form of an alpha function with the time course:

(t) = ˛2te−˛t�(t) (4)

ere this formula represents what a spike at time zero contributes
o the post-synaptic cell. �(t) is the Heaviside function which is 0 for
< 0 and 1 otherwise. The strength of this pulse-coupling between
he oscillators is thus determined by εE(t). For numerical work
nvolving many spikes, one has to sum many such alpha functions
ppropriately shifted in time to compute the ongoing effect of one
ell on another. This involves keeping track of every firing time and
umerically evaluating a continually growing list of alpha functions
s the simulation proceeds. Further, the exponential evaluations
re computationally costly, and amount to insignificant contribu-
ions after a few time constants. So instead, an equivalent procedure
onsists in modeling each synapse by two state variables:

dEi

dt
= yi

dyi

dt
= −2˛yi − ˛2Ei +

∑
k

ı(t − tjk)
(5)
ere the index i = 1, 2, . . . and j is the opposite of i, such that tjk is
he kth firing time of neuron j, and the sum is over all such firing
imes. The “delta” functions in the sum are Dirac delta functions,
ommonly used in computational neuroscience to mimic a spike
rriving at a presynaptic terminal by focusing solely on its time
cience Methods 183 (2009) 95–106

of arrival. Numerical integration of the differential equations for
each voltage and for the respective alpha functions of each neuron
was done with an Euler scheme when no noise was present. The
input frequency ratio, referred to below as the intrinsic or natural
frequency ratio, was determined as the ratio of firing frequencies
when the cells are uncoupled. The output mode locked ratio is the
ratio of firing frequencies actually achieved in the coupled situation
after transients have died out.

The above model, studied by Shapira Lots and Stone (2008), and
also analytically earlier by Coombes and Lord (1997), will be studied
below for different values of coupling. It will also be extended in
two more realistic directions. To take noise into account, we will
consider the effect of noise on the current–balance equation:

dV1

dt
= −V1 + I1 + εE1(t) + �1(t)

dV2

dt
= −V2 + I2 + εE2(t) + �2(t)

(6)

The noises �i are independent Gaussian white noises with zero
mean. For simplicity both noises were given the same intensity
D defining the autocorrelation function of the noise 〈�(t)�(s)〉 =
2Dı(t − s). These equations were integrated using a standard
Euler–Maruyama algorithm: the deterministic part of the dynam-
ics is integrated with an Euler method, while the noise term at
each time step contributes the value N

√
2D� where N is a ran-

dom Gaussian number of mean zero and variance one, and � is the
integration time step. Output mode locking ratios were determined
by averaging the firing activity over long stretches of the numeri-
cal solutions; they are thus mean output mode locking ratios when
noise is present.

The last model we consider is the sinusoidally forced, but noise-
free, pulse-coupled LIF system:

dV1

dt
= −V1 + I1 + A1sin(2�f1t) + εE1(t)

dV2

dt
= −V2 + I2 + A2sin(2�f2t) + εE2(t)

(7)

Without coupling (ε = 0) each neuron is known to exhibit mode
locking to the periodic input (Keener et al., 1981). The frequencies
of the input pure tones here are simply f1 and f2—there is no need
for a calibration using Eq. (2). The threshold and reset are 1 and 0,
respectively, for each cell as above. The chosen biases in this case
are smaller than the values for Eq. (1) (see below). In fact, sub-
threshold dynamics are used, such that firings cannot occur when
coupling strength and forcing amplitudes A1 and A2 are set to zero.
The amplitudes of the pure tones are set by A1 and A2. This formu-
lation thus further allows an investigation of stimulus intensity by
varying the amplitudes. It can also be used to mimic sensitivity of
different neurons to different tone frequencies, i.e., to incorporate
tonotopic receptive field properties. This is not explored here, as
the amplitudes are set equal to one another, but our work sets the
stage for these further explorations.

For these simulations, we also show the relative firing phases for
each cell. Every time a neuron fires, its “phase” is reset to zero; this
phase is then assumed to increase linearly in time until it reaches 2�
at the time of its next firing (Pikovsky et al., 2003). Having assigned
each neuron a phase, it then becomes possible to compute a relative
phase as the phase at which neuron 1 (or 2) is when neuron 2 (or
1) fires. This representation simply illustrates the mode lockings.

3. Results
3.1. Coupling strength and mode locking

We first look at the effect of coupling strength in Eq. (1) on mode
locking as well as on the ordering of the mode locking ratios. Fig. 1
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ig. 1. The membrane potential of LIF1 (top panel, blue) and LIF2 (bottom panel, gre
elected such that LIF1 fires at 256 Hz, and LIF2 fires at 384 Hz, constituting a Perfe
ust that of the natural firing ratio of 2:3, which is quite clear from the summed spi
eferred to the web version of the article.)

hows the situation corresponding to a Perfect 5th interval (pure
one dyad) with a natural frequency ratio of 2:3. As the coupling
trength is zero, the output mode locking ratio is the same as the
atural ratio, as expected. Fig. 2 shows the mode locking effect
esulting from an increase in coupling strength to ε = 0.2, result-
ng in a firing mode of 3:4. A coupling strength of ε = 0.5 results in
mode of 15:17 (not shown). In fact, the output mode locking ratio
pproaches 1:1 as ε increases.

It is also clear, by comparing the middle panels of Figs. 1 and 2,
hat the firing rates of both LIFs increase with increases in coupling
trength. This is expected from Eq. (2) since the firing frequency
s a monotonic increasing function of the bias current. The purely
xcitatory coupling causes a net positive contribution to the bias in
ach cell, which leads to a higher firing rate in each cell. This under-
ies the increase in the output mode locking ratio in comparison to
he natural frequency ratio (Coombes and Lord, 1997).

.2. Devil’s Staircase
In order to reproduce the results of Shapira Lots and Stone
2008), a plot of the output mode locking ratio versus the natu-
al frequency ratio was generated and is shown in Fig. 3. Here the
atural frequency of LIF1 was set to 256 Hz, and the natural (intrin-

ig. 2. A Perfect 5th with coupling strength E = 0.2, ˛ = 0.9. Here, the coupled LIFs, whose
ach neuron has increased, as seen by comparing the middle panels of this panel with that
oupling.
d their corresponding spike trains (middle panel). The bias currents in Eq. (1) were
. Here, the LIFs are uncoupled (ε = 0) and thus, as expected, the resulting mode is

ins. (For interpretation of the references to color in this figure legend, the reader is

sic) frequency of LIF2 was swept from 230 to 1230 Hz in increments
of 0.5 Hz by increasing the bias parameter I2. A coupling strength of
ε = 0.8 was used, and the resulting staircase structure is nearly indis-
tinguishable from that published by those authors who used ε = 8.
As they have confirmed this parameter choice (Shapira Lots and
Stone, personal communication), it is not clear at this point why
we must scale down their values of ε by a factor of 10 to produce a
match to their results.

One can clearly see the largest step corresponding to the out-
put ratio of 1 (1:1), followed by 0.5 (1:2), 0.66 (2:3), etc. The step
size determines the robustness of a ratio, i.e., the range of system
parameters, including natural frequencies, over which the ratio will
be seen. The ordering of the step sizes and the correspondence with
consonance rankings are discussed below using Table 1.

It is important to note here that all of the output mode lock-
ing ratios below 1 lie above the diagonal, and thus the mode ratios
acquired with this coupling do not match the natural frequency
ratios. This implies, for instance, that the octave—whose intrinsic

frequency ratio is 1:2—produces a mode locking of roughly 16:25
(0.64), which is actually a fairly ‘unstable’ mode. For the parame-
ter values used here, the coupled systems that actually synchronize
to a mode locked ratio of 1:2 lie in the range of natural frequency
ratios from 0.31 to 0.36 (roughly 1:3), which corresponds to a devi-

natural frequency ratio is 2:3, lock to a mode of 3:4. The frequency of discharge of
of Fig. 1, since each neuron causes a net excitation in the other due to the excitatory
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Fig. 3. ‘Mutually Coupled-Excitatory Devil’s Staircase’ structure generated by hold-
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ng LIF1 at 256 Hz and sweeping LIF2 from 230 to 1230 Hz. The coupling strength
s ε = 0.8, ˛ = 100. The steps appear as lines due to the density of points occurring
t the given modes. The red line indicates the diagonal. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of
he article.)

tion from the tonic (256 Hz) by an additional half-octave. This
henomenon is also observable in Shapira Lots and Stone (2008). It
aises a concern regarding the strict association of step sizes with
onsonance ranking, as the ratio produced is shifted from the ratio
ctually desired. One must thus further explore the meaning of this
ssociation in this context.
.3. Effect of noise on mode locking

Fig. 4 shows the effect of neuronal noise on the mode stability
f the staircase, based on numerical simulations of Eq. (6). Here,

ig. 4. Devil’s Staircase generated in the same manner as in Fig. 3, here with noise
dded (D = 0.1), and for coupling strengths of ε = 0.8 (blue), and ε = 0.5 (red). Notice
hat the stairs (modes) of the staircase are almost entirely washed out by the noise.
oth lie above the diagonal line shown here in green for all mode locked ratios less
han 1, as expected. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of the article.)
cience Methods 183 (2009) 95–106

due to the randomness of the solutions, the mode locking ratio is
computed as a time average of the firing frequencies of both the
oscillators. Clearly, for both coupling strengths shown, the noise
has the effect of washing out the stair-like structure seen in Fig. 3.
Only the larger steps remain visible for a given noise level. Noise
does not change the slope of the curve, nor does it appear to change
the relative sizes (and thus the size ordering) of the steps. A similar
smearing of a Devil’s Staircase by noise has also been reported in the
context of electrosensory receptors in Chacron et al. (2000), which
are very similar to mammalian primary auditory afferents (Carr,
2004). Interestingly, the staircase moves towards the diagonal as the
coupling strength is reduced, i.e., the mode locking ratio acquired
through coupling is closer to the natural ratio. Nevertheless, these
results raise the question of how robust the synchronization for
different ratios remains in the face of noise, an issue further studies
will have to contend with. Perhaps other mechanisms are at work
to enhance the mode lockings, such as coupling between multiple
oscillators.

3.4. An analysis of correspondence of rankings

Again, under the assumption that Shapira Lots and Stone indi-
cate ε values corresponding to a ten-fold increase to ours, we
generated a staircase plot in an identical fashion to that mentioned
above, now using ε = 0.5. Our assumption was further validated by a
similarity in stability values, as measured by the width of each stair,
i.e., the range of intrinsic frequency ratios over which a given mode
locked ratio is maintained (see Appendix A for numerical values).

Table 1 shows the ranking of mode stability resulting from this
frequency sweep at lower coupling placed beside those indicated
by Shapira Lots and Stone. Bold values indicate a match in rank-
ing between mode stability, and the mean value of consonance
assessments due to Schwartz et al. (2003) derived by normalizing
and averaging the rankings of several such studies (here ‘/’ denotes
equivalence).

From the table, it may seem that our reproduction of Shapira
Lots and Stones’ results is not such a faithful one. However, it is
worth noting that the rank ordering of mode stability is parameter
dependent, and thus the simple model Eq. (1) does not actually yield
an invariant relation to consonance orderings as implied in Shapira
Lots and Stone (2008). This indicates that this is not a true Devil’s
Staircase, since the width of the stairs do not map in a one-to-one
correspondence with the simplicity of ratios regardless of model
parameters.

Indeed, the notion of putting into correspondence the stability of
mode locked ratios with dyadic tone ratios is further compromised
by the fact that the ‘staircase’ has an average slope greater than one
for all positive couplings. The slope tends to one as the coupling
strength decreases (see Fig. 5 for a small coupling strength ε = 0.08).
It can only be made to lie perfectly on the diagonal for ε = 0 (see
also Fig. 5). In this latter case all modes reduce to points, yielding a
stability measure of zero, and the staircase becomes a slide. This in
itself does not exclude the possibility of ‘Western’ dyads locking to
their identical mode locked ratios—even though the steps are now
very small in comparison to previous results with stronger coupling.
Nor does it exclude the possibility of the acquired mode’s stability
measures being ordered according to the simplicity of dyad ratios.
But it does seem to imply that this perhaps overly simplistic model
will never yield a perfect correspondence between the simplicity of
frequency ratios and the stability of mode locked ratios in general.
Given the similarity of some orderings however, it is nevertheless

an interesting model from which to launch further explorations.

Table 2 shows the stability ranking of the output mode locking
ratio acquired by the coupled LIF neurons driven at the dyadic ratio
indicated, alongside the ranking of the stability of the mode of that
same ratio. The stability of the actual mode acquired does not cor-
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Table 2
The fourth column shows the rank ordering that results from measuring the stability of the actual mode acquired by the coupled LIFs, compared to Shapira Lots and Stone’s
measurement of the stability of the modes corresponding to the input ratio of the intrinsic frequencies, regardless of the fact that the LIFs do not necessarily lock on to this
ratio. Clearly, correspondence between mode stability and consonance ranking is weak for both simulation results, as indicated by bold.

Interval Ratio Consonance ranking
(Schwartz et al., 2003)

Stability ranking of actual
mode acquired (measured
from Fig. 3) (ε = 0.8)

Stability ranking of the mode
corresponding to input ratio
(measured from Fig. 3) (ε = 0.8)

Unison 1:1 1 1 1
Octave 1:2 2 9 2
Perfect 5th 2:3 3 11 3
Perfect 4th 3:4 4 3 5
Major 6th 3:5 5/6 7 7
Major 3rd 4:5 6/5 4 4
Minor 3rd 5:6 8 8 6
Minor 6th 5:8 7 5 8
Major 2nd 8:9 10/11 6 12
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inor 7th 9:16 11/10
inor 2nd 15:16 13

ritone 32:45 9

espond well with either the ranking of the stability of the mode
ocked ratios, nor with the global subjective consonance rankings.
t is not much worse however than the stability of the mode locking
atio corresponding to the interval ratio.

.5. Sinusoidally forced model

.5.1. Mode locking
To further enhance the realism of our model in the context of

ynchronization, we performed a similar analysis to that presented
bove, this time using coupled LIFs with identical sub-threshold
ias currents, each presented with a sinusoidal forcing at a fre-
uency (pure tone) corresponding to one of the frequencies in the
elected dyad (again using a fixed base tone of 256 Hz). The model
ynamics are given by Eq. (7). Fig. 6 shows the response of the LIFs
o a pure tone dyad stimulus corresponding to a Perfect 5th, here
ncoupled to illustrate the acquisition of a mode of 2:3, as expected.

short transient phase appears characteristic of such sinusoidally

orced sub-threshold LIFs over the parameters of interest here.
The effect of increasing the coupling strength ε while holding

ll other parameters fixed results in increasing (technically, non-
ecreasing) firing rates of the LIFs (Figs. 6–8). This results in a clear

ig. 5. Devil’s Staircase with very low coupling (ε = 0.08). Although nicely aligned
ith the diagonal, the modes are of nearly uniform width. All dyads are ‘perceptually

table’, in the sense that they all lock to modes of significant width.
2 10
10 11
13 13
12 9

change of resulting mode, as evidenced by the relative phase of
firing seen in the lower panels of Figs. 6–8.

3.5.2. Analysis of the behavior of the model with sine forcing
Fig. 9 demonstrates the ability of a sub-threshold model neuron

on its own (i.e., without coupling to another neuron) to either up-
convert or down-convert the frequency of a sinusoidal stimulus. By
fixing the sinusoidal amplitude to A = 0.2 and sweeping the stim-
ulus frequency from 250 to 550 Hz, we see that the average firing
rate follows a non-monotonic function. This is the case for the var-
ious bias currents we have investigated. What we are seeing here
are mode lockings between the frequency of the input and the fir-
ing frequency of the neuron—although the input frequency is not
influenced by the neuron firing (i.e., the coupling is uni-directional
as opposed to bi-directional as has been studied up to now). Notice
that the lower the bias current, the smaller the frequency range
over which spikes are induced by the signal. This is a consequence
of the low-pass filtering characteristic of the LIF model.

Notice also that for a bias of 0.96 (blue), the octave tone of 512 Hz
is down-converted by a factor of 2. Down-conversion from tone
frequency to neural firing frequency is already implemented by
the primary auditory fibers, as discussed in the motivation lead-
ing to this model. Other conversions along the auditory pathway,
which have not been fully elucidated, also occur to finally deter-
mine how primary auditory neurons fire according to a tonotopic
representation (Joris et al., 2003; Tramo et al., 2005). The results
here reveal that nonlinear mode locking effects may play a part
in the down-conversion of frequency. This may be significant, as
humans are capable of detecting pitches of stimuli whose frequen-
cies are significantly greater than the upper limit of neuronal firing
frequencies.

Fig. 10 shows the average firing frequency as a function of bias
current for selected stimuli. It can be easily seen that for fixed ampli-
tude of the stimulus, the LIFs will never generate spikes if the bias
is too small. The low-pass filtering of the LIF is again shown clearly
here, since as the stimulus frequency increases, the minimal bias
required in order to make the LIF fire also increases. It is intrigu-
ing to see that the locking of the octave tone of 512 Hz (cyan) to
the same average firing rate resulting from the tonic tone of 256 Hz
(royal blue) occurs for a bias current of roughly 0.97—which may
relate to pitch invariance at octaves.

Finally, Fig. 11 presents an example of Devil’s Staircase for this

system Eq. (7) with coupling. Mode lockings are clearly seen in the
numerous plateaus present. However the staircase is not monotonic
as we have seen up to now. The structure of the mode lockings is
quite complex, and its full analysis will be left for future work. So
there is no apparent clear association between the size of steps
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ig. 6. (a) The sinusoidal current ‘injected’ into LIF1 (blue) and LIF2 (green), here rep
f A = 0.5. (b and c) The membrane potential of LIF1 and LIF2 respectively, here uncou
orcing on the shape of the membrane potential in comparison to the internally dri
s expected. (For interpretation of the references to color in this figure legend, the r

nd the simplicity of the ratio of the natural frequencies f1/f2. One
eature stands out however: near the integer multiples of the tonic
so ratios of 1, 0.5, 0.33) the output mode locking ratio is around 1.
his may again help to explain the pitch invariance experienced at
ctaves by humans and some primates.

. Discussion
.1. Effects of coupling and noise on ordering of consonance ratios

We have investigated simple models of nonlinear neural syn-
hronization as a basis for ranking of musical intervals (dyads) along

Fig. 7. Voltage time series as in Fig. 6 (Perfect 5th) but now with a coupling strength o
ting a pure tone dyad stimulus of a Perfect 5th (256 and 384 Hz) with an amplitude
ε = 0), each with a bias current of 0.93 and ˛ = 0.9. Notice the effect of the sinusoidal

Fs of Section 3.1. (d) The relative phase of the neurons shows clearly a mode of 2:3,
is referred to the web version of the article.)

the consonance to dissonance axis. We first explored their very sim-
ple model in which each noise-free LIF neuron on its own fires at
one of the two frequencies in the dyad. These neurons had mutual
excitation via alpha functions triggered by each others firings. We
obtained a plot of the ratio of firing frequencies with coupling to
that without coupling, an extension of the standard Devil’s Staircase
used when one oscillator is driven uni-directionally by an exter-

nal periodic rhythm. This plot agreed with that found in Shapira
Lots and Stone (2008), although we had to use a coupling value ten
times smaller then theirs. However other interesting features stood
out. We noted that the position of the steps deviated significantly
from the equivalent input ratio, especially for low to mid-range

f ε = 0.3. Here, it is quite easy to see a mode of 2:3 occurring in the lower panel.
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ig. 8. Voltage time series as in Fig. 7, but here with the coupling strength increas
lthough more visually subtle). The resulting mode is significantly different than th

nput ratios. This deviation pretty much disappeared as this ratio
eached 1, but continues on above 1 (in fact, the value of 1 seems
o be a pivot point around which the Devil’s Staircases rotate as
oupling strength varies). In other words, the plot deviated signifi-
antly from the diagonal. This means for example that input tones
hat are, e.g., in a 2:3 pattern (0.66 frequency ratio) produce a mode

ocking pattern that is not 2:3, but rather corresponds to a higher
atio.

Such deviations are intuitively expected. The excitatory cou-
ling produces a time-varying input, the mean of which acts
s an increased bias. Therefore, with coupling each neuron fires

ig. 9. The average firing frequency of a single LIF in Eq. (7) (uncoupled to the other
IF) as a function of stimulus frequency is plotted for a fixed bias current value
black = 0.9, red = 0.92, green = 0.94, blue = 0.96), for a constant stimulus amplitude of
= 0.2. Notice that only the highest bias current of 0.96 (blue) is capable of inducing

pikes in the LIF neuron model across the entire octave spanned from 256 to 512 Hz.
ere, the LIF being externally forced by a stimulus frequency of 512 Hz generates

pikes at 256 Hz, down-converting the signal by a factor of 2. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version
f the article.)
ε = 0.5. Notice the emergence of a new firing pattern for LIF1 (and for LIF2 as well,
n in Fig. 7 for smaller coupling.

faster than without coupling. This nevertheless means that a con-
sonance theory based on these simple neuron models must be
re-interpreted to address this mismatch. This is especially so for
the precise significance of the match between the orderings of the
step sizes (robustness of mode locking ratios) and of the consonance
rankings, since a given dyad (apart from unison) does not generally
cause locking at the same ratio.

Our work further revealed that staircases are also seen for lower
coupling strengths, with similar but not identical ordering of phase

locking ratios to that seen for larger coupling (Tables 1 and 2). It also
becomes more difficult to precisely estimate the size of the steps
as the coupling strength is reduced, as the staircase acquires many
steps of similar sizes, with all steps tending to lie on the diagonal.

Fig. 10. Average firing frequency of a single uncoupled neuron in Eq. (7) as a function
of bias current for stimulus tones of amplitude A1 = A2 = 0.2 presented at 256 (royal
blue), 288 (green), 384 (red), and 512 Hz (turquoise). For the given amplitude, none
of the stimulus tones bring the LIF neuron model to threshold for bias current values
below 0.89. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of the article.)
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with sinusoidal forcing will also be of interest. The program of fully
ig. 11. Devil’s Staircase for sinusoidally forced LIFs in Eq. (7) (A1 = A2 = 0.4, ε = 0.4,
1 = I2 = 0.98). Notice that the first and second octaves clearly mode lock to 1:1.

gain this is intuitively correct, since in the limit of no coupling,
he ratio in equals the ratio out. The fact that the ordering varies
ith coupling strength suggests that it is not universal. It may be

hat the coupling present in the nervous system is such that it does
ave some degree of similarity with the subjective scale. This raises
he issue of why such a coupling would be chosen.

Fig. 5 showed that, for very small ε values (here ε = 0.08), the
ode locked ratios lie very close to the diagonal. This result should

ot be immediately dismissed due to a lack of a meaningful ordering
f mode stability with regard to consonance rankings. Throughout
uman history, the experience of dyads has almost exclusively been
f those in their complex form (until very recently, through the
dvent of sound cards, synthesizers, etc.). If we had never heard
omplex tones, we might not have any preferential regard for any
yad whatsoever, since, within a certain range, they may all be of
early identical stability (as per Fig. 5). However, since this is clearly
ot the case, and we always experience a roughness proportional to
he ‘complexity’ of the dyad (or its associated ratio), this assessment
f ‘roughness’ may have become engrained or hard-wired. That is,
rom infancy, we begin to associate this roughness with the dyads,
nd thus our perceptual (and cultural) preference develops as a
esult. And pure toned dyadic experiments using left-ear right-ear
eparation of tones may still result in the same preferential rankings
s a result of hard-wired responses.

Some of the ratios found in the model are perceptually
quivalent, in that the acoustic stimuli they generate are not distin-
uishable to the average listener. This emphasizes that numerous
atios of varying complexity can be used to describe the same tonal
henomena, suggesting that there is a priori no special part played
y simple ratios. It may also be that a relabeling according to the
implest ratio within the range generating a single percept will still
esult in a one-to-one correspondence with the global subjective
ankings of consonance. For instance, relabeling the Tritone as 5:7
esults in a better placement in terms of its actual consonance rank-
ng. This results in a pitch difference of roughly 8 cents from the
ommonly employed ratio of 32:45, which is the limit of percep-
ion of the best professional piano tuners, and well inside the range
f discrimination of the average ear.
.2. Enhanced models

We then considered, for added biophysical plausibility, the effect
f additive Gaussian white noise on this synchronization theory.
cience Methods 183 (2009) 95–106

The effect of the noise was to jitter the spike times and mode
locked firing patterns, with the result that the overall shape of
the firing mode lockings, as well as phase paths (not shown)
was preserved. However, the staircase had less visible fine struc-
ture and more “rounded” steps. The orderings based on the steps
that had measurable widths remained as in the noiseless case, as
observed in externally forced neural models (Chacron et al., 2000).
It would appear however that, unless, e.g., yet-to-be-modeled net-
work effects come to the rescue, or noise-induced firings from
sub-threshold dynamics play an important role, the theory could
quickly lose its firm footing when the noise becomes moderate and
the steps are washed away. It remains to be seen what noise level is
actually at work in the cells responsible for consonance perception.
Perhaps the averaged mode locking ratios play a significant role in
such perception as they do in determining, e.g., the shape of tuning
curves (Longtin, 2001).

Finally we have considered another novel modeling step that
relaxes the rather unphysical requirement that each model neuron
fire at one of the frequencies in the interval. The model LIFs are now
driven by sinusoidal signals of adjustable frequency and amplitude.
By adjusting the mean bias to the model cells, it is possible to choose
the mean output firing rate of an LIF for a given forcing. This can then
be calibrated against neural data in a structure that is putatively
involved in consonance or dissonance ranking. This frequency can
be made lower than the driving frequency, thus implementing a
simple down-conversion of firing rates in this system (which would
add to earlier effects such as stochastic phase locked firing in the
cochlear nerve).

Such a model LIF neuron with sinusoidal fording is also known
to exhibit phase locking to one sinusoidal input, with the usual uni-
versal orderings that characterize nonlinear systems (Keener et al.,
1981)—i.e., there is already a Devil’s Staircase at the single neuron
level, prior to the coupling. Consequently, plots of firing frequency
versus bias current are non-monotonic and exhibit much struc-
ture. Plots of firing frequency versus tone frequency nevertheless
decay monotonically, a consequence of the fact that the LIF acts as
a low-pass filter.

Pulse-coupling two such LIFs with excitatory synapses produces
dynamical effects that will require much effort to analyze in detail.
Our more limited goal here is to see whether there is any semblance
of mode locking as in the Stone and Shapira Lots model and/or to
consonance rankings. The simple answer is that there isn’t any sim-
ple semblance. Several difficulties arise due to the mode locking
that follow multiple complex staircases. However, one order seems
apparent: for simple integer ratios of stimulus frequencies, the two
LIFs are close to 1:1, i.e., the oscillators entrain one another (Fig. 11).
Such entrainment may play a role in the perceptual effect of pitch
invariance at octaves by signaling the presence of a simple input
ratio. It may be a neural state of synchrony that is associated with
the subjective experience of consonance. It remains to be seen what
feature of this entrainment, such as the width of the peaks in Fig. 11,
might be associated with the ranking of consonance.

4.3. Model extensions

We have chosen equal amplitudes for the pure tones in Eq. (7).
This formulation allows an investigation of stimulus intensity by
varying the amplitudes in a manner that relates, e.g., nonlinearly,
to that of the actual acoustic intensities. These elaborations will
be explored elsewhere, building on the equi-amplitude picture dis-
cussed here. The effect of noise on the pulse-coupled LIF system
analyzing Eq. (7), to look at effects of frequency, amplitude, mem-
brane and coupling time constants, etc., is a hefty one, and should
begin with a proper non-dimensionalization to reduce the number
of parameters.
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Table A1
The actual mode stability measurements used to produce the rankings shown in Tables 1 and 2 computed from our simulation results. The final column to the right shows
the measurements indicated in Shapira Lots and Stone (2008), which were used to produce the associated ranking shown in Table 1.

Interval Interval ratio as
indicated in
Shapira Lots and
Stone (2008)

Consonance
ranking (Schwartz
et al., 2003)

Stability of actual
mode acquired
(ε = 0.8)

Stability of mode
corresponding to
ratio of the interval
(ε = 0.8)

Stability of mode
corresponding to
ratio of interval
(ε = 0.5)

Stability of mode
corresponding to ratio of
interval indicated in Shapira
Lots and Stone (2008) (ε = 5)

Unison 1:1 1 0.11150 0.11150 0.08400 0.075
Octave 1:2 2 0.00388 0.03691 0.02505 0.023
Perfect 5th 2:3 3 0.00261 0.02917 0.02648 0.022
Perfect 4th 3:4 4 0.02126 0.02201 0.01488 0.012
Major 6th 3:5 5/6 0.00768 0.01687 0.01480 0.010
Major 3rd 4:5 6/5 0.01231 0.02391 0.01306 0.010
Minor 3rd 5:6 8 0.00408 0.02126 0.00970 0.010
Minor 6th 5:8 7 0.00916 0.01236 0.00398 0.007
Major 2nd 8:9 10/11 0.00773 0.00408 0.00573 0.006
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ajor 7th 8:15 12 0.02917
inor 7th 9:16 11/10 0.00308
inor 2nd 15:16 13 0.00172

ritone 32:45 9 0.00239

It will also be interesting to extend the models presented here
o even more realistic neural populations which somehow share
he information about the complex tones. A specific possibility is to
ssume that one neuron (or neural sub-population) is being driven
y one tone (or complex tone) at one amplitude, but also by the
ther tone (or complex tone) at a different amplitude. The issue
ere is one of spectral receptive field, in which the proximity of
ones in frequency space will reflect the proximity of the neurons
hey respectively excite, according to the tonotopic map. Accord-
ngly, if the tones are close (as in a Minor 2nd) the neurons being
xcited may have very similar input made up of both tones with
pproximately equal weight. On the other hand, for tones much fur-
her apart in frequency (such as for a Perfect 5th with a 3:2 ratio)
ne neuron will be driven more by one tone than the other, and
ice versa for the other. It will thus be interesting to investigate
he synchronization properties of coupled populations of such neu-
ons with dyad-dependent mixing ratios of their inputs amplitudes.
ne can only speculate at this point on the resulting phase locking

tructure and its robustness to noise.
Note that, although we have not investigated this point here, the

inusoidally forced model formulation enables the explorations of
oudness effects on consonance evaluation, by adjusting the ampli-
ude of the sine waves in some proportion to the stimulus intensity.
t may also be of interest to study how fast mode locking is estab-
ished under different modeling scenarios and see if there is any
ualitative agreement with psychophysical studies on the speed of
onsonance ranking. Preliminary results indicate that rapid locking
ccurs for Eq. (7). It will also be interesting to see what inhibitory
onnections add to the dynamical behaviors discussed here, as it
s also known to cause mode locking. It may allow special forms
f mode locking all the while keeping the firing frequencies close
o their values in the absence of coupling. In other words, out-
ut ratios may be closer to the input ratio. Another avenue is to

nvestigate the connection between mode locking and the pitch
alience seen in timing net approaches that involve population
evel interval estimation and coincidence detectors (Cariani, 2001,
004).

Finally, data on humans and primates need to be reconciled with
he synchronization picture, as for any other theory of consonance.
iring rates are much lower than tone frequencies; there are many
andom firings; and dissonance has been claimed to be associated
ith cortical firing rates modulated at slow beat frequencies, rather
han complex locking ratios (see, e.g., Fishman et al. (2001) for data
n macaque monkeys and event-related potentials in humans). It
ill thus be important to investigate how the activity from neu-

on models can be brought into correspondence with multi-unit
ctivity in cortex.
0.00724 0.00074 0.005
0.00657 0.00086 0.003
0.00159 0.00164 –
0.00768 0.00906 –
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