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Solution properties of the nonlinear second-order delay-differential equation 
2(0 = -ax ( t )  + f [ x ( t  - 3)] are studied where f is a piecewise constant function 
which mimics negative feedback. We show that the solutions can be obtained by 
a simple geometrical construction which, in principle, can be implemented using 
a ruler and a compass. Analytical results guarantee the existence and stability 
properties of limit cycle solutions. Computer-aided constructions reveal a 
remarkable richness of different types of dynamical behaviors including a variety 
of unconventional bifurcation schemes. 

KEY WORDS: Nonlinear differential equations of second order with deviating 
argument; oscillations; periodic solutions. 

1. I N T R O D U C T I O N  

A particularly interesting class of nonlinear feedback systems is described 
in the simple form 

Dnx(t) = f ( x ( t -  ~)) (1) 
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Here t e R may denote time, ~ is a positive constant representing a delay, 
x: [ - z, oe ] ~ R is some piecewise n-times differentiable function, f :  ~ ~ N 
is a piecewise continuous function, and 

D n x  = 
d i x  

a , - ~  (2) 
i=O 

denotes a differential operator with constants a0, al,..., am. 
The number n gives the order of the equation. For n = 0 we arrive at 

the difference equation 

x ( t ) =  f ( x ( t -  z)) ,  

which, with f ( ~ ) =  a~ (1 -  ~), is well known as the discrete logistic equation 
or quadrat ic  map. It played a major role in the development of the theory 
of chaos and period doubling bifurcations (Sarkovskii, 1964; Metropolis et 
al., 1973; Li and Yorke, 1975; May, 1976; Misiurewicz and Szlenk, 1980). 

In the case n = 1 we obtain 

d x  
a t  ( t)  = f ( x ( t  - z ) )  - aox( t ) .  (3) 

This difference differential equation has found applications in physics 
(Furumochi, 1978; Ikeda et  aL, 1979; Gibbs et aL, 1981), population 
biology (Hutchinson, 1948; Taylor and Sokal, 1976; Gurney et al., 1980; 
Blythe et  al., 1982; May, 1980), medicine (Mackey and Glass, 1977; 
Mackey, 1978, 1979), neural control (Coleman and Renninger, 1974; 
Mackey and an der Heiden, 1982; Glass et aI., 1988; Longtin and Milton, 
1988, 1989a, b; Marcus and Westervelt, 1989), and economics (Mackey, 
1989). The time delay, z, arises because of, for example, finite transmission 
or production times in feedback loops. 

The dynamical behaviors that can be exhibited by Eq. (3) depend on 
the choice of the feedback function f Negative feedback corresponds to f 
which is a monotone decreasing function, i.e., 

~1~<~2 implies f (~l)  >~ f(~2). (4) 

In this case the existence of periodic solutions has been proved under 
certain conditions on z, a0, and the steepness of f (Chow, 1974; 
Nussbaum, 1974; Hadeler and Torniuk, 1977; Kaplan and Yorke, 1977). 
These periodic solutions are of simple type, i.e., they have exactly one 
maximum per period. 

Analytic results (Walther, 1981a) and numerical simulations (Mackey 
and Glass, 1977; Hadeler, 1980; Saupe, 1982; Longtin and Milton, 1989a) 
support evidence that these periodic solutions are stable limit cycles. On 
the other hand, when f is a nonmonotone function, (3) can exhibit very 
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complex dynamics including period-doubling bifurcations and chaos, as 
has been shown both numerically (Mackey and Glass, 1977; Glass 
and Mackey, 1979) and analytically (Peters, 1980; Walther, 1981b; 
an der Heiden and Mackey, 1982; an der Heiden and Walther, 1983). 
For piecewise constant f the existence of invariant measures with ergodic 
and mixing properties was proved (an der Heiden, 1985). 

In contrast to (3), little work has appeared on the study of nonlinear 
second-order delay-differential equations of the form 

d2x dx 
dt 2 (t) = f ( x ( t -  ~)) - al -~  (t) - aox(t) (5) 

where ao, al are positive constants [the case n = 2  in (1)]. Equations of 
this form provide a better description of many of the systems modeled 
previously by (3) and, in particular, have been studied in the context of 
acousto-optical stability (Vall6e el aL, 1987). More commonly (5) arises in 
situations describing the delayed feedback control of the movement of 
mechanical or neuromuscular systems (Maynard Smith, 1968). Physically 
the left-hand side is interpreted as an acceleration and the right-hand side 
represents the composition of three forces: (1) a restoring force--aox(t); (2) 
a mechanical inertial, or frictional, damping force--a1 dx(t) /dt  ; and (3) a 
delayed restoring force, f ( x ( t - r ) ) ,  dependent on x ( t - r ) .  Potential 
applications of  (5) arise in the context of the remote control of robotic 
arms in space (Bejczy and Salisbury, 1983), the sensory feedback control of 
upper and lower extremity motor prothesis (Phillips, 1988), in the inter- 
pretation of experimental studies of the movement of the pupil (Longtin 
and Milton, 1989b; Milton and Longtin, 1989), and of delayed visual feed- 
back tracking tasks (Reichardt and Poggio, 1976; an der Heiden, 1979a; 
Glass et aL, 1988; Beuter et aL, 1989). Delay equations resembling (5), but 
in which the delay occurs in the damping term, arise in the analysis of the 
antirolling stabilization of ships (Minorsky, 1962). The existence of 
nonconstant periodic solutions has been proved for (5) when al = a + b  
and ao=ab,  where a, b are positive constants (an der Heiden, 1979b). 
However, there is an almost total lack of information concerning the 
properties of these periodic solutions especially for arbitrary choice of 
a0, a l .  

Here we consider the special case of (5) when there is no frictional 
component, i.e., al = 0, and f is a piecewise constant negative feedback 
function, i.e., 

{~, if ~<f l  
f ( ~ ) =  3, if ~>fl  (6) 

with constants fl, 7, 6, 7 > 6. 

865/2/4-5 
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There are two advantages for considering piecewise constant forms 
for f First, in this case many properties of solutions can be derived 
analytically without the use of a computer. Second, the dynamics of 
delayed nonlinear control systems with piecewise constant feedback func- 
tions are currently being actively explored in experimental situations, 
for example, the human pupil light reflex (Longtin and Milton, 1988; 
Milton and Longtin, 1989; Milton et al., 1988, 1989) and analog electronic 
circuits (Longtin, Losson, and Cortis, personal communication). These 
experiments provide unique opportunities to display theoretical predictions 
and to uncover mathematically unexplained phenomena. 

In this paper we show that (5) with f given by (6) possesses a 
remarkable richness of different types of behavior including a variety of 
interesting bifurcation schemes. 

2. R E D U C I N G  T H E  N U M B E R  O F  P A R A M E T E R S  

For a nonlinearity f described by (6), solutions to (5) can be 
constructed geometrically by compass and ruler in the (x, y)-plane, where 
y = dx/dt. The reason is that the solution trajectories are given by the 
piecewise composition of arcs (segments of circles) whose radii and centers 
are determined by the simple geometric construction developed below. 

Before demonstrating this geometric construction, we show how the 
number of parameters in (5) and (6) may be reduced through a normaliza- 
tion procedure. First, the time scale is transformed linearly by 

i=,f~ot ,  ~(t) := x(t) (7) 

With al = 0, Eq. (5) then becomes 

d2y" (t-) = agl f (~({  - x~oo" z)) - 2(t) (8) 
dr-2 

Equation (8) shows that, without any loss of generality, we can assume 
ao = 1 in Eq. (5). An additional normalization can be obtained by the linear 
transformation 

= (7 -- 6)2 + (y + 6)/2 (9) 

With the exception of the trivial case of 7 = 6, corresponding to the linear 
homogeneous equation for the harmonic oscillator, Eq. (8) transforms into 

I 1/2 if 2 ( t - z ) < ~ ( f l - ~ ) / ( 7 " 6 )  
dZx(t) = - 2 ( 0  + (10) 

at2 ~--1/2 if 2 ( t - - v ) > ( f l - - ~ - ) / ( y - - 6 )  
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Thus with al = 0, the solutions of (5) and (6) are parametrically dependent 
on only the time delay z and a threshold O defined by 

(11) 

With these transformations we arrive at the final form of the differential 
equation under investigation: 

d2x 
dt 2 (t) = f ( x ( t  - z)) - x( t )  (12) 

where 
1/2 if ~ ~ O 

f ( r  - 1 / 2  if { > 0  (13) 

with constants z > O, 0 ~ ~. 

3. E X I S T E N C E  A N D  BASIC P R O P E R T I E S  O F  S O L U T I O N S  

A geometric construction by means of compass and ruler of the 
solutions of (12), (13) can be achieved if Eq. (12) is replaced by the 
equivalent system of equations 

dx 
-ff~ ( t ) =  y( t )  

dv 
( t )  = f ( x ( t  - r ) )  - x(t). 

dt 

(14) 

An initial condition is given by some pair (Xo, Yo), where Xo is a differen- 
tiable function x0: [ - ~ , 0 ] ~  and yoSR. Moreover, it is assumed 
throughout that Xo(t) = O for at most finitely many te  [ - %  0]. 

Associated with each such initial condition there is a unique solution 
(x, y) satisfying the conditions a-d: 

(a) x: [ - z ,  oo) ~ ~ is differentiable; 

(b) y: [-0, o o ) ~  N is continuous for all tE [0, oo) and differentiable 
for all t such that x( t - z) r 0 ; 

(c) the pair of functions (x, y) satisfies the equations (14) for all 
t > 0 obeying x ( t -  z) ~ O, with f given by (13); 

(d) x( t )  = Xo(t) for all t e [ - ~ ,  0], 
y(O) = Yo. 
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This existence theorem is established by the following observations, which 
are basic for this paper. Since f has only the value + 1/2 and -1 /2 ,  any 
solution (x, y) of (14) must satisfy the following condition: if - ~  ~< t~ < t2 
and x(t) ~ 0 for all t e (tl, t2) or x(t) > O for all t e (tl, t2), then there are 
numbers A, ~0 e ~ such that 

x ( t )=  +l/2+Asin(t+(p)~ forall  te[tl+v, t2+~], (15) 
y(t)=A cos( t+ ~p) J 

the positive (negative) sign holds if x(t)<<. O(x(t)> O) for all t e (tl, t2). 
Thus, any solution (x, y) is necessarily a piecewise and continuous 

composition of arcs (or sections) of circles described by (15). The arcs are 
parametrized by t and can be considered to be located in the plane R 2. 
(The normalization and parameter reduction in the previous section is 
responsible for this simple solution behavior consisting of composition of 
arcs. Had this procedure not been carried out, the solutions would have 
consisted of sections of ellipses.) If x(t)<~O for all t e (tl, t2) , then the 
center of the arc parametrized by t e [tl  + ~, t2 + z] is located at (1/2, 0). 
Respectively, if x ( t - v ) >  O, then the center of the arc is located at 
( -1 /2 ,  0). A switching from one of these centers to the other occurs at 
tl + ~ iff x( t ) -  0 changes its sign from nonpositive to positive at time 
t = t~. The conditions on the initial function x o guarantee that switching 
occurs only at discrete points in time. Note that because of this switching 
the component y is not differentiable at such a time t~ + ~. 

The amplitude (radius) A and the phase ~0 of the arc (15) are uniquely 
determined by the following condition. Assume the solution is known up to 
the time tl+z, in particular, x(t~ +z)  and y(t~ +z)  are given. Since 
solutions of Eq. (14) are required to be continuous, the amplitude A and 
the phase (p, valid for the interval [t~ + z, t2 + z], must obey 

x ( t ~ + z ) =  +l/2+Asin(t~+z+~o), y(t~+z)=Acos(tl+Z+~o) (16) 

[-the sign in front of 1/2 is determined as in (15)]. The system (16) of 
nonlinear equations uniquely determines the unknown A and ~0. 

By induction, sequences of times (zi), amplitudes (Ai), and phases (~Pi), 
i = 1, 2,..., are uniquely determined such that 

O~l,7~i~Ti+l, lim zi= 
i ~ o o  

x( t )=  +_l/2(-1)i+Aisin(t+q)~); for all t e  [zi, %+~] 
y(t)= A~cos(t + ~p~) J 

where the plus sign holds if x(-z)=Xo(-Z)<~ 0 and the minus sign if 
Xo(-z)>O. [-For the exceptional case Xo(-Z)=O the sign depends 
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correspondingly on x o ( - ~  + e) with sufficiently small e > 0.] Obviously the 
functions x, y defined in this way satisfy the conditions a-d above and 
henceforth represent the unique solution. 

4. GEOMETRIC CONSTRUCTION OF SOLUTIONS 

Making use of the observations in the previous section, solutions can 
be constructed by compass and ruler as follows. We illustrate the method 
in Fig. la, where v = 43-~ and O = 1/2. 

Let the initial condition be Xo(t)= 1/4 for all t e [ -  r, 0] and y (0 )=  0. 
Since x(t)<O for t~ I - r ,  0] it follows from (15) with t l =  -% t2=0  that 
for t e  [0, z] the solution x(t), y(t) describes an arc in the (x, y)-plane with 
center at (1/2, 0). The arc is parametrized by t, thus it is extended across 
an angle of length ~ = 3~/4. The arc is uniquely determined by its angular 
length (3~/4), its center (1/2, 0), and its initial point (xo, yo)=(1/4,  0). 
These values allow a simple construction by compass and ruler. 

Note that x(t)< O for all t e  (0, ~/2) and x(7c/2)= O. Thus, according 
to (15) with t 1=0  and ta=rc/2, the solution is continued to the time 
interval I t ,  z + ~/2] = [3~/4, 5~/4] by a second arc. The center of this arc 
is again (1/2, 0) because x(t) < O for t ~ [0, ~/2]. Its angular length is just 
the length of this time interval, namely, ~/2, and its initial point coincides 
with the end point of the previous arc. Thus it is uniquely determined and 
constructable. In Fig. la the end point of this arc is labeled % according to 
the meaning of ~i introduced above. 

The next arc ls obtained as follows. Since x ( t )>  O during the time 
interval (~z/2, 5n/4) its angular length is 5 ~ / 4 -  n/2 = 3n/4 and its center is 
( - 1/2, 0). Its starting point is, as always, the end point of the previous arc 
(note that in this way the amplitude of the arc is specified). This arc crosses 
the threshold line O = 1/2 at a point indicated in Fig. la by % -  ~. This 
notation highlights the fact that the arc around ( - 1 / 2 , 0 )  must be 
prolonged such that its end point (indicated by %) has an angular distance 

from that threshold crossing point. The arc around (1/2, 0) from time z3 
to time ~4 is drawn in a completely analogous fashion. 

Let us now describe the construction method quite generally for all 
values of the parameters ~ and O. The method crucially depends on the 
principle, following from (15), that time parametrizes the angular lengths 
of the arcs out of which each solution is composed. In other words, the 
angular velocity is always equal to one, independent of the centers and 
amplitudes of the arcs: Note that the evolution of the arcs is always in the 
positive (clockwise) direction, as follows from (15). Assume the solution is 
already constructed up to a time t = t-such that at time t--~ a crossing of 
the threshold O took place, i.e., x([-z)=O. Assume additionally that 



430 an der Heiden, Longtin, Mackey, Milton, and Scholl 

dx([-T)/dt > 0  (the s i t u a t i o n  wi th  the  oppos i t e  i n e q u a l i t y  is ana logous ) .  

T h e n  there  is a m a x i m a l  t ime  t* sat isfying t - -  T < t* ~< t- a n d  x(t) > O for all 
t ~  ( t - - z ,  t*). The  r e l a t ion  (15) impl ies  a g a i n  tha t  for all  t ~  It-, t* + T )  the 

s o l u t i o n  (x(t), y(t)) is a n  arc  wi th  cen te r  a t  ( ,  1/2, 0), s t a r t ing  at  (x(t-), 
y(t-)) a n d  h a v i n g  a n g u l a r  l eng th  t * +  z -  t-. 

Th i s  a rc  c an  be  d r a w n  by  c o m p a s s  a n d  ruler ,  because  its a n g u l a r  
l eng th  t* + z - t  c a n  be d e t e r m i n e d  by  c o m p a s s  a n d  ru ler  f rom the  

t r a jec to ry  in  the  (x, y ) - p l a n e  e x t e n d i n g  f rom (x( f -T) ,  y ([ -T) )  to  (x(t*), 
y(t*)). After this  a rc  has  b e e n  d r a w n  the  nex t  s tep depends  o n  whe the r  

x(t*) = O or  x ( t * ) >  O. I n  the  first case def ine a new  t - b y  t-= t* + T  a n d  

proceed  as before  wi th  the  excep t ion  tha t  n o w  dx([-'c)/dt = dx(t*)/dt< 0 
a n d  the  cen te r  of the  nex t  a rc  is (1/2, 0). 

- ~ i 2~..~o "r~ 

T~ 

(a) 
Fig. 1. (a) Construction by compass and ruler of a trajectory of the system described by 
Eqs. (13) and (14). Trajectories are piecewise composed of arcs with center either at ( -  1/2, 0) 
or at (1/2, 0). For details of the construction see the text. Parameters O = 1/2, ~ = 3n/4. Initial 
condition x0 =- 1/4, Y0 = 0. Symbols z~ indicate times where center of arcs changes. Theorem 1 
shows that the spiral becomes infinitely large as t ~ oo. (b) As in (a), but now O = 0, ~ = 5n/4. 
Theorem 2 shows that the trajectory converges towards a periodic orbit consisting of two arcs 
each having angular length z. Thus, the period is 2T. (c) As in .(a), but now O = 1/2, z = 3zt/2. 
The figure shows a single periodic orbit which is immediately entered from the initial condi- 
tion (x0 =-1/4, yo=0). One orbit consists of three circles, has a period 6n = 4z, and is traced 
by following the numbered half circles sequentially. 
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Fig. L Continued. 
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In the second case no change of the arc center takes place. Instead, the 
arc just drawn is continued until the first time t >  t* + r >  [ where it 
happens that x ( t - r ) =  O. This can be done by compass and ruler since 
time is represented by angles and under the assumption that r is given by 
some width of the compass. Defining hereafter a new value [ =  t we arrive 
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at the first case, and the solution can again be continued as described there. 
Thus we always end up in a situation where x( t -z)=O and we have 
described how to proceed in such a situation. Therefore the solution can be 
continued for arbitrary (finite) times. [Note that if in the beginning there 
is no time t with x(t - z) = O, then depending on x ( - ~ )  ~< O or x ( - z )  > O, 
one simply draws an arc around (1/2, 0) or ( - 1/2, 0) respectively, starting 
at (x(0), y(0)) until the condition x(t-~)= O is eventually satisfied.] 

This completes the description of the general construction method. 
The reader may use the examples in Figs. la-c  to study these construction 
rules. As far as shown this solution is a spiral moving outward. It is proved 
in the following section that this spiral extends to infinity and the solution 
is unbounded. 

Figure lb shows the construction of a bounded solution occurring for 
parameters z = s n ,  O = 0 .  In the next section it is proved that this 
trajectory converges toward a limit cycle which is asymptotically orbitally 
stable with respect to a certain class of initial conditions. 

A third example is shown in Fig. lc. Here z = 3~/2 and O = 1/2. A 
periodic solution is obtained whose orbit is composed of two small and one 
large circle. Thus, the (smallest) period is 6n. This periodic orbit is 
immediately entered after starting with a constant initial condition [here 
Xo(t) = 1/4 for t e [ - ~ ,  0], Yo = y ( 0 ) = 0 ] .  Similarly the reader will easily 
realize that to each constant initial condition Xo~ [ - 1 / 2 ,  1/2], yo=0 ,  
there belongs a separate periodic orbit. Each of these orbits consists of 
three circles with radii 1/2 - x0, Xo + 1/2, and 3/2 + Xo. Thus, none of these 
periodic orbits is asymptotically stable, and we observe a rather strange 
center structure. 

For other values of the parameters ~ and O the behavior of the 
solutions may be very complicated, and construction by compass and ruler 
may become very tedious. In such situations it is much more practical to 
use a computer for the construction. It is important to emphasize that we 
did not use any of the classical routines for numerical integration of 
differential equations (as, e.g., the Runge-Kutta method) but rather used 
the representation (15) of solutions in the following way. 

Assume a solution is already known in the time interval I t -  z, t]. Let 
{tl, t2,..., tk} be the set of times for which x(ti)=O and where x ( t - z )  
changes sign. Then in the intervals [ t, t i + z ], [ tl + z, t2 + z ] ..... [ tk + z, t + z ] 
the solution can be calculated by the expression (15), where the sign in 
front of 1/2 alternates from interval to interval. A and ~o, which generally 
vary from interval to interval, are uniquely determined by the condition 
that the solution has to be continuous at each t; [-compare (16)]. In this 
way the solution is precisely extended to It, t+z] (and iteratively to 
arbitrary long times). Determination of the intersection times t~ is accom- 
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plished by using the inverse trigonometric functions and (15). These 
computer-aided constructions are used in a later section to develop further 
insight into the nature of the solution behavior. 

5. ANALYTIC DISCUSSION OF SOLUTIONS 

The system (12), (13) is one of the very few nonlinear differential 
equations where solutions (or parts of them) can be calculated analytically 
and proofs of the qualitative behavior of solutions can be given. In this 
section we demonstrate some of the simpler properties. 

Throughout  this section we restrict our attention to the symmetric 
situation where O = 0. Thus, the only free parameter is the delay z. 

For O = 0 the nonlinearity f is an odd function. It follows easily from 
(13) and (14) that this symmetry condition of the differential equation 
implies the following symmetry property of the solutions. 

Lemma 1. Let 0 = O. I f  (x, y) is the solution of (13) and (14) corre- 
sponding to the initial condition (Xo, Yo), then ( - x ,  - y )  is the solution of 
(13) and (14) corresponding to the initial condition ( - x o ,  -Yo). 

The following theorem essentially says that if the delay satisfies 
0 < z ~< re, then for a large class of initial conditions solutions grow toward 
infinity in the form of an expanding spiral. The case z = 0, where bounded 
solutions exist, is treated in Corollary 1. 

Theorem 1. Let 0 = 0 and 0 < ~ <~ ~. Let the initial condition (Xo, Yo) 
satisfy x0(0 ) = 0, Xo(t) > 0 for t ~ ( - ~, 0), Yo <~ O. Then the corresponding 
solution (x, y) of  the system (13) and (14) has the following properties: 

(i) the solution oscillates in a way characterized by a sequence (ti) 
with ti ~ ~ as i ~ ~ ,  x(t2i) = O, and x(t2~+ 1) ~ 0 for all i ~ N. 

(ii) the solution becomes infinitely large, i.e., II(x(t), y(t)ll--" ~ as 
t---~ ~ .  

Proof. Let Xo be some initial condition described in the theorem. Let 
Po = (0, Yo). Then, because of (15), for tE [0, z] the corresponding solution 
(x(t), y(t))  describes a n  oriented arc in the (x, y)-plane with center at 
( -  1/2, 0), starting at point Po, and having angular length ~ (for illustra- 
tion see Fig. 2a). Let P1 be the end point of this arc. Let ro be the radius 
of this arc, i.e., r o is the distance between the points ( -  1/2, 0) and Po. Note 
r 0 >~ 1/2. 

Since x ( t ) < O = O  for t~(0,  T) it follows from (15) that for t~>r the 
solution (x(t), y(t))  is continued by an oriented arc around (1/2, 0) starting 
at point P1 and extending at least until the first point P2, where this arc 
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(" /2,0)1 ~ 
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I" 1 

(1/2.o) 

Po ,(O,yo) 

(a) 

/ 

/ 
/ 

/ 

rl 

b __2 
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/2 

Po :(O,yo) 

( b )  

Fig. 2. (a) Illustration for the proof of Theorem 1. (b) Illustration for the proof of 
Theorem 3. 
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meets the y-axis (for illustration see Fig. 2a). Define P2 as the end point of 
this arc and let t* denote the time where (x(t*), y(t*))= P2. Let rl be the 
radius of this arc. Thus, for t ~ [0, t*]  the solution is composed of two arcs, 
one with radius ro and the other with radius r~. We now compute r I as a 
function (g~) of r0. Consider the triangle with corners ( -  1/2, 0), P1, and 
(1/2,0). Its sides have lengths ro, 1, and rx. The angle at the point 
( - 1/2, 0) is equal to z + (p, where 

1 cos o=  (17) 

Applying the cosine theorem we obtain 

r 2 = 1 + r 2 - 2r o cos(z + ~o) (18) 

The addition theorem gives 

cosz  ~ o  2 - 1 / 4  . 
= - - sm z (19) cos(z + q~) cos z cos q~ sin r sin q~ 2r0 r0 

Hence, 

and 

2 l + r Z _ c o s z + 2 ~ o _ l / 4 s i n z = g ~ ( r o )  r l ~  (20) 

rl=ro if T=0 ;  r l > r o  if 0<z~<rc (21) 

Equation (20) describes the dependence g, of rl on r0 for fixed values of z. 
For  the further development of the solution beyond the time t* we take 
advantage of Lemma 1. Note that for t e  [ t * - z ,  t*]  the solution obeys 
x(t) < O = 0; moreover, x(t*) = 0 and y(t*) >~ O. These properties are just 
opposite in sign to those of the initial condition formulated in the theorem. 
Therefore with Lemma 1 the solution proceeds from the new initial time t* 
(replacing the initial time t = 0 ) jus t  as from t = 0, however, with opposite 
sign: First, there is an arc around (1/2, 0) starting from Pz (replacing P0) 
with radius rl (replacing %) and of angular length z, ending in a point P3 
(replacing PI). Afterward it follows an arc around ( - 1/2, 0) starting at P3 
and ending on the y-axis in some point P 4 .  Of course the radius r2 of this 
arc satisfies r 2 = g~(rl), where g~ is defined by (20); moreover, 

r2=rl if z = 0 ,  and r2>rl if 0<z~<Tz (22) 

By induction, the solution is composed of a sequence (ai), i e N, of arcs 
with radii ri satisfying 

r i +  1 = g~(ri) (23) 



w h e r e  g~:  [ 1 / 2 ,  ~ ) ~  [ 1 / 2 ,  ~ )  is d e f i n e d  by  

g~( r )  = ~V/1 + r 2 -  c o s  z + 2 w / r S -  1/4 s in  r (24)  

(a) 
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(b )  

Fig. 3. (a) Computer-aided construction of trajectories of the system described by Eqs. (13) 
and (14). Parameters O = 0, �9 = 0. The figure shows seven periodic orbits belonging to initial 
conditions (x0, Y0) with x0 = 0 always and Y0 = 2, 3 ..... 8. Existence of infinitely many periodic 
orbits is proved by Corollary 1. Throughout all the following figures, black squares indicate 
switch o f  center. The centers ( -1 /2 ,  0) and (1/2, 0) are indicated by crosses. Vertical bar 
indicates the threshold O. Time orientation of trajectories is always clockwise. (b) As in (a), 
but now O = 0, z = n. Initial condition x o ~-1, Y0 = 0. Trajectory of "expanding spiral" type. 
Theorem 1 proves that the special is infinitely large. 
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The arcs ai with odd i have center at ( -  1/2, 0); the arcs ai with even i have 
center at ( + 1/2, 0). 

Since in case of T > 0 we have g~(r) > r for all r ~> 1/2, it follows that 
ri ~ oe as i ~ oe. Q.E.D. 

An example of one of the solutions covered by this theorem is shown 
in Fig. 3b. 

The proof of the theorem has also shown [note that g(r)  = r for ~ = 0] 
the following. 

Corollary 1. Le t  0 = 0 and ~ = O. Then the system (13) and (14) has 
infinitely many different periodic solutions. Each periodic orbit consists o f  
exactly two arcs, one with center at ( -  1/2, 0), the other at (1/2, 0). 

An illustration of these periods is given in Fig. 3a. 
The following theorem shows that if the delay satisfies ~ < ~ ~< 2re, then 

bounded solutions which are periodic exist. An illustration of correspond- 
ing periodic orbits is shown for several values of ~ in Figs. 5a and b. 

Theorem 2. Le t  0 = 0 and ~ < ~ <<, 2re. Then the system (13) and (14) 
has a nonconstant periodic solution. Its period is 2z. 

Proof. We first give an explicit description of the periodic orbit. 
Afterward it will be easily seen that this orbit corresponds to a periodic 
solution of (13) and (14). The orbit is composed of two arcs, al and a2, in 
the (x, y)-plane, each having angular length ~. The arc al is situated 
entirely to the left of the y-axis, its center is at ( -  1/2, 0), and its starting 
point is (0, 9), where 

y = �89 tan(re - ~/2) (25) 

Its end point is (0, ~). The arc a2 has the center (1/2, 0) and is entirely 
situated to the right of the y-axis, its starting point is (0, 2), and its end 
point is (0, -)5). This completes the description of the periodic orbit. In 
order to realize that this orbit is the trajectory of a periodic solution, it is 
sufficient to observe that the angular length of each of the two arcs is just 
equal to the delay r. Thus, if one starts with one of the two arcs as an 
initial condition in the time interval I - r ,  0], then according to (15) the 
other arc is obtained as a solution trajectory in the time interval [0, ~]. By 
induction it follows that the described orbit is the trajectory of a periodic 
solution. Q.E.D. 

Computer graphic investigations suggest that the periodic orbit of 
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Theorem 2 is a stable limit cycle for all r satisfying n < z < zo, where Zc is 
some critical value of the delay, 

< Zc < 2zt (26) 

and that it is an unstable limit cycle if zc < z ~< 2~. 
It is not possible to prove the stability (attractiveness) of the limit 

cycle (for z c < z < z c )  with respect to arbitrary solutions. However, the 
following theorem shows that at least for a certain class of solutions, it can 
be demonstrated analytically that their trajectories approach the periodic 
orbit described in the proof of Theorem 2. 

Theorem 3. 

(i) 
(ii) 

(iii) 

(iv) 

Assume that the following conditions hold." 

O =0 ;  

< z < 2~, cos z < - 3 / 4  

Xo(t ) > 6)for all t~ E - z ,  0], Xo(0) = O; and 

- Y <  Yo <~ 0 [where y is defined by (25)]. 

Then the trajectory corresponding to the initial condition (Xo, Yo) converges 
toward the periodic orbit described in Theorem 2. 

Proof. Similar to the proof of Theorem 1, for t~ [0, z] the solution 
(corresponding to such an (x0, Yo)) describes an arc b~ around ( - 1 / 2 ,  0) 
starting at P0 = (0, Y0) and having angular length z (see Fig. 2b). Denote 
the radius of this arc by r0 and its end point by P~. This arc is followed 
by an arc b2 around (1/2, 0) starting at P1. The radius rl of this arc is given 
by the distance between P1 and (1/2, 0). Since Yo ~> -33 the arc bl is entirely 
situated to the left of the y-axis. Therefore and because of (15) the arc b2 
intersects the y-axis at some point P2- 

We now determine rl as a function g of ro: 

g: [1/2, ? ] ~  [1/2, ?], rl=g(ro) (27) 

where f denotes the distance between (0, y) and (1/2,0), ? =  
1/[2 c o s ( ~ - z / 2 ) ] .  Consider the triangle defined by the points (1/2, 0), P1, 
( - 1/2, 0). The angle ~ at ( - 1/2, 0) satisfies 

1 
7 = 2g - z -- cp, where cos q~ = 2ro (28) 

(compare with Fig. 2b). The cosine theorem gives 

r 2 = 1 + r 2 -- 2r 0 cos 7 (29) 
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while from the addition theorem we have 

cos y = cos(2n - ~) cos rp + sin(2n - z) sin q) 

= 1-~-- cos(2n -- r) + ro1~o2 -- 1/4 sin(2n - r) (30) 
2ro 

The function g is obtained from (29) and (30): 

r~ = g(ro) = x / 1  + rg - cos(Zn - ~) - 2x/~o 2 - 1/4 sin(Zn - ~) (31) 

It is easily seen that in the domain r >~ 1/2 there is a unique fixed point of 
g and that this fixed point equals ?: 

g ( ? ) = f  (32) 

Because of the assumption (ii) on ~ it follows that 

1/2< g (1 /2 )<?  (33) 

The uniqueness of the fixed point of g and (33) imply 

g ( r ) > r  for all r e  [1/2, ?) (34) 

To establish (27) we still have to show that g(r)<~ ~ for all r e [1/2, ?). This 
inequality follows easily from the fact that the derivative g'(r)  is negative 
for r < sinZ(2n - r) + 1/4 and positive for r > sin2(2n - z) + 1/4. 

The relations (27), (32), and (34) imply that for any roe [-1/2, ?) the 
iteration 

ri+l=g(ri), i e ] ~  ~ {0} (35) 

satisfies 

r ie [1/2, ?3, r i ~ ?  as i ~  (36) 

The proof of the theorem for situations where Yo ~> -37 is completed by the 
observation that the two arcs bl and b2 with end points P0, PI and P1, P2, 
respectively, and radii r0, r~ = g(ro) are situated to the left of the y-axis. 
Because of the symmetry expressed in Lemma 1 the same construction 
applies to the right-hand side of the y-axis. Thus the arc  b 2 is followed by 
an arc b3 with center at ( -1 /2 ,  0) and radius r2= g(rl) .  By induction the 
whole solution is composed of a sequence of arcs (bi) with radii rt satisfying 
(35). The relations (35) and (36) imply that the orbit converges to the 
periodic orbit described in the proof of Theorem 2. Q.E.D. 
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6. F U R T H E R  S O L U T I O N  P R O P E R T I E S  F R O M  C O M P U T E R  

C O N S T R U C T I O N S  

B o u n d e d  p e r i o d i c  so lu t ions  o f  sys tem (13), (14) exis t  for  ~ < z ~< 2~ 

( T h e o r e m s  2 a n d  3). H e r e  we use c o m p u t e r - a i d e d  g r a p h i c a l  c o n s t r u c t i o n s  

( a c c o r d i n g  to  the  m e t h o d  desc r ibed  in Sect. 4) to  e x t e n d  the  ana ly t i ca l  

resul ts  on  the  b e h a v i o r  o f  so lu t ions .  

(a) 

(b)  

Fig. 4. (a) Five periodic orbits of Type l associated with parameters O = 0  (always), 
�9 = 1.1n (1), z =  1.2n (2), z=  1.3n (3), z=  1.4n (4), v=  1.5n (5). They can be obtained by 
choosing the initial condition Xo-= 1, Yo = 0. Period of Type 1 solutions is 2z. (b) Here O = 0, 

= 2n. Periodic orbit composed of two full circles. Initial condition Xo -- 0, Yo = 0. According 
to numerical simulations this orbit appears to be unstable. 
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6.1. Varying ~ with 0 = 0 

Three qualitatively different types of periodic solutions were found to 
occur for n < z ~< 2n. These are illustrated in Figs. 4, 5, and 6 and are 
referred to, respectively, as Type 1, Type 2, and Type 3. Type 1 solutions 
have their long axis along the x-axis and were described in the proof of 
Theorem 2. Type 3 solutions have their long axis oriented along the y-axis. 

(a) 

(b) 

Fig. 5. (a) O = 0, z = 1.6n. Periodic orbit  called left Type 2 in the text. Initial condit ion was 
x o ~-0.01, Y0 = 0  (only the asymptot ic  behavior  is shown).  ( b )S ev en  orbits  of right Type 2 
occuring for parameters  z =  1.52n (1), z =  1.54n (2), z =  1.56n (3), z =  1.58zr (4), z = 1.6~z (5), 
z = 1.62n (6), z = 1.64n (7); O = 0 throughout .  Period of Type 2 solutions is 2z. At z = 3n/2 
they bifurcate from Type 1 solutions. 

865/2/4~6 
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There are two types of Type 2 solutions which are asymmetric with respect 
to the y-axis. The left Type 2 solutions have a small arc to the left and a 
large arc to the right (Fig. 5a), and vice versa for the right Type 2 solution 
(Fig. 5b). 

Theorem 3 and all our computer-aided constructions indicate that 
Type 1 solutions are asymptotically orbitally stable if z is not too large, i.e., 
when 

n < z < z c  (37) 

with some critical delay, zc= 1.5n. As z increases along this range the 
diameter of the Type 1 solution in the phase plane projection decreases 
(Fig. 4a). 

According to the simulations, at zo a bifurcation takes place. Although 
Type 1 solutions continue to exist, for z > z c they are orbitally unstable (the 
extreme case when z = 2zc is shown in Fig. 4b). At z = %  left and right 
Type 2 solutions bifurcate from the Type 1 solutions. Left and right Type 2 
solutions appear to be locally asymptotically stable anti their domains of 
attraction are separated by unstable Type 1 solutions. (Note added in 
proof: These numerical results have been proved in a forthcoming paper by 
an der Heiden and Reichard.) 

Figure 5b shows several right Type 2 solutions for z chosen between 
1.52n and 1.64rc. With increasing z the two points where the small and the 
large arc are connected move away from the y-axis (where they start with 
z = z~). As ~ increases the diameter of the large arcs increases, and that of 
the small arc decreases. It can be shown analytically that these asymptotic 
solutions exist for values of ~ between 3n/2 and 5rr/3. The smaller arc has 
angular length 3re - z and its radius is sin(�89 - 3z))/sin(z - n). The radius 
of the large arc is (2 cos(�89 - 70)-1. The period of right Type 2 solutions 
is 2z. The same considerations hold for left Type 2 solutions. 

The computer results suggest that for values 5~/3 < z < 2re the majority 
of solutions is attracted by Type 3 periodic orbits. Type 3 orbits are 
composed of two arcs, each of which has angular length z/2 (compare 
Fig. 6). Thus, the period is just z. Increasing z increases the diameter of 
Type 3 solutions (Fig. 6), and in particular, as z-~ 2~ the diameter tends 
toward infinity. 

Surprisingly Type 3 solutions exist also for all values of z between 
3zc/2 and 5rc/3, and the computer graphic results suggest that they are 
asymptotically orbitally stable for this range of z. Thus for each of these 
values of the parameter z we have coexistence of at least four periodic 
orbits, three of which are asymptotically orbitally stable (left and right 
Type 2 and Type 3) and one (Type 1) is orbitally unbstable. 

At the boundary between the domains of attraction o[ Type 2 and 



Type 3 solutions, very complicated behaviors exist. For example, Figs. 7a 
and b show solutions corresponding to two (constant) initial conditions 
which differ only in the seventh decimal place and which are chosen close 
to this boundary region. In one case the solution converges toward a 
Type 2 orbit, whereas in the other it converges toward a Type 3 orbit. 

For z values in the interval [2zc, 3rc] infinitely expanding spirals occur 
just as in the interval (0, rc], and no stable bounded solutions seem to exist. 
Our graphical results support the conjecture that this behavior holds for all 
values of r satisfying 

2nrc < r < (2n + 1)re, n e N w { 0 }  (38) 

(39) 

On the other hand, if 

(2n + 1)re < z < (2n + 2)re,  n e N w { 0 }  

I 

then asymptotically stable Type 1 and Type 3 solutions occur. 
However, we could not find a Type 2 solution for values of z > 2n. 

Interestingly, we found many solutions which exhibited rather long and 
complicated types of transitory behaviours (a simple case is shown in 
Fig. 8a). These orbits, which could easily be mistaken as complicated 
periodic or aperiodic solutions, ultimately converged toward Type 3 
attractors. 
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Fig .  6. Severa l  T y p e  3 l imit  cycles. P a r a m e t e r s  a re  O = 0 (a lways) ,  z = 1.52~z (1), z = 1.6• (2), 

z = 1.68 (3), r = 1.76n (4), z = 1.94n (5), z = 1.92~ (6). D i a m e t e r  o f  Type  3 o rb i t s  increases  
t o w a r d s  oo as ~ ~ 2zr. T y p e  3 so lu t ions  h a v e  p e r i o d  z. 
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6.2. Varying O 

Here  we cons ide r  on ly  the case w h e n  ~ = 3rc/2. 

W h e n  O > 1 / 2  it  is a t r iv ia l  c o n s e q u e n c e  of  (15) tha t  there  are 

inf in i te ly  m a n y  per iod ic  so lu t ions ,  w h o s e  orb i t s  in  the  (x, y ) - p l a n e  are 
g iven  by  all circles wi th  cen te r  at  (1/2, 0)  a n d  r ad ius  smal le r  t h a n  6 1 -  1/2. 

(a) 

(b)  

Fig. 7. (a) Transitory trajectory for O = 0, z = 1.52~. Initial condition x o ---- 1, Yo = 2.9628916. 
Trajectory converges towards a periodic orbit of right Type 2. (b) Same parameters as in (a), 
but initial conditions Xo = 1, Yo = 2.96289165. Trajectory converges towards a periodic orbit of 
Type 3. 
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These circles define a bounded center structure. Computer-aided construc- 
tions indicate that these bounded centers are (local) attractors. The limit 
orbit is generally not the largest orbit of the center. 

(a) 

(b) 

Fig. 8. (a) Transitory trajectory of the system described by Eqs. (13) and (14) with 69 =0,  
r = 3.7n. Initial condition Xo =- 0, Yo = 0.1. Trajectory is not chaotic, but converges, as t ~ 0% 
towards a periodic orbit of Type 3 as suggested by  computer simulations. (b) Transitory 
trajectory in case of O = 0.4, z = 3n/2. Initial condition x o ~- 0, Yo = 0. 
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A rather special situation arises for O =  1/2 where the threshold 
coincides with the upper level of the step function f In this case, partially 
discussed earlier, complete insight is possible without use of a computer. 
Infinitely many different periodic orbits exist having a form similar to 
Fig. lc. Each periodic orbit consists of three full circles, one large one and 
two smaller ones. If the small circle around (1/2, 0) has radius r, then the 
small circle around ( -1 /2 ,  0) has radius 1 - r .  The large circle whose 
center is (1/2, 0) has the radius 2 - r .  The values of r range from 0 to 1. 
Figure lc shows the case r = 1/4. In the limiting situation with r = 1 the 
second small circle degenerates to a point ( = ( - 1 / 2 ,  0)), and the two 
circles around (1/2, 0) coincide. Thus only a single circle (with radius 1) 
remains. Note, however, that within one single period, which for all r is 
6re = 4z, the solution is constant in two time intervals, each of length re. 
During this time the solution (x(t), y(t))  stays at the point ( -1 /2 ,  0), 
which represents the degenerate circle. 

For O values smaller than 1/2 and larger than 0, again (locally 
asymptotically orbitally stable) left and right Type 2 solutions exist. A 
series of O values would yield a picture like Fig. 5b. Since it is difficult to 
imagine how these Type 2 solutions bifurcate from the peculiar solutions at 
O = 1/2, we illustrate a transient solution for O = 0.4 in Fig. 8b. At O = 0 
left and right Type 2 solutions melt into a single Type 1 solution. 

For negative values of O the situatioia is analogous to that of the 
corresponding positive value. 

7. DISCUSSION 

Here we have studied the special case of a nonlinear second-order 
delay-differential equation with no damping ( a l = 0 )  and piecewise 
constant negative feedback. This equation is of interest because it is one of 
the very few nonlinear second-order delay-differential equations which can 
be investigated analytically. Moreover, solutions can be constructed in a 
simple geometric fashion. We have shown that this equation can produce 
a variety of stable periodic limit cycle solutions which have one maxima 
per period (i.e., simple type). 

An interesting feature of the solutions of (12) (or 14) is the existence 
of long transients for certain parameter ranges which can last for 100's of 
delay times (Figs. 7a and b, 8). We believe that the reason for this is the 
coexistence of several locally stable limit cycles for certain parameter 
configurations (z, O). Since the state space of delay differential equations, 
consisting of initial functions on the interval I - z ,  0], has infinite dimen- 
sion, an arbitrary initial function has a high probability to be far away 
from all of the several stable limit cycles. In particular, if the initial condi- 
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tion is sufficiently close to, but not on, the boundary between the attraction 
basins of two stable limit cycles, then the transitory behavior can have an 
arbitrarily long duration. Of course, it would be highly desirable to have 
more detailed insight into the origin and structure of these transitory solu- 
tions than is presented here. Preliminary computer simulations of (5) with 
positive damping ( a l > 0 )  and piecewise constant negative feedback 
indicate that long transients also occur (data not shown). Furthermore, in 
the case of negative damping (al < 0) the transients can be extremely long. 
It is in fact quite surprising that despite this added dynamical complexity, 
the solutions in (5) are attracted to simple limit cycles. Such long transients 
have not been observed in system (3) with piecewise constant negative 
feedback. 

Although in this paper we have emphasized the importance of second- 
order nonlinear delay-differential equations for a number of applications, it 
must be realized that the analysis of third- and even higher-order delay 
equations is also likely to be of importance. For example, for the pupil light 
reflex, measurements of the open loop transfer function indicate that a 
third-order nonlinear delay-differential equation is likely to be most 
relevant for understanding the properties of this neural reflex arc (Stark, 
1959). Thus we are led back to Eq. (1). There appear to be a wealth of 
interesting problems requiring the attention of mathematicians interested in 
the analysis of nonlinear delay-differential equations. 
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