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We investigate the phase locking of firing events in periodically forced stochastic excitable
systems. Our study is motivated by the observation of randomly phase locked firing
activity in a large number of neurons, especially those involved in transducing physical
stimuli such as temperature, sound, pressure and electric fields. The purpose of our paper
is to review our work on the biophysical origin of such firing patterns. Special attention
is given to the constructive effect of noise, and to the connection between stochastic and
deterministic resonances in such systems. We present new results on stochastic phase
locking in the subthreshold and suprathreshold regimes, and on the non-monotonicity
of the spectral amplification as a function of noise intensity. We also discuss current
outstanding problems and potentially fruitful future research directions.
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1. Introduction

The response of excitable systems to deterministic and/or stochastic forcing has
received much attention in the last decades [1–4]. An excitable system is charac-
terized by its ability to execute a large stereotyped motion in phase space when it
is subjected to sufficiently strong forcing. In the case of nerve or cardiac cells, this
event is usually called a “firing” or a “spike”. Such spikes propagate to other cells
along axons in the case of neurons or through other kinds of electrical coupling such
as gap junctions in cardiac cells. When the forcing is too weak or non-existent, the
asymptotic motion of this excitable system is simply a fixed point. In the vicin-
ity of this excitable behavior in parameter space, there usually exists a volume of
parameters for which the system exhibits limit cycle behavior. In the literature, it
is common to also refer to such an oscillator as an excitable system, since it can
also display excitability for other parameters. Further, the phase space trajectory
during the limit cycle is closely related to the stereotyped firing event. Nevertheless,
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it is important to distinguish between the excitable and oscillatory regime for the
purpose of understanding phase locking to periodic forcing, and in particular the
effect of noise on such locking behavior.

In the excitable regime, there are different kinds of “threshold” boundaries that
determine “sufficiently strong forcing” to cause a spike, depending on the nature
of the bifurcation between the excitable and oscillatory regimes. If this bifurcation
is of the saddle-node type, there exists a saddle point (as well as the aforemen-
tioned stable fixed point) characterized by an unstable and a stable direction (or
“manifold”). The stable manifold acts as an “all-or-none” boundary for spikes: if
the forcing pushes the phase space trajectory past this manifold, a spike will occur,
otherwise the system relaxes back to the stable fixed point. If the bifurcation is of
the Hopf-type, there is no such stable manifold, and accordingly, no true thresh-
old. In this case, the amplitude of the phase space excursion will be a continuous
function of the applied forcing magnitude; nevertheless, this function has a very
steep part, with behavior similar in many respects to all-or-none behavior. The
FitzHugh-Nagumo system we will focus on in this paper, as well as the Hodgkin-
Huxley ionic neuron model with standard parameters, have such a graded threshold
behavior.

There are two other regimes that must be distinguished within the excitable
regime: subthreshold and suprathreshold forcing. The ability of a forcing signal to
produce spikes is determined by its magnitude and frequency, as well as where the
system lies on the line between excitable and oscillatory behavior. If the system is
close to oscillatory behavior, the threshold for spiking is low, and a weak forcing
signal can make the trajectory cross the threshold. If a given signal can produce
spiking, it will be refered to as a suprathreshold signal; otherwise, it is subthreshold.
It is important to clearly define these regimes, because they determine the main
features of the response of the cell to noise and to periodic input. The frequency
is also generally important because the threshold is frequency-dependent as we will
see below.

Responses to suprathreshold periodic forcing include n:m phase locking patterns
with m firings for n forcing cycles, as well as chaotic firing patterns [1, 4]. These
patterns result from the nonlinear interaction of internal time scales of the system
with the external time scale of the input. Stochastic forcing further turns a quiescent
(i.e. non-firing) excitable system into a stochastic oscillator [5–7]. In other words,
noise induces firing in the subthreshold regime. Alternately, when the system fires
periodically (or chaotically) in the absence of noise, i.e. when the cell is in the
oscillatory regime, noise turns the deterministic oscillator into a noise-perturbed
oscillator. This can modify the phase locking structure, and can strongly affect
the frequency sensitivity (“tuning”) characteristics of the cells [8, 10, 29]. It is also
known that noise can smoothen and/or increase the dynamic range of excitable cells
by linearizing their stimulus-response characteristics and breaking up phase lockings
[8, 11–14]. Furthermore, other new phenomena arise from stochastic forcing, such
as coherence resonance [15], stochastic resonance [3], mean frequency locking [16]
and noise-enhanced phase coherence [17].

Noise in excitable systems has many possible origins, and the proportion of
the different kinds of noise depends on the type of excitable cell. In the neural
context (see e.g. [18]), noise arises mainly from synaptic inputs from other cells.
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Noise also arises from the fluctuations in conductance of various ionic channels
and ionic pumps. Some neurons, such as thermoreceptors, are free nerve endings,
and their signaling of temperature does not rely on synaptic currents, but rather
on the temperature-dependent rates of opening and closing of various channels
[19]. Other cells that transduce physical stimuli into spikes, such as auditory and
electroreceptors, involve synaptic currents at the interface between the receptor and
the axon. The release rate of synaptic neurotransmitter follows the stimulus level,
but there is often a strong noisy component to this rate. This results in noisy
currents entering the axon, and consequently noisy firing activity. Also, certain
cells such as cortical cells receive thousands of synaptic inputs which also produce
stochastic firing.

This latter activity is noisy in the sense that there is a random component in
the time intervals between spikes; the spikes themselves are approximately all the
same once they are initiated. Thus, spike timing reflects noise in the absence of
any stimuli. In the presence of stimuli, the timing of spikes depends on the signal
and on the synaptic noise at the cellular level. Of course, the stimulus itself may
be a stochastic process, such as band-limited Gaussian noise. Also, in the context
of stochastic resonance, noise can be added to the external signal (see e.g. [20]).
From a modeling perspective, one has to decide whether the internal cellular noise
and external, perhaps noisy, signals can be lumped together into one term, or enter
in different parts of the equations, either as multiplicative (conductance) noise or
additive noise. Also, one has to consider the possibility that synaptic noise may be
stimulus-dependent [21, 22].

Our paper reviews our work in the analysis of stochastic phase locking in both
the subthreshold and suprathreshold regimes, and presents new results for both
regimes. The subthreshold regime will be shown to be the important one from
the point of view of stochastic resonance, as it is for the classic bistable poten-
tial. Further, our paper presents recent results on interesting effects of noise in
the suprathreshold regime. It is our belief that this regime is very important for
modeling data from certain neurons. Our focus is on dynamical models, in contrast
to non-dynamical neuron models that abound in the literature (see [6], and also [23]
which first analyzed a modulated shot noise process in the context of SR), and which
focus solely on the statistics of the firing events without regards for how events are
generated. Our paper is also meant as a brief survey of deterministic and stochastic
resonances in neural systems with periodic and/or stochastic forcing. It is certainly
not meant to be comprehensive, since it focusses on our own research into trying to
assess the mechanisms and significance of neuronal stochastic resonance in particu-
lar, and noisy phase locked firing in excitable systems in general. We are primarily
concerned with the effects of neural noise, due e.g. to ionic channel conductance,
synaptic failure, and random synaptic inputs, on the encoding of time-dependent,
possibly aperiodic stimuli.

Section 2 gives a brief introduction to neural models that have been studied in
the stochastic neural dynamics. The FitzHugh-Nagumo (FHN) model, which will
be used throughout our study, is presented there. Section 3 considers the basic
response of a prototype excitable system to noise and periodic forcing of different
frequencies. These basic noise, amplitude and frequency parameters will be used
throughout our study to allow a comparison of the effect of these parameters on
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different statistics of the spiking. Section 4 discusses the effect of noise on the
deterministic resonance and tuning properties of the FHN model. We will see that
noise alters the Arnold tongues of the system, and that a new kind of Arnold tongue
in the noise intensity-forcing period can be used to advantage. Section 5 discusses
firing statistics such as the interspike interval histogram, the spike train power
spectrum and the cycle histogram for various combinations of forcing frequency
and noise intensity. This sets up the results of Sec. 6 which focusses on optimal
noise levels for these statistics, and their relation to the mean firing time in the
presence of noise alone. Section 7 considers skipping in the suprathreshold regime,
and its possible importance in modeling real neural systems. The paper concludes
in Sec. 8.

2. Stochastic Dynamical Neuron Models

The standard dynamical description of a neuron is in terms of the Hodgkin-Huxley
formalism:

dV/dt =
∑

Iion + Iapp (1)

=
∑

i

gisiSi(V − Vi) + Iapp (2)

where V is the voltage at the spike generating zone and Iapp designates external
currents, either synaptic or from electrical (gap) coupling or from a microelectrode.
Iion accounts for the ionic currents, and can be divided into currents responsible for
spiking and those that govern the subthreshold behavior between spikes. The Vi are
the Nernst “reversal” potentials for each ionic species, gi is the maximal conduc-
tance, and si and Si are, respectively, activation and inactivation gating variables.
The latter follow first-order dynamics with voltage-dependent parameters. The ex-
citatory and inhibitory synaptic conductances may also involve gating variables and
reversal potentials. Synaptic input is often modeled as a train of Dirac delta func-
tions Isyn(t) =

∑N
i=1

∑
j Jiδ(t− tji ), where the first sum is over all N synapses, and

the second, over all firing times tji at each synapse. The synaptic efficacies Ji are
often lumped into one efficiency g.

An input spike train causing a sequence of synaptic currents is often assumed to
be a Poisson process with rate Nν. If ν is large, and the Ji are small (many synaptic
events must add up to fire the cell) with Nν � 1, the Poisson process can be approx-
imated by a diffusion process with same mean and variance. Thus, synaptic input
may be approximated by Gaussian white additive noise on the voltage dynamics.
Further, synapses also have their own first-order dynamics. Then, if the diffusion
approximation is valid, the synaptic current dynamics are approximately driven by
Gaussian white noise. The synaptic current is then an Ornstein-Uhlenbeck (OU)
process, which in turn drives the voltage dynamics at the spike generating zone
of the neuron. This justifies using OU noise for input to analytically and compu-
tationally simpler models such as the Fitzhugh-Nagumo (FHN) model [24]. This
reduced model is obtained from the standard Hodgkin-Huxley model by lumping
together the fast voltage and sodium activation channels together into the voltage
variable v, and the sodium inactivation and potassium activation variables together
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into a slow recovery variable w. In this paper, we focus on this model with additive
periodic and/or stochastic forcing [24]:

ε
dv

dt
= v(v − 0.5)(1 − v) − w + A sin ω0t + I + η(t) , (3)

dw

dt
= v − w − b , (4)

dη

dt
= −λη + λξ(t) . (5)

Here ξ(t) is Gaussian white noise of mean zero and correlation function 〈ξ(t)ξ(s)〉 =
2Dδ(t−s). The bias current I encompasses the mean external and synaptic currents
(i.e. it is similar to Iapp in Eq. (2)), and η is OU noise with variance Dλ and
correlation time tc ≡ λ−1. This noise is useful to investigate the effect on the
dynamics of noise variance and bandwidth. Below, this system was integrated
as in [25]. FHN still has realistic excitable dynamics, including a deterministic
resonance. In all our simulations, a firing is counted only if separated from a previous
one by at least the refractory time of TR = 0.4 sec (equivalent to ≈ 1–2 msec in
typical real neurons). This is the time required to go along the strongly attracting
excursion in phase space during the spike, and during which another spike can not
be initiated no matter how large the forcing. It is important to include such a time
because high noise or deterministic forcing may strongly affect the shape of the
spike in model simulations, and one spike may unrealistically count as more than
one if a spike is simply detected by a positive voltage threshold crossing [26].

3. FitzHugh-Nagumo at Different Frequencies

We wish to summarize the response properties of an excitable model to sinusoidal
and stochastic forcing. We will do this in the context of the FHN model. Our work
with other models suggest that the properties we will present are fairly general
for neuron models. Figures 1–3 show the response to the FHN model Eq. (5) to
zero-mean sinusoidal forcing and zero-mean Ornstein-Uhlenbeck noise. In all cases,
the solution converges to a fixed point in the absence of periodic forcing and noise
(subthreshold regime). In the presence of periodic forcing alone, the membrane
voltage executes periodic motion around the fixed point (known as the “resting
potential”), without spikes. In the presence of noise alone, spikes can occur, and
their rate of occurrence is proportional to the noise. This is noise-induced firing
(we will characterize this rate in Fig. 9 below): the noise helps the system activate
over the threshold barrier.

In Figs. 1–3, firings are caused by the combination of noise and periodic forcing.
It is clear that firings tend to occur near a preferred phase of the periodic forcing,
but that there is randomness as well; we will refer to this form of stochastic phase
locking as “skipping”. It is also clear that more firings occur as the noise intensity
D increases. Figure 1 corresponds to high frequency forcing with forcing period
T = 0.5; this is a high frequency because it is on the time scale of the inverse of
the refractory period. Figure 2 corresponds to a mid-range frequency (near the
preferred frequency defined in the next section), and Fig. 3 to a low frequency. One
can not say with confidence that spikes occur near a preferred phase of the forcing
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Fig. 1. Solutions of the Fitzhugh-Nagumo model Eq. (5) with high frequency sinusoidal forcing
as well as broadband stochastic forcing (Ornstein-Uhlenbeck noise with correlation time λ−1 =
0.001 sec). The forcing period is T = 0.5 sec. The noise intensity is 5 × 10−7 for the lower panel,
2 × 10−6 for the middle panel, and 8 × 10−6 for the upper panel. The sinusoidal amplitude is
A = 0.01, and does not produce spiking at this forcing frequency in the absence of noise, i.e. the
forcing is subthreshold. Transients have been discarded. Stochastic numerical integration is done
as in [25]. The time step is 0.001. Parameters are I = 0.04, b = 0.15, ε = 0.005 and are the same
throughout our study unless stated otherwise.
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Fig. 2. Solutions of the Fitzhugh-Nagumo model Eq. (5) with moderate (“mid”) frequency sinu-
soidal forcing as well as broadband stochastic forcing. The forcing period is T = 1.25 sec. The
sinusoidal amplitude is A = 0.01 (subthreshold). The noise intensity is 5 × 10−7 for the lower
panel, 2 × 10−6 for the middle panel, and 8 × 10−6 for the upper panel. Numerical integration
and parameters are as in Fig. 1.
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Fig. 3. Solutions of the Fitzhugh-Nagumo model Eq. (5) with low frequency sinusoidal forcing,
and broadband stochastic forcing, as in Fig. 1. The forcing period is T = 10.0 sec. The sinusoidal
amplitude is A = 0.01 (subthreshold). The noise intensity is 5×10−7 for the lower panel, 2×10−6

for the middle panel, and 8×10−6 for the upper panel. Numerical integration and parameters are
as in Fig. 1.

in this last case; we will see in Fig. 6 that they do only for low noise. This is due
in part to the fact that the voltage response to this low frequency forcing is small,
i.e. the two-dimensional FHN model basically filters out such signals. It also filters
out higher frequency signals (we return to this filtering aspect in Fig. 4).

One interesting question here is whether this model reproduces experimental
data where stochastic phase locking is seen [24,27]. Other possibilities may explain
a given data set, such as subthreshold chaotic dynamics [24,28]. This is a modeling
question, and the usual techniques (see e.g. GlassMackey88) can be used to assess
the validity and predictive power of the model. The interesting question from the
point of view of stochastic resonance is: under what conditions is the periodic
forcing best expressed in the output spike train, given that without noise, it is not
expressed at all? The answer is, as we will see below, that a moderate amount of
noise is needed if the system is in the regime used in Figs. 1–3. This in turn can
help us understand how aperiodic time varying signals can be transduced by the
system [26, 29, 30] and how the underlying deterministic resonances influence this
noise-aided transduction [10, 31].

4. Tuning and Noise

4.1. Preferred frequency

The FHN model has an autonomous oscillation regime arising via a Hopf bifur-
cation from an excitatory regime as e.g. I is increased. Consequently, it has a
deterministic resonance, and behaves as an underdamped oscillator around its fixed
point. This resonance may be washed out by noise, as we will see. In contrast, the
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Fig. 4. Tuning curves for the Fitzhugh-Nagumo model Eq. (5) with and without noise. The
noise intensity is given in the legend. In the deterministic case, each curve gives the minimum
value of the forcing amplitude needed to produce one spike per forcing cycle (1:1) as a function of
forcing period. In the stochastic case, each curve gives the average minimum value of the forcing
amplitude needed to produce one spike per forcing cycle (1:1) on average, as a function of forcing
period. The average minimum value is determined from three independent determinations of this
minimum using parameter sweeps.

simple popular leaky integrate-and-fire model, governed by v̇ = −αV + I, simply
lowpass filters the input I. It does not have a deterministic resonance, unless one
includes certain gating variables; among other things, these increase the dimension-
ality of the subthreshold dynamics beyond one, thereby making resonant properties
possible. Figure 4 shows the organization of different steady-state periodic firing
patterns in the usual signal amplitude-period subspace for the FHN model. Only
two are shown for D = 0. The curves correspond to A,T pairs above which a
given n:m locking occurs; these are known in the nonlinear dynamics literature as
Arnold tongue boundaries. The subthreshold regime lies below the 1:0 curve, and
the suprathreshold regime lies above this curve. One sees that the threshold for
a given n:m firing depends on the forcing period T = 2π/ω0, and is lowest for its
“preferred period” of T ≈ 1.5 sec. The preferred period for 1:1 is close to the period
of the limit cycle that is reached for larger Iapp, and to the value of T that pro-
duces the largest deterministic subthreshold voltage response (not shown). Another
important observation is that the boundary between subthreshold and suprathresh-
old is frequency-dependent. For example, a forcing of A = 0.05 is subthreshold
at T = 10, but not at T = 1. Between the 1:0 and 1:1 curves one can find the
classically arranged deterministic Arnold tongues [1].

It is clear that adding noise changes the shape of the curves at low to mid
frequencies, but not at high frequencies. The noise can be seen as “fanning out”



October 10, 2002 16:50 WSPC/167-FNL 00071

Phase Locking and Resonances for Stochastic Excitable Systems L191

the deterministic Arnold tongues into the subthreshold domain, since they are con-
strained (and not visible on our plot) between the 1:0 and 1:1 curves at these
frequencies. The noise also blurs the boundaries between the phase locking curves.
These curves can now be interpreted as A-T parameter pairs yielding a certain
time-averaged phase locking ratios [10]. Thus, an n : 1 ratio means an aperiodic
firing pattern with one spike for n stimulus cycles on average. Our recent study [10]
has shown that the shape of these tuning curves for T > 1.5 can be deduced from an
adiabatic theory based on an Arrhenius law. However, the frequency dependence
of the subthreshold voltage response, related to the aforementioned deterministic
resonance, must be taken into account. Without this, two forcings with same A
but different T would be expected to produce the same mean firing rate, which is
clearly not the case. Forcing near the resonant period of the FHN model yields
large voltage responses; since these are more likely to reach threshold, spiking is
then more likely to occur. For T < 1.5, the recovery variable w becomes a key
determinant of the firing probability, and the whole two-dimensional escape time
problem must then be studied. This has been done in the ε → 0 limit in [32].

4.2. D-T subspace and tongues

We now consider how the phase locking structure of the model looks in the D − T
subspace. Figure 5 shows the location of the 1:1 “DT” Arnold tongues for two
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Fig. 5. Noise intensity-stimulus period boundaries for the 1:1 and 2:1 average phase locking ratios.
Each curve plots, as a function of period, the minimum noise intensity needed to produce the
desired average phase locking ratio. The sinusoidal forcing amplitude is set at A = 0.03 for the
black symbols, and A = 0.15 for the open ones. Such plots can be interpreted as a new kind
of Arnold tongue for stochastic excitable systems, in contrast to the usual Arnold tongues in
the amplitude-period subspace of parameter space. The noise intensity simply gives an extra
parameter of the forcing that can be used to characterize the phase locking properties.
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different forcing amplitudes. The curves are either monotonic decreasing (1:1) or
go through a maximum. It is also possible to get curves that go down, then up
and then down again (from left to right), i.e. certain resonances, for parameters
close to A = 0.015 and 1:1 (not shown). For A = 0.015, the forcing is always
subthreshold for 1:1 behavior, and noise is always needed to produce firings; a
monotonic decreasing curve results. This basically means that more noise is needed
to produce one spike per forcing cycle (on average) when the forcing cycle is short
(i.e. the forcing frequency is high). We will see in the next section that mean 1:1
behavior occurs near the noise intensity that optimizes various statistics. However,
for the other cases shown, such as 2:1, certain higher frequencies produce spikes
even without noise; thus the DT tongue lies on the x-axis at those frequencies. The
reason for this should be clear from Fig. 4, i.e. the threshold is frequency-dependent.
As the period increases, the Arnold tongue goes up, then slowly down, interestingly
exhibiting a resonance from this DT perspective.

5. First and Second-Order Firing Statistics

We now present a gallery of behaviors for three statistics. This is done for different
combinations of noise and forcing period, keeping the amplitude fixed at the sub-
threshold value (for all periods) of A = 0.01. This will allow us to have a global
view of the behavior of an excitable model to different regimes of stochastic and
periodic forcing. The terms low, mid and high frequency are again referenced to the
preferred deterministic frequency of the model (near T = 1.5, a “mid” frequency).
Figure 6 shows interspike interval histograms. For the low frequency (high period)
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Fig. 6. Interspike interval histograms from numerical solutions of Eq. (5) for various noise intensi-
ties D and forcing periods T . The forcing amplitude is fixed at A = 0.01 throughout. The ISIH’s
are obtained by cumulating into the same 100-bin histogram the intervals from 50 realizations of
340 forcing cycles. The noise intensity is 5 × 10−7 for the lower panels, 2 × 10−6 for the middle
panels, and 8 × 10−6 for the upper panels.



October 10, 2002 16:50 WSPC/167-FNL 00071

Phase Locking and Resonances for Stochastic Excitable Systems L193

0 5 10

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

P
O

W
E

R
 D

E
N

S
IT

Y
   

(m
V

2 /H
z)

10
−3

10
−2

10
−1

T=0.5

0 1 2 3 4 5
FREQUENCY  (HZ)

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

T=1.25

0.00 0.25 0.50

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
−2

10
−1

10
0

T=10
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D and forcing periods T . The forcing amplitude is fixed at A = 0.01 throughout. The spectra
shown are obtained by averaging the 1024-point spectra from 50 realizations of 340 forcing cycles.
The spectrally flat anti-aliasing method of French-Holden was used as in [25], in conjunction with
Hanning-windowing. The spectra are also averaged over the phase of the sinusoidal forcing. Noise
intensities are as in Fig. 6.

T = 10 and low noise, a multimodal histogram is seen, as well as at mid to high
frequencies and low to moderate noise levels. The qualitative similarity between 1)
such experimentally observed histograms in neurophysiology and 2) those seen for
bistable systems forced by noise and subthreshold sinusoids gave us the first hint
that SR could be at work in excitable systems [33]. It is clear that at high noise,
the histogram is unimodal, with little evidence of skipping. At low noise, there is
skipping, and between the two, there is some intensity where there is a dominance
of firing intervals near the forcing period. In Fig. 10, we will see that this fact
reflects SR [24].

Figure 7 shows spike train power spectra for the same forcing parameter ranges.
Apart from the spectral signature of the forcing signal and its harmonics, there is
not much other structure for T = 10. There is more structure for lower T , relating
to the presence of the refractory period; there are also modes at the mean firing
rate and its harmonics. And it is clear that as noise intensity increases, the peak
height at the forcing frequency f0 (also known as the spectral amplification) goes
through a maximum, i.e. SR is seen (see Fig. 10).

The probability of firing as a function of the phase of the forcing signal is known
as a “cycle histogram”. Such histograms are shown in Fig. 8 for the same range of
parameters as Figs. 1–3 and Figs. 6–7. They have a rectified form at low noise, and
become more sinusoidal at higher noise; more noise is needed for this to happen
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Fig. 8. Cycle histograms from solutions obtained with the same parameters as in Fig. 1. The
period has been normalized to one. These histograms are constructed by incrementing one of 100
bins whenever a spike occurs at a phase of the sinusoidal stimulus corresponding to that bin. Such
histograms thus represent the unnormalized firing probability as a function of stimulus phase.
Results were obtained from 50 realizations of 100 cycles with A = 0.01. Noise intensities are as in
Fig. 6.

when the forcing frequency is large. The transition from rectified to sinusoidal
reflects the fact that the discontinuous transfer function of the deterministic neuron,
which relates firing rate to bias current I in the absence of any stochastic or periodic
forcing, becomes linearized by noise [26]. In fact, the slope goes through a maximum
as a function of noise intensity. This linearization makes the firing probabilility
track the forcing signal more faithfully. This can be quantified by computing the
linear correlation coefficient between the cycle histogram and a sinusoid (adjusting
the phase to get maximum correlation). The forcing signal will then have maximal
power in the spike train near parameter values where this linearization is highest, as
we will see in Fig. 11. At higher noise, the slope of the transfer function decreases
again, and there is more variability in the firing events; both factors conspire to
reduce the faithfulness of the rate-stimulus relation. This is the basis for SR as
well as aperiodic stochastic resonance (SR for slowly varying signals [9, 26, 29]) in
excitable models.

6. Optimal Noise

In the presence of noise and without signal, “spontaneous firing” occurs. The de-
pendence of the mean firing rate on the noise intensity is shown in Fig. 9 for the
parameters used in our study (actually the inverse of this rate is plotted). Because of
the resonant nature of the FHN system, this noisy firing has a certain coherence [24].
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Fig. 9. (A) Mean interspike interval 〈ISI〉 versus the noise intensity D which produces this mean
firing interval for Eq. (5); there is no periodic forcing.

In fact, this coherence can be maximized by a finite noise intensity [15,32]. In other
words, the noise induces the limit cycle from the excitable regime, and the regu-
larity (“coherence”) of this limit cycle goes through a maximum at finite noise, a
phenomenon referred to in this context as “coherence resonance”. This mean in-
terval decreases as noise increases. Also, we have seen in Fig. 5 that a higher noise
level is needed to obtain 1:1 firing (on average) when the mean forcing interval is
small. Of course, 1:1 firing is actually a higher firing rate when the forcing period
is small. From both Fig.5 and Fig.9, we can associate high noise with 1:1 at low
forcing period, or with a low spontaneous firing rate. Since mean firing period and
forcing are time scales, they can be plotted on the same axis.

This is done in Fig. 10, where we consider how noise maximizes various statistics
introduced so far in this paper. These optimal noise (Dopt) values are also calculated
for a range of forcing periods. This is like doing many “SR experiments” at different
forcing periods, and grouping the results all on one graph. The mean rate curve of
Fig. 9 is also superimposed on the data. We see that the behavior of Fig.9 parallels
the optimal noise-versus-forcing period curves for all the statistics of interest over a
significant range of forcing periods [25]. For example, at higher forcing frequencies, a
higher noise intensity is needed to obtain 1) 1:1 firing on average, 2) most intervals in
the range of the forcing period, 3) a maximal spectral power at the forcing frequency,
and 4) the best linearization. Also, at higher noise, the mean spontaneous firing
interval is smaller. This is a manifestation of time scale matching of SR in excitable
systems. Note also that at higher forcing periods, Dopt does not depend on T. This
is the non-dynamical regime where the neuron acts as a simple threshold crossing
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Fig. 10. Comparison of the dependence on noise of various firing statistics (filled circles and
squares), and comparison of these dependencies to the mean interval curve in the absence of
signal. The same (open circle) curve of mean interspike interval versus D without sinusoidal forcing,
〈ISI〉A=0-vs-D is plotted in each panel (from Fig. 9). (a) Stochastic Arnold tongue showing, as
a function of T , the value Dopt producing on average one firing per cycle (1:1). (b) Dopt here
yields maximal power at the forcing frequency 1/T in the spike train power spectrum. (c) Dopt

yields a maximum number of intervals of duration ≈ T (first peak in the ISIH). (d) Dopt yields
the maximum linear correlation coefficient between the sinusoidal forcing and the time-dependent
firing probability. In (b), (c), (d), dynamical refractory effects occur for T < 3 approximately,
and statistics with signal parallel the zero-signal mean interval. A static regime occurs for T > 3,
where Dopt is independent of T . Symbols are approximately two standard deviations wide.

device [34, 35]; this occurs clearly when the time scale of the periodic forcing is
larger than all internal system time scales.

At higher frequencies, it is known that nonlinear phase locking phenomena occur
in the suprathreshold regime. For subthreshold signals, we have found that multiple
stochastic resonances can occur as D increases [25]. Here we show in Fig. 11 new
results on the transition from a simple stochastic resonance to double stochastic
resonance in the FHN system as T decreases. For T = 1.0, a single maximum is
seen, while for T = 0.6, two bumps are seen. Such multiple resonances were found
when T < 0.9. Similar resonances have also been found in bistable systems [36].
These subthreshold resonances are perhaps related to the deterministic lockings
that exist for suprathreshold forcing, and which are induced by the noise. This is
currently under investigation.



October 10, 2002 16:50 WSPC/167-FNL 00071

Phase Locking and Resonances for Stochastic Excitable Systems L197

10
−6

10
−5

NOISE INTENSITY

0

0.2

0.4

0.6

0.8

S
P

E
C

T
R

A
L 

P
O

W
E

R
 (

ar
b.

 u
ni

ts
)

T=0.6
T=0.7
T=0.8
T=0.9
T=1.0

Fig. 11. Spectral power at the forcing frequency computed from spike trains, plotted as a function
of noise intensity D for different forcing periods T . As the frequency increases, the curves acquire
more local minima, and the maximum power occurs at lower D values.

7. Suprathreshold Skipping

The SR literature is rife with examples of stochastic phase locking with subthreshold
periodic signals. This produces the familiar multimodal residence time histograms
[3]. Suprathreshold signals can also produce such behavior in the FHN system [24].
The histogram peaks in that latter study did not perfectly align with the integer
multiples of the forcing period, and the histogram envelope did not vary smoothly
with forcing parameters as it did in experimental data and in the subthreshold
regime. This was in contrast to what was observed experimentally in e.g. auditory
cells. This was in part ascribed to the blurring of chaotic motion by the additive
noise.

Figure 12 shows new results from a simulation of the FHN system at high fre-
quency in the suprathreshold regime. Panel A shows the interspike interval his-
togram for the noiseless suprathreshold case. The dynamics show 5:1 phase lock-
ing. Panel C shows the result when the amplitude is 0.06 instead of 0.04. There is
an abrupt change to a 3:1 phase locking. Neither of these cases exhibits skipping.
Panels B and D compare results for the same two amplitudes but with noise. One
now sees the familiar skipping pattern, and further, there is a smoother transition
from one pattern to the other as the amplitude (or noise, or both) changes. This
combination of suprathreshold forcing with noise may thus underlie some of the
skipping patterns seen experimentally.

We now turn to a model that best fits skipping data from electroreceptors. The
goal of reporting this model here is again to show that “skipping” is not synonymous
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Fig. 12. Skipping in the suprathreshold regime of the FHN model Eq. (5). The forcing (angular)
frequency is ω0 = 32 (T = 0.196). Noise intensities shown in legends must be multiplied by 10−6.

with “subthreshold”, and thus neither with “SR”. Also, by carefully modeling
different statistics of the data, such as correlations between firing intervals, one
may conclude very different roles for the noise. The model of interest is similar
to the standard leaky integrate-and-fire model which has been analyzed in the SR
context [37], except for an extra variable w governing the time dependence of the
threshold. It is thus a two-variable model like the FHN model, but the transition
to autonomous firing behavior is not of Hopf type. The model is:

dv/dt = −v/τv + A[1 + ξ(t)] sin(2πf0t)H [sin(2πf0t)] , (6)

dw/dt = (w0 − w)/τw . (7)

Here A is the amplitude of the forcing. H is the Heaviside function; it serves
to truncate (or half-wave rectify) the sinusoidal signal. This is justified for many
sensory neurons which respond to only one polarity of a physical stimulus (such as
the opening of channels when hair cells are bent in one direction). A firing event
occurs at the first instant in time (since the previous reset) when the voltage and
threshold intersect. Physically, at such a crossing, the voltage exceeds threshold
and a spike is generated. Assuming this occurs at time t, the voltage is reset to
zero, i.e. v(t+) = 0, and the threshold is incremented by a fixed amount ∆w, i.e.
w(t+) = w(t) + ∆w.
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The recovery variable w appended here to the classic one-dimensional leaky
integrate-and-fire model is similar to the w recovery variable used in the FHN
system (thus its chosen name). We have chosen to model the dynamics using such
a two-dimensional system instead of FHN because we have better control over the
time scale of the memory effects following action potentials. Our efforts to obtain
similar effects with FHN by modifying parameters such as ε have been unsuccessful,
which has led us to the leaky integrate-and-fire model with threshold dynamics
(LIFDT). We do not have a proof that such memory effects are not possible with
FHN, but we feel that what is probably needed is an extra variable. The FHN
model is basically a relaxation oscillator with a fast time scale on the order of ε and
a slow one on the order of ε−1. We have not been able to modify the recovery time
without significantly altering the shape of the action potentials. The advantage of
using the LIFDT model is that the action potential itself is not represented; rather,
only its effect is represented (voltage and threshold reset), allowing us to model
the cumulative memory of firings a second variable. The linearity of the LIFDT
model between firings also enables us to study many of its properties analytically,
in contrast to FHN [45].

A realization of Eq. (7) is given in Fig. 13, along with the interval histogram.
It is important to see that ∆w is added to the value of the threshold at the time
of firing, rather than to a fixed value. This has the effect of carrying the memory
of previous firings over consecutive firing events. For example, if the cell has fired
a few times in rapid succession, the threshold will have increased to a high value,
with the result that the following firing will be delayed. Thus, long intervals are
followed by short ones and vice versa, on average. This reproduces the experimen-
tally observed negative correlation between intervals [38]. The model also produces
skipping behavior over a wide range of parameters.

However, in order to get both the skipping behavior and the negative correlation
between successive firing intervals, suprathreshold dynamics are needed according
to our simulations. We could not find a parameter range where the model could
exhibit both effects for subthreshold signals; the noise combined with the weakness
of the signal tend to wash out the memory of preceeding spikes. For suprathreshold
dynamics, and in the absence of noise, this models simply produces 5:1 phase lock-
ing; the noise perturbs this phase locking pattern. P-type electroreceptors of weakly
electric fish exhibit such histograms, and our analysis suggests a possible dynamical
mechanism for this process. In particular, the model argues that skipping arises
from noise, as opposed to subthreshold chaos as might occur in other systems [28].
This finding also motivates further theoretical studies of escape time distributions
for suprathreshold stochastic dynamics.

Because the dynamics are suprathreshold, there is no enhancement of the pe-
riodic driving signal by increasing noise. However, noise can help code aperiodic
signals in this suprathreshold regime. This occurs because the deterministic model
exhibits phase locking, and noise can break up this phase locking. Over a range
of amplitude A of the input, for example, the deterministic model produces a 5:1
phase locking pattern. The range is approximately given by the width of the Arnold
tongue associated with 5:1 firing. If this input amplitude varies in time, mimicking
the time variations of some stimulus, the model will not code these variations since
it always gives a 5:1 pattern. However, if noise is added, the 5:1 pattern will be per-
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Fig. 13. Stochastic phase locking in the leaky integrate and fire model with threshold dynamics
Eq. (7). Parameters are tauv = 1, τw = 7.75, A = 0.2613, ∆w = 0.05, w0 = 0.03, f0 = 1 and
D = 0.2063. A) Time series of the voltage from one realization, after transients have decayed. B)
Interspike interval histogram.

turbed in a way that reflects the amplitude variations, and coding does occur [38].
Thus, noise can also help coding in the suprathreshold regime in certain cases.

8. Conclusion

We have summarized our analysis of stochastic phase locking in a variety of neural
systems, and provided new results on the behavior of the SNR with noise and on
suprathreshold dynamics. We have shown that the addition of noise to excitable
dynamics brings a new perspective on issues of resonance and tuning. Noise lin-
earizes the transduction function of the neuron, allowing its firing rate to track slow
input signals. It also changes the shape of tuning curves, especially for mid-to-low
forcing frequencies, i.e. frequencies below the preferred frequency of the neuron. For
higher frequencies, i.e. in the non-adiabatic regime of the neuron subthreshold reso-
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nances appear in the behavior of certain firing statistics [25,39]. There can be many
such resonances, and while this is not clearly established, they appear associated
with statistical versions of the deterministic suprathreshold phase-locked behaviors.
Noise simply expresses these behaviors in the subthreshold regime. The precise
connection between supra- and suthreshold resonances deserves more study. The
study of those resonances will likely require analyses of the dynamics that account
for the recovery variable behavior, such as the ones recently proposed in [10, 32].

It is also of interest to see that SR studies have made their way into the fields
of neurophysiology and bioengineering. SR is currently being investigated in med-
ical applications such as sensory enhancement [9, 40, 41]. It has also been demon-
strated in central (as opposed to “peripheral” or “sensory”) neurons with synaptic
input [42]. We have performed analyses of SR without external forcing in bursting
neurons, in which there exist, depending on the model, various internal oscillatory
time scales [19,43]. Further, it has been recently shown that, with realistic param-
eters, correlations in Poisson inputs to a neuron have a similar effect to increasing
noise [44]. This is because correlations between synaptic point processes increase
the variance of the resulting input currents. Thus SR can be brought on by changing
the number, activity and cross correlation of synaptic inputs.

Ultimately, the significance of SR will be established only when the neurons
which receive output of neurons exhibiting SR actually care about the optimal
statistic. It is certain however that, whether or not there are such postsynaptic
neurons that do care, stochastic phase locking is a ubiquitous pattern used in neural
coding, and that through our work and that of many others, we now have a better
understanding for its genesis.
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[22] P. Lánský and L. Sacerdote, The Ornstein-Uhlenbeck neuronal model with signal-
dependent noise, Phys. Lett. A 285 (2001) 132–140.

[23] K. Wiesenfeld et al., Stochastic resonance on a circle, Phys. Rev. Lett. 72 (1994)
2125–2128.

[24] A. Longtin, Stochastic resonance in neuron models, J. Stat. Phys. 70 (1993) 309.

[25] A. Longtin and D. R. Chialvo, Stochastic and deterministic resonances in excitable
systems, Phys. Rev. Lett. 81 (1998) 4012–4015.

[26] D. R. Chialvo, A. Longtin and J. Muller-Gerking, Stochastic resonance in models of
neuronal ensembles, Phys. Rev. E 55 (1997) 1798–1808.

[27] J. K. Douglass, F. Moss and A. Longtin, Statistical and dynamical interpretation of
ISIH data from periodically stimulated sensory neurons. Proceedings, Fifth Neural
Information Processing Systems (NIPS) Conference, S. J. Hanson, J. Cowan and
L. Giles, eds. (Morgan-Kaufmann, Mateo, CA, 1993) 993–1000.

[28] D. T. Kaplan, J. R. Clay, T. Manning, L. Glass, M. R. Guevara and A. Shrier, Phys.
Rev. Lett 76 (1996) 4074–4077.

[29] J. J. Collins, C. C. Chow and T. Imhoff, Aperiodic stochastic resonance, Phys. Rev.
E 52 (1995) 3321–3324.

[30] J. E. Levin and J. P. Miller, Broadband neural encoding in the cricket cercal sensory
system enhanced by stochastic resonance, Nature 380 (1996) 165–168.



October 10, 2002 16:50 WSPC/167-FNL 00071

Phase Locking and Resonances for Stochastic Excitable Systems L203

[31] A. Longtin and M. St-Hilaire, Encoding carrier amplitude modulations via stochastic
phase synchronization, Int. J. Bifurc. Chaos 10 (2000) 1–16.

[32] B. Lindner and L. Schimansky-Geier, Phys. Rev. E (2000).

[33] A. Longtin, A. Bulsara and F. Moss, Time interval sequences in bistable systems and
the noise induced transmission of information by sensory neurons, Phys. Rev. Lett.
67 (1991) 656–659.

[34] Z. Gingl, L. B. Kiss and F. Moss, Non-dynamical stochastic resonance: Theory and
experiments with white and various coloured noises, Nuovo Cimento D 17 (1995)
795–802.

[35] P. Jung, Threshold devices: fractal noise and neural talk, Phys. Rev. E 50 (1994)
2513–2522.

[36] P. Jung and P. Hänggi, Phys. Rev. A 44 (1991) 8032.

[37] T. Shimokawa, K. Pakdaman and S. Sato, Time scale matching in the response of a
leaky integrate-and-fire neuron model to periodic stimulus with additive noise, Phys.
Rev. E 59 (1999) 3427–3443.

[38] M. Chacron, A. Longtin, M. St-Hilaire and L. Maler, Suprathreshold stochastic firing
dynamics with memory in P-type electroreceptors, Phys. Rev. Lett. 85 (2000) 1576–
1579.
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