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Abstract. We consider the dependence of information transfer by neurons on the Type I vs. Type II classification
of their dynamics. Our computational study is based on Type I and II implementations of the Morris-Lecar model.
It mainly concerns neurons, such as those in the auditory or electrosensory system, which encode band-limited
amplitude modulations of a periodic carrier signal, and which fire at random cycles yet preferred phases of this
carrier. We first show that the Morris-Lecar model with additive broadband noise (“synaptic noise”) can exhibit
such firing patterns with either Type I or II dynamics, with or without amplitude modulations of the carrier. We then
compare the encoding of band-limited random amplitude modulations for both dynamical types. The comparison
relies on a parameter calibration that closely matches firing rates for both models across a range of parameters.
In the absence of synaptic noise, Type I performs slightly better than Type II, and its performance is optimal for
perithreshold signals. However, Type II performs well over a slightly larger range of inputs, and this range lies
mostly in the subthreshold region. Further, Type II performs marginally better than Type I when synaptic noise,
which yields more realistic baseline firing patterns, is present in both models. These results are discussed in terms
of the tuning and phase locking properties of the models with deterministic and stochastic inputs.

Keywords: neural coding, information theory, Type I neuron, Type II neuron, Morris Lecar model, phase locking,
noise, electric fish, bifurcation theory

1. Introduction

One possible classification of neurons is based on their
behavior as they go from quiescence to periodic fir-
ing of action potentials (Hodgkin, 1948; Rinzel and
Ermentrout, 1991). For Type I neurons, this transition is
characterized by a saddle-node bifurcation on an invari-
ant circle. For this bifurcation (which we will hence-
forth refer to as “saddle-node” or Type I for brevity),
the firing frequency is zero at the bifurcation, and in-
creases smoothly with bias current from this point on.
The corresponding bifurcation for Type II neurons is
of the Andronov-Hopf type (which we will refer to as
Hopf or Type II for short). In this latter case, the on-
set of firing occurs with an abrupt jump from zero to
a finite frequency at the bifurcation, and the frequency

increases smoothly with bias current thereafter. Type
I and II neurons also differ from the point of view of
other dynamical properties such as response latencies
and frequency tuning. For example, it has been sug-
gested that Type I neurons act as integrators of incom-
ing signals, since input spikes work together best to
produce firing when they are in close temporal succes-
sion. In contrast, Type II neurons behave more like
resonators, in the sense that they tend to fire when
driven near a certain resonant frequency (Izhikevich,
2001).

It is not known what the relative merits of the Type
I and Type II behaviors are with respect to the en-
coding of general aperiodic time-varying stimuli. Fur-
ther, neurons often operate in the presence of a signif-
icant amount of noise of synaptic origin. This further
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complicates the analysis of the relative merits of Type
I versus Type II coding. In this paper, we investigate
these questions computationally in a common situa-
tion: the encoding of amplitude modulations of a carrier
wave into spike trains in Type I and Type II neurons,
with and without synaptic noise.

Many neurons must encode amplitude variations of
a periodic carrier signal (Carr and Friedman, 1999).
This is true in particular for neurons in the auditory and
electrosensory systems (Gabbiani, 1996a,b; Machens
et al., 2001). It has long been known that periodic forc-
ing can lead to various forms of phase locked behavior
(French et al., 1972; Knight, 1972; Keener et al., 1981).
Primary auditory receptors in many species respond to
a pure tone by firing near a preferred phase but at more
or less random cycles of this carrier (Rose et al., 1967;
Kiang et al., 1964). Hereafter we refer to this pattern as
“skipping”. The probability of firing on a given cycle
is usually proportional to the instantaneous amplitude
of the carrier. Hence, a time-varying stimulus produces
a time-varying carrier amplitude, which is encoded by
the neuron as changes in the rate of firing of phase
locked spikes. We are ultimately interested in under-
standing the membrane properties underlying such en-
coding processes and which are at work in a variety of
senses across many species.

Such firing activity also occurs in the encoding of
vibratory stimuli (Talbot and Mountcastle, 1969), and
in weakly electric fish that probe their environment via
active electrolocation and electrocommunication (see
Turner et al., 1999; Bastian, 1994 for reviews). We
describe this sense in more detail here since it has the
main features of carrier-based encoding and since it is
the prime motivation for our work.

A weakly electric fish emits a periodic electric field
known as the electric organ discharge (EOD). Along
the surface of its skin, this carrier induces a periodic
transdermal potential. “P-unit”-type receptors (“P”
for “probability coders”) exhibit skipping in response
to this forcing (Scheich et al., 1973; Wessel et al., 1996).
Each electroreceptor has its own mean probability P
of firing at each EOD cycle (typically 0.1 < P < 0.6).
This P value usually refers to the mean probability in
the absence of stimulus, which in the case of active
electrolocation corresponds to the unmodulated quasi-
sinusoidal EOD alone. For an auditory system, the
P-value would depend on the amplitude of an unmod-
ulated pure tone stimulus. The precise role of the P
value in information transfer is not known, although
generally more information seems to be conveyed for

higher values of P (Wessel et al., 1996; Longtin and
St-Hilaire, 2000).

The EOD is perturbed by nearby objects with an
impedance different from that of the surrounding water
(Bastian, 1994). This results mainly in an amplitude
modulation (AM) of the EOD carrier. Since the spike
rate of a P-unit depends on the EOD amplitude, its
instantaneous firing rate is modified by the AM. The
P value is a smoothly increasing function of the EOD
amplitude in e.g. Eigenmannia (Scheich et al., 1973)
and in Apteronotus Leptorhynchus (Wessel et al., 1996;
Nelson et al., 1997), as it is in auditory afferents (Rose
et al., 1967).

Various combinations of excitability with determin-
istic and stochastic driving can produce skipping be-
havior in a variety of neural models, such as ionic
models or reduced versions such as the leaky integrate-
and-fire or FitzHugh-Nagumo model (see e.g. Longtin,
2002 for a review). While it is possible to obtain such
behavior without noise (the solution is then chaotic),
the behavior is more robust with noise, i.e. it per-
sists over a range of stimulation parameters. Given
that spontaneous release of neurotransmitter is known
to occur between receptor cells and afferent nerves, it
is justified to investigate skipping generated by noisy
excitable dynamics. It has also been shown (Longtin,
1995) that the Morris-Lecar model with Type II dy-
namics, sinusoidal forcing and additive noise can pro-
duce skipping. Below we find that this is also the case
for Type I, and that both Types can exhibit a mono-
tonic increase of P with carrier amplitude. Noise fur-
ther smoothes out this relationship. Our goal here is
not to provide detailed fits to specific data; this is
done e.g. in Chacron et al. (2000) using a leaky inte-
grate and fire model with dynamical threshold. Rather,
we wish to show that the dominant phase locked fea-
tures of the data can be reproduced in the Morris-Lecar
model.

Given this correspondence of the model behav-
iors with the data in the absence of AM’s, our work
goes on to address how internal synaptic noise af-
fects the process of encoding bandlimited AM’s. Noise
has been incorporated into neuronal models for many
decades now (see e.g. Geisler and Goldberg, 1966 in
the case of primary auditory fibers). Although intra-
cellular recordings from P-type electroreceptors are
not yet possible, it is strongly believed that synap-
tic transmission, in particular the fluctuating num-
ber of release sites and their unreliability, underlies
much of the noisy component of the encoding process
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in these receptors (Xu et al., 1996; Chacron et al.,
2000).

It is known (Rinzel and Ermentrout, 1999) that Type
II dynamics have more resonant properties, and may
perhaps be best at firing near certain frequencies rather
than smoothly encoding time-varying signals (Longtin
and St-Hilaire, 2000; Izhikevich, 2001; Masuda and
Aihara, 2002). On the other hand, Type I dynamics have
significant response latencies, despite a continuous f-I
characteristic. It is not obvious a priori which Type
would best convey information about time-varying
stimuli. The answer may depend on the frequency con-
tent of the input as well as on the carrier frequency.

Here we begin investigating this multifaceted prob-
lem by focussing on a specific input, namely low fre-
quency band-limited Gaussian noise causing amplitude
modulations of a fixed-frequency carrier. The coding
portion of our study considers the effect of distance-to-
threshold and synaptic noise on information transfer
in Type I and II implementations of the Morris-Lecar
model.

The paper is organized as follows. Section 2 presents
the models under study and details the methods used
for simulations and “quality of encoding” calcula-
tions. Section 3 studies deterministic and stochastic
phase locking and tuning properties for both model
Types. The matching of the firing rates of both models
for information transfer comparisons is performed in
Section 4. The encoding of AM’s in both models with
the calibration of Section 4, as well as a comparison of
coding in both models, is the subject of Section 5. The
paper ends in Section 6 with a discussion of the results
in the light of the known properties of Type I and II
neurons.

2. Methods

2.1. Model

The model developed by Morris and Lecar (ML) was
first used in the study of the barnacle muscle fiber.
It involves two voltage-gated ionic currents, a Ca2+

channel and a K+ channel:

C v̇ = −gCam∞(v)(v − VCa) − gK w(v − VK )

− gL (v − VL ) + IEOD + I (1)

ẇ = φ
[w∞(v) − w]

τw(v)
(2)

where

m∞(v) = 1

2

[
1 + tanh

(
v − V1

V2

)]
(3)

w∞(v) = 1

2

[
1 + tanh

(
v − V3

V4

)]
(4)

τw(v) = 1/cosh

(
v − V3

2V4

)
(5)

Here v is the voltage variable, w and m represent the
fraction of open channels for K+ and Ca2+, respec-
tively, and the infinity subscript indicates the pseudo-
steady state of the variable. The time scale of m being
much more rapid than that of the voltage, the model
assumes that m always reaches its pseudo-steady state
value (m∞) instantaneously. φ is a prefactor that ac-
counts for temperature-like effects (φ is kept constant
in our study), and I is the bias current. The voltage
variable here is also forced additively with the post-
synaptic current IEOD resulting from the amplitude-
modulated carrier, hereafter referred to as the EOD (see
Introduction):

IEOD = r0[1 + s(t) + η(t)] sin(βt) (6)

where r0 is the mean EOD amplitude, and s(t) is the
band-limited random amplitude modulation (RAM);
the standard deviation of this noise is kept constant
throughout our study, and set equal to 17% of the
EOD amplitude as in Wessel et al. (1996). η is synap-
tic noise, modeled simply as an Ornstein-Uhlenbeck
process with correlation time (i.e. inverse bandwidth)
τOU:

τou
dη

dt
= −η + ξ1(t) (7)

where ξ1(t) is zero-mean Gaussian white noise with
autocorrelation 〈ξ1(t)ξ1(t ′)〉 = 2Dδ(t − t ′). Hereafter
we refer to the synaptic noise intensity as D. A sim-
ple multiplicative coupling of η to r0 is assumed here
(Chacron et al., 2000), meaning that the noise level is
proportional to the mean amplitude of the EOD, a rea-
sonable property for the sum of point processes that
constitute the synaptic events.

The choice of model parameters in Table 1 was based
on Rinzel and Ermentrout (1991); our Type I and II
parameters are identical to theirs, except that v3 and v4

slightly differ for the Type II case. The input stimulus
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Table 1. Morris-Lecar parameters for the Type I
and Type I implementations used in our study.

Parameter Type II Type I

V1 −0.01 −0.01

V2 0.15 0.15

V3 0.0167 0.1

V4 0.25 0.145

VCa 1.7 1.0

VK −0.7 −0.7

VL −0.5 −0.5

gCa 1.1 1.0

gK 2.0 2.0

gL 0.5 0.5

C 1.0 1.0

φ 0.2 0.333

τou 0.025 0.025

s(t), i.e. the RAM, was generated by filtering Gaussian
white noise with a fourth-order low-pass filter:

ds

dt
= z1 (8)

dz1

dt
= z2 (9)

dz2

dt
= z3 (10)

dz3

dt
= −4αz3 − 6α2z2 − 4α3z1 − α4s + ξ2(t)

(11)

where ξ2 is a second independent Gaussian white
noise. A refractory period check is implemented nu-
merically to prevent fast-varying input from gen-
erating firing events that are too close in time,
thus mimicking the observed refractoriness in actual
P-units (they never fire more than once per EOD pe-
riod). Each simulation spanned 2 × 107 time steps, in
which the first 105 steps were discarded as transients.
A fixed time step Euler-Maruyama stochastic integra-
tion scheme (Fox et al., 1988) was used with step size
dt = 0.025 ms.

Typical voltage time series of the Morris-Lecar
model in response to random amplitude modulations
of the EOD are shown in Fig. 1 for the Type I and II
cases in the subthreshold regime, and in Fig. 2 for the
suprathreshold regime. Note that for both these figures,
there is no internal synaptic noise, only RAM’s. Inter-
nal noise simply produces jitter and missed cycles or
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Figure 1. Time series of (A) the stimulus envelope (i.e. the RAM),
(B) the EOD waveform, (C) the voltage for the Type I parameters
and I = 0.0718, and (D) the voltage for the Type II parameters
and I = 0.135. There is no synaptic noise. All other parameters are
as per Table 1. For both types, this corresponds to a subthreshold
regime in the presence of periodic forcing of amplitude r0 = 0.03
and frequency β/(2π ) = 60 Hz. Subthreshold here means that, in
the absence of random amplitude modulations but in the presence
of the periodic EOD, no firings can occur; the firings seen are thus
a result of the AM. The boundary between these subthreshold and
suprathreshold behaviors (see Fig. 2) depends on the frequency and
amplitude of the EOD forcing. Note that the whole time scale of
the dynamics can be adjusted simply by rescaling time to match the
EOD frequency of a particular fish. For example, for the species
Apteronotus Leptorhynchus, the EOD frequency can vary across
specimens in the range of 600 to 1000 Hz). All simulations in our
paper use an EOD frequency of 60 Hz, and the cutoff frequency of
the random amplitude modulations is 6 Hz. It is straigthforward then
to scale our results for a specific EOD frequency of choice.

extra firings on cycles that would otherwise not have
produced a spike.

2.2. Numerics

A Matlab routine (Gabbiani and Koch, 2000) was
adapted for information measurements on the simu-
lation results from each model. The routine computes
an optimal linear filter h(t) that yields the best linear es-
timate (in the mean square sense) sest(t) of a signal s(t)
given the observed output spike train x(t) (the mean
values are subtracted from sest(t), s(t) and x(t)):

x(t) =
∑

i

δ(t − ti ) − x0 (12)
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Figure 2. Time series of (A) the stimulus envelope (i.e. the RAM),
(B) the EOD waveform, (C) the voltage for the Type I parameters
and I = 0.0763, and (D) the voltage for the Type II parameters
and I = 0.149. There is no synaptic noise. All other parameters are
as per Table 1. For both types, this corresponds to a suprathreshold
regime in the presence of periodic forcing of amplitude r0 = 0.03
and frequency β/(2π ) = 60 Hz. Suprathreshold here means that, in
the absence of random amplitude modulations but in the presence
of the periodic EOD, firings can occur (and do so in some periodic
phase locked pattern).

where x0 is the mean firing rate. The stimulus recon-
struction method yields sest(t) by convolving the spike
train with the optimal filter h(t)

sest(t) =
∫ T

0
dt ′h(t − t ′)x(t ′), (13)

where T is the total duration of the spike train. The
filter is chosen so that the mean square error associated
with the estimate,

ε2 = 1

T

∫ T

0
dt[s(t) − sest]

2, (14)

is minimized. From the orthogonality principle, one
finds that the expression for the filter in the frequency
domain is:

h( f ) = Ssx (− f )

Sxx ( f )
(15)

where Ssx( f ) and Sxx( f ) are the Fourier transforms of
the cross-correlation between the stimulus and spike
train Rsx and of the autocorrelation function of the spike
train Rxx, respectively.

In practice, the Matlab routine first generates a spike
train x(t) (an array of ‘0’s and ‘1’s) from the inter-
spike times ti , with sample step equal to the inverse
of the sampling rate of s(t). The Nyquist frequency
of the sampling is chosen much larger than the cutoff
frequency of the bandlimited stimulus in each model
to avoid aliasing. After subtraction of the respective
mean values of x(t) and s(t), estimates of Ssx( f ) and
Sxx( f ) are computed using an averaging method (from
the Matlab signal processing toolbox) assuming er-
godicity of the process; the power and cross-power
spectral densities of Eq. (15) are averaged over win-
dows of 2048 points (with overlap of 1024) from the
spike train and stimulus. Each section of the signal is
Bartlett-windowed (Press et al., 1992) before the spec-
tral density is evaluated. All simulations contained at
least 100,000 points so that nearly 100 samples were
used for the calculation of a particular h(t).

The coding fraction γ , a normalized measure of the
quality of coding based on the quality of stimulus re-
construction, is defined as in Wessel et al. (1996):

γ = 1 − ε

σ
. (16)

It takes values between 0 (spike train is uncorrelated
with the original stimulus, ε2 = σ 2) and 1 (the re-
construction is perfect, i.e. the reconstruction noise is
ε = 0).

3. Firing Characteristics

3.1. Type II

When forced by only a constant current bias term I
(no carrier, i.e. r0 = 0), our implementation of Type II
Morris Lecar undergoes a Hopf bifurcation at a critical
bias current value Ic = 0.183, as shown in Fig. 3. For
any currents below Ic, the model converges to a rest
state dependent on the actual value of the current. For
currents above Ic—and up to another bifurcation value
which is not of interest here—the Type II ML exhibits
a periodic solution with a period of ≈32 ms.

When forced with a current I < Ic and the con-
stant amplitude sinusoidal term (the EOD), the Type II
Morris-Lecar responds in a phase locked manner. This
is shown in the devil’s staircase structures in plots of
P vs. the amplitude r0 in Fig. 4 for two distinct bias
current values. The P value is simply a measure of
firing rate, since the EOD frequency is kept constant.
The relative distances from the threshold for the two
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Figure 3. Mean firing rate versus bias current I in Eqs. (1) and
(2) for Type I (top) and II (bottom) in the absence of synaptic noise
and of an EOD (i.e. r0 = 0, so that IEOD = 0; consequently, there
is also no random amplitude forcing). All other parameters are as
per Table 1. These data show the boundary between subthreshold
and suprathreshold behavior as they are usually defined for excitable
systems, i.e. in the absence of all forcing (in contrast to Figs. 1 and
2 where the sinusoidal EOD is present). These boundaries (corre-
sponding to bifurcations between quiescent and periodic firing) are
Ic = 0.083 for Type I, and Ic = 0.183 for Type II. For weakly
electric fish, the EOD is always present with typically the same am-
plitude and frequency (for a given fish), which leads to more practical
definitions of “sub” and “suprathreshold” dynamics in the presence
of the EOD, as were used in Figs. 1 and 2.
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Figure 4. Probability of firing per forcing cycle as a function of the
amplitude of sinusoidal forcing for the Type II Morris-Lecar system
Eq. (2) without synaptic noise and random modulations of the EOD
amplitude. Bias currents I are 0.135 (A) and 0.149 (B). All other
parameters are as per Table 1. Note that the phase locking plateaus
with P < 0.5 are not seen with the resolution of our computation.

models is different here since case (A) must be forced
with a greater carrier amplitude to exhibit a nonzero
firing probability.

For the top panel, amplitudes less than r0 = 0.036
will not produce any firing unless synaptic noise or a
RAM is present. Those amplitudes are said to be sub-
threshold for this bias current. Conversely, amplitudes
above r0 = 0.036 are said to be suprathreshold as they
give rise to firing without any other forcing. The equiv-
alent threshold carrier amplitude for the bottom panel
is r0 = 0.026.

The large plateaus in Fig. 4 are regions of phase
locking. One can easily distinguish 2:1 (1 spike in
response to 2 forcing cycles), 3:1, 4:1 and even 5:1
phase lockings. Such plateaus are either smoothed out,
or washed out altogether if they are small, in the pres-
ence of synaptic noise (not shown). Such noise also lin-
earizes the output frequency-vs-I characteristic of the
model shown in Fig. 3.

Phase locking is also observable in ISIHs of Type II
ML (Fig. 5) for two different currents yielding two
distinct regimes. We note that such patterns, along
with those we will show for the Type I dynamics,
exhibit many of the qualitative features seen experi-
mentally in different units or sometimes in the same
unit at different EOD amplitudes (Scheich et al., 1973;

Figure 5. Interspike interval histogram for the Type II Morris-Lecar
model with constant amplitude periodic forcing. Both panels are ob-
tained with r0 = 0.03 and synaptic noise intensity D = 0.06. There
is no random modulation of the EOD amplitude. The subthreshold
and suprathreshold regimes are obtained using two current values
of 0.135 and 0.149, for the left and right histograms, respectively.
Fluctuations in mode heights are statistical; for longer simulations,
the ISIH is expected to decay monotonically past the first few modes.
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Wessel et al., 1996). Here both histograms were ob-
tained with the same EOD amplitude; the subthreshold
and suprathreshold regime were obtained by changing
the distance to the Hopf bifurcation using the same
bias current values of 0.135 and 0.149. Synaptic noise
of amplitude D = 0.06 was also applied.

In the subthreshold regime, the model would not
fire in the absence of synaptic noise. The addition
of a stochastic component allows firing and the re-
sulting gamma-distribution shape of the ISIH is typ-
ical of histograms found in mid-to-high firing rate
P-units—in contrast with Gaussian-shaped histograms
found for lower firing rate P-units (Scheich et al., 1973;
Wessel et al., 1996). The frequency of the forcing being
f = 60 Hz, we find clusters of intervals around multi-
ples of t = 16.66 ms, equivalent to 1 EOD period.

In the suprathreshold regime, firings occur at a higher
rate, hence the interspike intervals are reduced on aver-
age and the modes are shifted towards shorter intervals.
In the absence of synaptic noise, this regime exhibits a
2:1 firing pattern (one spike every 2 cycles). Notice the
different vertical scales, indicating a greater number of
events in the suprathreshold case.

We now consider a frequency tuning curve at I =
0.135, shown in Fig. 6. It has the characteristic V-
shape of Type II membrane, and its minimum is located
slightly to the left of the period associated with its limit
cycle near the onset of periodic firing (∼32 ms). No-
tice the location of the (EOD) carrier period chosen for
our study (16.6 ms) at about half the period of the limit

Figure 6. Tuning curve of type II Morris-Lecar. A given curve is
obtained by finding, for each forcing period, the minimum amplitude
giving rise to the indicated (n:m) firing pattern.

cycle. Because of this resonant behavior, one might ex-
pect signal transduction in Type II ML to suffer some-
what from a tendency to fire at the frequency of the
intrinsic limit cycle, rather than according to the AM
fluctuations of the EOD. This is expected even though
the AM fluctuations are slower, ranging from 0 Hz to
6 Hz.

3.2. Type I

The critical bifurcation current for our type I model is Ic

= 0.083 (see Fig. 3). We recall that a saddle-node bifur-
cation occurs at this critical value. For I > Ic periodic
firing emerges with zero frequency, and approximately
following f ∼ (I − Ic)1/2. With periodic drive, the
type I model also exhibits a devil’s staircase as shown
in Fig. 7 for two bias currents, 0.0718 and 0.0763. The
latter values are below Ic, the (lower) first one being
further away from the bifurcation. As expected, panel
A reveals that a larger sinusoidal amplitude r0 is needed
to induce firing than when the system is placed closer to
the bifurcation. The plateaus appear relatively smaller
than for the Type II case. Also, we find that the slope
of the r0-P characteristic is steeper than for the Type
II case. Thus we expect the range of EOD amplitudes
that are potentially encoded by type I to be smaller. This
may be unfair because of the choice of the same driv-
ing frequency for both type I and II. Nevertheless, we
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Figure 7. Probability of firing per forcing cycle as a function of the
amplitude of sinusoidal forcing for the Type I Morris-Lecar system
Eq. (2) without synaptic noise and random modulations of the EOD
amplitude. Bias currents I are 0.0718 (A) and 0.0763 (B). All other
parameters as per Table 1.
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Figure 8. ISIH of the type I Morris-Lecar model with constant
amplitude periodic forcing. Both panels are realized with r0 = 0.03
and noise intensity D = 0.06. The subthreshold and suprathreshold
regimes are obtained using the current values of 0.0718 and 0.0763
for the left and right histograms, respectively. Fluctuations in mode
heights are statistical; for longer simulations, the ISIH is expected to
decay monotonically past the first few modes.

have tried to compensate for this by matching the firing
rates in our comparison of coding capabilities. Further,
the steeper characteristic should encode minute mod-
ulations better since they induce larger changes in the
firing probability per EOD cycle.

The modes in the ISIH’s of Type I are slightly broader
than those of Type II, although the distribution is qual-
itatively the same (Fig. 8). The suprathreshold case is
again a perturbation of the 2:1 firing pattern, and in-
tervals are also shifted to the left in comparison with
the subthreshold case. The Type I model here allows
more spikes in the first mode (ISI’s of one EOD cycle)
than the Type II does in both sub- and suprathreshold
regimes.

The frequency-versus-input bias characteristic is
continuous for the Type I models (Fig. 3), and further
linearized by noise. Another important difference be-
tween both models is seen by comparing their tuning
curves. The Type I tuning curve is monotonic every-
where in the range of forcing periods plotted in Fig. 9.
This shape is similar to that of P-units (Zakon, 1986).
The almost-constant and low threshold amplitude in
the region of long-forcing-period (low frequency) sig-
nals suggests that slowly varying modulations should
be well encoded in that type of membrane model.

This lowpass characteristic is in contrast to the
“bandpass” tuning curve associated with the resonator

Figure 9. Tuning curve of type I Morris-Lecar. Each curve is ob-
tained by finding, for each forcing period, the minimum sinusoidal
amplitude giving rise to the indicated (n:m) firing pattern.

property of the Type II model (Fig. 6), which implies
that the cell will tend to fire only to inputs in a pre-
ferred frequency range (Izhikevich, 2001). However,
this bandpass characteristic may not be beneficial for
encoding time-varying signals, unless the coding task is
to fire more or less periodically (once per forcing cycle)
when a preferred frequency is present. Such coding is
not likely to convey information on the continuous vari-
ations of the stimulus amplitude, and will produce a low
coding fraction as defined in our study. We will see be-
low how the Type II model can nevertheless code well
such variations when their frequency content is outside
of the resonance region (even though the carrier itself
is near the resonance).

Our results have thus far shown similarities and con-
strasts in basic firing statistics of Type I and Type II
models in the presence of sinusoidal forcing with and
without synaptic. The results of this section clearly
show that the Morris-Lecar model with sinusoidal forc-
ing and synaptic noise, in both the Type I and II imple-
mentations, can produce skipping patterns. Although
we have not shown it, skipping patterns can also arise
without synaptic noise, as long as the amplitude of
the sinusoidal forcing is modulated randomly in time
(even if these modulations occur on a much slower time
scale). The skipping then arises as a result of transients
caused by the noisy modulation. However, given that
the skipping is seen in the neural systems of interest
when modulations are absent and present, noise is a
likely component of skipping.
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4. Matching Firing Probabilities

Our investigation now turns to a comparative study of
the transduction of weak signals by the two Morris-
Lecar models in the vicinity of their respective bifur-
cations. Given that information transfer is generally
strongly dependent on the firing rate (see e.g. Gabbiani
and Koch, 2000; Wessel et al., 1996), the compari-
son only makes sense if both Type I and II models
exhibit similar output firing rates in response to the
combined fixed-amplitude carrier, RAM and internal
synaptic noise. In particular, to a first approximation,
the synaptic noise can be seen as playing the role of an
external stimulus; both fluctuations are in fact on equal
footing in the model (see Eq. (6)). Thus, we want the
responses to the EOD alone to show similar P-values
over the range of synaptic noise amplitudes considered
in our study. There are a number of parameters that
can be varied, and it is not known which combinations
of parameters (if any) can produce the desired match.
For simplicity, we have chosen to perform an approxi-
mate match by tuning the bifurcation parameter I and
synaptic noise intensity D for each model.

P values for both the Type II and Type I models
forced with an EOD of constant amplitude 0.03 (i.e. no
RAM) are plotted over the same interval of noise am-
plitudes in Figs. 10 and 11. Each curve is computed for

Figure 10. P vs. D for different input current values in Type II
Morris-Lecar. One point was generated every D = .001 from the
average interspike interval of a 25 sec realization. All parameters are
as per Type II parameters listed in Table 1. The EOD amplitude is
0.03. Note the subthreshold curves start at P = 0. Also, near the
boundary between sub- and suprathreshold dynamics, the internal
noise initially lowers the Pvalue, i.e. noise suppresses spikes from
the limit cycle.

Figure 11. Firing probability per EOD cycle (P) vs. synaptic noise
intensity D for different input current values for the Type I Morris-
Lecar model. One point was generated every D = .001 from the
average interspike interval of a 25 sec realization. All parameters are
as per Type I parameters listed in Table 1. The EOD amplitude is
0.03. Note the subthreshold curves start at P = 0. As in Fig. 10,
near the boundary between sub- and suprathreshold dynamics, the
internal noise initially suppresses spikes from the limit cycle.

a fixed bias current. We recall that P is defined as the
probability of firing per cycle without a RAM stimulus.
It is expected that, for low current values, the operating
point is far from the bifurcation and the resulting P
value is low. Increasing synaptic noise brings the sys-
tem closer to threshold and P increases. Also expected
is the fact that the output rate increases as I approaches
the bifurcation point.

The models were tuned so that they could be com-
pared in both the sub- and suprathreshold regimes. For
both regimes, two sets of similar P-D relations are
shown in Fig. 12. They were obtained after a close in-
vestigation of Figs. 10 and 11 by generating such plots
at more closely spaced current values. It was found that
both models have a similar curve, in the subthreshold
regime, for current values of I = 0.0718 (Type I) and
I = 0.135 (Type II). Note that when the noise ampli-
tude is zero, the P value is 0; that is why they qualify as
subthreshold cases. The two curves are especially close
for values of D < 0.1. The behavior for larger D is of
lesser importance; this will become clear when com-
paring coding fractions, since maximal coding frac-
tions occur in the low D region. In the suprathreshold
case, current values of I = 0.0763 (Type I) and I =
0.149 (Type II) lead to very similar curves in the whole
interval considered. Note that the output rate is close to
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Figure 12. Comparative P-D curves for both subthreshold and
suprathreshold cases. In all cases, there are no amplitude modula-
tions of the EOD. Specification and parameters are as for Figs. 10
and 11. Circles (◦) identify the Type II model and plus signs (+) are
used for Type I. Note the close match between curves at low synaptic
noise with this calibration of the two models.

constant at a fairly high value of 0.5 (far suprathreshold
regime) and that the noise then has very little effect on
the mean rate.

5. Comparing Type I and II Coding Fractions

5.1. Effect of Internal Noise Intensity

Using the parameters that yield closely matching P-D
curves, we simulate the response of both models to an
EOD with random amplitude modulation of standard
deviation set to 17% of r0, as in Wessel et al. (1996).
One can explore the effect of many parameters on the
information transfer. We will concentrate on the ef-
fect of distance to the bifurcation and the intensity of
the synaptic noise. This will be done for Type I and
Type II dynamics in the subthreshold and suprathresh-
old regimes.

Results for both models in the subthreshold regime
are presented in Fig. 13 for the coding fraction as a
function of the synaptic noise amplitude. Each point is
obtained using the linear stimulus reconstruction tech-
nique (ref. Section 3.2). The error on each point is found
by evaluating the coding fraction from multiple simu-
lations with different initial seeds; it is on the order of
±0.01 for each point.

Interestingly, the results for both models are very
similar, although the coding fraction of Type II is ev-
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Figure 13. Coding fraction vs. internal (synaptic) noise intensity in
the subthreshold ML model Eq. (2). Circles (◦) identify the Type II
model and plus signs (+) are used for Type I. Note that these curves
would be very close to one another on the (0,1) coding fraction scale.
Also note how the model is able to encode signals even in the absence
of internal noise; this is because the Gaussian fluctuations in the RAM
sometime bring the signal above the firing threshold. Nevertheless,
for D = 0 the model does not produce the skipping patterns seen in
many neurons that encode AM’s. The parameters used here match
the firing rates according to Fig. 12.

erywhere slightly better than that of Type I except near
the deterministic case (D = 0). The reconstruction
quality for both models first increases from a low value
with increasing noise, and goes through a maximum
at roughly the same noise intensity of D ∼= 0.06. This
can be understood as follows. Low noise sometimes
brings the voltage closer to threshold and raises the
mean firing rate, thus the coding quality is enhanced.
However, noise at intensities greater than D ∼= 0.06
has more of a randomizing effect on the firing times (it
induces useless spikes as well) and the coding frac-
tion starts decreasing. Thus, a moderate amount of
synaptic noise yields the lowest stimulus reconstruction
noise, and thus the highest coding fraction; this stochas-
tic resonance effect has been previously shown in the
FitzHugh-Nagumo Type II model with random ampli-
tude sinusoidal forcing (Longtin and St-Hilaire, 2000).

We have performed the same simulations in the
suprathreshold case using bias current parameters for
the matched P-D curves in the suprathreshold regime.
Results are shown in Fig. 14. The quality of the re-
construction is seen to diminish with increasing noise
intensity in both ML implementations. The error on
each point is of the order of ±0.01. Here again we find
that Type II is slightly better than Type I for most of the
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Figure 14. Coding fraction vs. noise intensity in the suprathreshold
Morris-Lecar model. Circles (◦) identify the Type II model and plus
signs (+) are used for Type I. The parameters used match the firing
rates according to Fig. 12.

range of noise intensity investigated, except at very low
noise values where Type I encodes better. The Type II
result here is qualitatively similar to the result from
the suprathreshold (Type II) FitzHugh Nagumo model
(Longtin and St-Hilaire, 2000).

5.2. Effect of Distance to Threshold

We now present results on the dependence of coding
fraction γ on the distance to the bifurcation. It is not
clear a priori how to quantify the “distance to a bi-
furcation”, especially in the case of periodically driven
models, as its definition is model-dependent. One might
express it as the relative distance to the bifurcation, e.g.
(I − Ic) = Ic; but in nonlinear models, this quantity
is hard to relate to the driving amplitude. For example,
resonance effects in the Type II model reduce the ef-
fective distance to threshold, and consequently our two
models will not exhibit the same firing rates in response
to the same EOD.

An attempt at comparing the distance to threshold
in the context of coefficient of variation calculations
is given in Gutkin and Ermentrout (1998), where the
distance is simply defined as the absolute distance to
the threshold (e.g. I − Ic). We have used both this
definition and the one for relative distance given above.
We present the effect of the distance to threshold on
the coding fraction in Figs. 15 and 16. Results were
obtained from simulations over a range of bias current
values (with all other parameters constant) and plotted

−0.4 −0.3 −0.2 −0.1 0
(I−Ic)/Ic

0

0.2

0.4

0.6

0.8

C
O

D
IN

G
 F

R
A

C
T

IO
N

−0.08 −0.06 −0.04 −0.02 0
I−Ic

0

0.2

0.4

0.6

0.8

C
O

D
IN

G
 F

R
A

C
T

IO
N

Figure 15. Coding fraction vs. absolute (upper panel) and relative
(lower panel) distance to the bifurcation, without synaptic noise (D =
0). Circles (◦) identify the Type II model and plus signs (+) are used
for Type I. Threshold effects are responsible for the coding fractions
going to zero at low biases, and saturation effects cause the coding
fractions to go to zero at high biases. The same sampling intervals
and same spike train lengths were used for each model.
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Figure 16. Coding fraction vs. absolute (upper panel) and relative
(lower panel) distance to bifurcation, in the presence of synaptic
noise (D = 0.06). Circles (◦) identify the Type II model and plus
signs (+) are used for Type I.
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as a function of I − Ic and (I − Ic)/Ic. We recall that the
bifurcation values are Ic =0.183 and 0.083 respectively
for Type II and Type I models.

We first consider the case where the synaptic noise
is zero. The results are shown in Fig. 15. It is seen
that the coding fraction is significant for both models,
but over different ranges of bias current. The Type I
model is also seen to achieve slightly higher coding
fractions. The range of inputs over which the Type I
model encodes, i.e. its dynamic range, is smaller than
for Type II, although the gap between the two models
is smaller when using the relative distance to threshold.
One also observes that the range of encoding for Type
II is mostly below the bifurcation, while it straddles the
bifurcation more for Type I.

We next compare the coding fractions for both mod-
els in the presence of a synaptic noise of fixed intensity.
A noise intensity of D = 0.06 was used for these sim-
ulations, which corresponds to the maximum of the
coding fraction in the subthreshold case (Fig. 13). We
find that the maximum coding fraction for both mod-
els (peak values) are very similar, although they do not
appear at the same distance from their respective bifur-
cations. The interval for which the coding fraction is
high is larger and flatter for Type II, and further away
from the bifurcation. The difference between the two
models is however again smaller when the relative dis-
tance scale is used.

The performance of both types of coders was strik-
ingly similar, indicating a minor influence of the onset
mechanism for the limit cycle on the coding quality,
at least in these Morris-Lecar implementations. Never-
theless we do observe the following differences. In both
the subthreshold and suprathreshold case, Type I has a
larger coding fraction (by about 10%) than Type II in
the low noise region. However, at larger noise, we found
Type II to code slightly better (again by about 10%) de-
spite the fact that it has a slightly lower sampling rate, as
shown in Fig. 17. This plot shows in fact that, although
in our calibration both models have approximately the
same P value (defined without RAM’s), the firing rate
of Type I was slightly higher than that of Type II when
RAM’s are present.

6. Discussion

We have studied the transduction of stimuli in the form
of amplitude modulations of a periodic carrier wave.
This was done for standard Type I and Type II imple-
mentations of the Morris-Lecar model. We have shown
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Figure 17. Mean firing rate vs. internal “synaptic” noise intensity in
the presence of a random amplitude modulation of the EOD. Circles
(◦) identify the Type II model and plus signs (+) are used for Type
I. Curves on top are for the suprathreshold regime while those at
lower frequency are for the subthreshold regime. Current values are
the same as in Fig. 9.

that this model can easily be made to exhibit the char-
acteristic phase locking patterns seen in many neurons
that respond to amplitude-modulated carrier signals,
such as P-type electroreceptors and auditory neurons:
the spikes always occur near a preferred phase of the
carrier, but are separated by a random number of cycles
of the carrier wave.

For both the Type I and II cases, such skipping pat-
terns can be seen without amplitude modulations, and
in both the subthreshold and suprathreshold regimes,
as long as noise, such as synaptic noise, is also driving
the dynamics. Otherwise, the dynamics always settle
onto a periodic phase locked pattern. In the presence of
AM’s, both models can also generate skipping patterns
with and even without noise; the transients caused by
the ongoing stimulus are then responsible for the skip-
ping.

However, experimental data clearly shows that skip-
ping occurs in the absence of AM’s, thus strongly sug-
gesting the presence of noise in the internal dynam-
ics of the receptors. As this noise is presumably not
extinguished by the AM, it is appropriate to include
it, both without and with bandlimited AM’s. This is
why we have taken care of incorporating it all along in
our analysis of the coding properties. One assumption
related to this point is that the intensity of the noise
was kept constant for a given simulation, i.e. it did not
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follow the AM in any way (it is however scaled by the
mean EOD amplitude r0, which is not changed by the
AM in our study). One may want to relax this assump-
tion in future studies since synaptic noise is likely to
track the AM.

We have shown that in both Type II and Type I mod-
els, noise of synaptic origin may increase the quality
of signal transduction in the subthreshold regime, espe-
cially near the threshold. Our model assumes for sim-
plicity that this noise is additive, even though in reality
such noise comes in through fluctuating conductances
which multiply the voltage variable, and is thus mul-
tiplicative. Low-to-moderate noise intensities raise the
firing rate of the model, allowing a better sampling of
the stimulus, thus reducing reconstruction noise and
increasing the coding fraction. This result is a mani-
festation of stochastic resonance (Gammaitoni et al.,
1998) in the Morris-Lecar model in the context where
the signal is an amplitude modulation of a carrier. In
the suprathreshold case however, noise was found to
always reduce the quality of encoding.

Because there are a large number of parameters to
control, any comparison of coding capabilities in two
different neuron models relies on certain strategies. Our
comparison of these capabilities in the Type I and II
models was based foremost on a calibration of the pa-
rameters such that the models had qualitatively and
even quantitatively very similar behaviors of their firing
rates across the range of AM’s considered. This choice
was dictated by the fact that coding quality depends
strongly on firing rate. The comparison was made for
two parameter sets, one producing (deterministically)
a Hopf bifurcation (Type II membrane) and the other a
saddle-node bifurcation (Type I membrane) to periodic
firing as the bias current was increased. The amplitude
and frequency of the carrier as well as the bandwidth
of the Gaussian stimulus were kept the same for both
models, and comparisons were made for equal intensi-
ties of internal noise.

It is not surprising that any two sets of parameters dif-
fering by the value of only one parameter such as bias or
internal noise intensity yield different coding qualities
(as measured by the coding fraction in our study). In
this sense we have learned that it is more meaningful to
characterize and compare whole curves of coding frac-
tions across one parameter space dimension for both
model types. In this picture, we can see that the qualita-
tive behavior of the two model types is the same with re-
spect to (1) interval histograms (Figs. 5 and 8), (2) firing
rate versus internal noise (Figs. 10 and 11), (3) coding

fraction versus internal noise (Figs. 13 and 14), and (4)
coding fraction versus absolute and relative distance to
threshold (Figs. 15 and 16); and for cases (1)–(3), this
holds true in both the subthreshold and suprathresh-
old regimes. With our calibration, both models can
exhibit very similar maximal coding fractions, even
though these maxima occur at different distances to
threshold.

It appears that the Type II model actually encodes
better below the threshold to periodic firing in compar-
ison to the Type I model. Our simulations suggest that
this is the case because of the relative inflexibility of
its firing frequency above threshold, in turn related to
the resonant properties of Type II membranes (as seen
in its radically different tuning curve in comparison to
the Type I model—see Figs. 6 and 9).

The effect of resonance on amplitude modulation
transduction is two-fold. We expect the resonance to
increase information transfer as it increases the effec-
tive amplitude of the AM. On the other hand, a resonant
model tends to fire at the frequency of its limit cycle,
thus lowering its coding quality, especially in the vicin-
ity and above threshold. Our study reveals that good
coding is nevertheless possible for a Type II model.
Future studies should in fact perform a coding com-
parison not only for different contrasts of the Gaussian
AM stimulus (“stimulus amplitude”), but also for dif-
ferent carrier frequencies. Given the resonant feature
of the Type II model, it is expected that its coding frac-
tion will depend more sensitively than Type I on which
carrier frequency is used, since magnification of this
carrier by the resonance will magnify the AM as well.
This has been found in the coding of AM’s by the (Type
II) Fitzhugh-Nagumo model (Longtin and St-Hilaire,
2000).

By varying only the carrier frequency, the Type I and
II coding fractions may become closer or diverge from
one another. This will depend on the dynamic range of
the model (which is related among other things to the
span of its devil’s staircase; see Figs. 4 and 7). For ex-
ample, bringing the EOD closer to the resonance of the
Morris-Lecar Type II model will magnify the ampli-
tude fluctuations, but more saturation (and thus worse
coding) may ensue. An instructive comparison of cod-
ing across a range of carrier frequencies would have to
carefully take into account how the mean firing rates
vary, e.g. by redoing a match of firing rates in the sub
and suprathreshold regimes as done here. This is be-
yond the scope of our study, but would certainly be a
worthwhile endeavor. Also, we have used bandlimited
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Gaussian white noise for the RAM, given our experi-
mental motivations; its cutoff frequency is well below
the intrinsic resonance frequency of the Type II model
(by a factor of ten). So the effect of the resonance in
the Type II model is not likely to be visible in the cod-
ing quality unless we used amplitude modulations of
higher frequency.

The Type II model is found here to encode over a
slightly larger range of biases than the Type I model.
This is most likely due to the slower increase of the
devil’s staircase for the Type II model (compared to
Type I) for the parameters we have chosen. At the bot-
tom and top of the staircase, coding is not possible
due to the thresold and saturation of the firing rate, re-
spectively. The dynamic range of inputs where coding
can occur lies along the staircase, or more precisely,
along the slightly modified staircase due to the pres-
ence of synaptic noise and the random AM’s. For our
parameters, this dynamic range is smaller for Type I
than Type II (compare Fig. 7 and Fig. 4, respectively),
and accordingly, the range of biases where the cod-
ing fraction is significant is smaller as well for Type I.
This effect is perhaps compensated by the fact that the
Type II tends to fire near its resonant frequency, a prop-
erty that should degrade coding of continually varying
stimuli. The combination of the two effects may thus
produce similar coding capabilities for both Types for
the parameters we have chosen.

It is clear that coding differences depend on the par-
ticular nonlinear response of both Morris-Lecar mod-
els to sinusoidal input, as revealed e.g. in the devil’s
staircase and the tuning curves. What is perhaps more
surprising is the similar coding quality for both models,
in both subthreshold and suprathreshold regimes. This
is likely a general consequence of the fact that the in-
ternal synaptic noise, as well as the on-going transients
induced by the AM’s, cause a linearization of the firing
rate versus input bias characteristic, which improves
the tracking of the stimulus by the output firing rate
(this property has been discussed for Type II neurons
in Chialvo et al., 1997). In fact, for the Type II case,
noise and transients not only linearize the f-I curve, but
also render it smooth in the first place.

The V-shaped tuning curve for the Type II model is
qualitatively similar to another class of units in weakly
electric fish, the so-called T-units which fire once per
cycle of the carrier. In another study we have shown
how noise on a Type II system can turn its tuning curve
into that characteristic of a Type I system (Longtin,
2000). The fact that the V-shaped curve opens up to

resemble more the tuning curve of a Type I neuron is
another reason why the Type I and II models studied
here have similar encoding capabilities.

Although we have focussed specifically on the cod-
ing of amplitude modulations, it is clear that a certain
amount of coding may occur via phase information as
well. This is expected particularly at high stimulus fre-
quencies, where the precise placement of spikes on the
cycles of the carrier can better reflect the fluctuations
of the stimulus. It is known for example that phase
jitter limits the encoding of high frequency amplitude
modulations, and thus that phase information is im-
portant when the stimulus contains higher frequencies,
even though these may still be lower than the carrier
frequency. And in the electrosensory system, there are
primary receptors that specialize in phase information
(the aforementioned T -units). This analysis of phase
coding is currently under investigation.

Finally, it would be instructive to repeat the calcu-
lations in the absence of a carrier, i.e. to focus solely
on the encoding of a Gaussian bandlimited stimulus
added directly to the current balance equation. That
problem might be simpler since one does not have to
contend with the frequency and amplitude of the car-
rier, and how they affect the phase locking responses of
the model. One may also consider other parameter sets
for which the Type I and II dynamics are better sep-
arated, both without and with synaptic noise, as mea-
sured e.g. by the shape of the phase resetting curves (Jan
Benda, private communication). Eventually the effect
of synaptic reversal potentials on the encoding should
be considered. And a more unbiased estimate of infor-
mation transfer, such as the mutual information, could
also be used to uncover other differences between the
coding properties of Type I and II neurons.
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