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Abstract

A recent computational study of gain control via shunting inhibition has shown that the slope of the frequency-

versus-input (f �/I ) characteristic of a neuron can be decreased by increasing the noise associated with the inhibitory

input (Neural Comput. 13, 227�/248). This novel noise-induced divisive gain control relies on the concommittant

increase of the noise variance with the mean of the total inhibitory conductance. Here we investigate this effect using

different neuronal models. The effect is shown to occur in the standard leaky integrate-and-fire (LIF) model with

additive Gaussian white noise, and in the LIF with multiplicative noise acting on the inhibitory conductance. The noisy

scaling of input currents is also shown to occur in the one-dimensional theta-neuron model, which has firing dynamics,

as well as a large scale compartmental model of a pyramidal cell in the electrosensory lateral line lobe of a weakly

electric fish. In this latter case, both the inhibition and the excitatory input have Poisson statistics; noise-induced

divisive inhibition is thus seen in f �/I curves for which the noise increases along with the input I. We discuss how the

variation of the noise intensity along with inputs is constrained by the physiological context and the class of model used,

and further provide a comparison of the divisive effect across models.

# 2002 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

Many neurons are thought to perform scaling

operations on their input over a variety of time

scales (Koch, 1999; Carandini and Heeger, 1994;

Nelson, 1994; Salinas and Thier, 2000). This

scaling results from changes in the frequency-

versus-input current (f �/I) characteristic of a cell.

For example, if the slope of this f �/I curve is high,

a small slow variation in input current is mapped

by the cell into a larger variation in instantaneous

firing rate. One commonly assumed fast-acting

mechanism involves gain control through shunting

inhibition, i.e. through a conductance Gs with a

reversal potential Vs near the resting potential Vr

of the cell. Since Vs:/Vr, the current Is�/Gs (V�/

Vs) contributed by this conductance will be small

despite the fact that a large inhibitory input can

increase Gs substantially. However, the main effect
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of this kind of inhibition, which is classically

mediated by GABAA type channels, is through

the increase of the total cell conductance, i.e. the

reduction of the input resistance and thus of the

membrane time constant t ; this smaller t then

decreases the effect of excitatory input, whether

due to an injected current input or to synaptic

input.

It had long been believed that shunting inhibi-

tion could be used to ‘scale’ or ‘divide’ input by

altering the slope of the f �/I curve. This hope was

guided by the fact that membrane voltage does

relate to input current in a divisive manner in the

subthreshold regime (Ohm’s law); consequently,

increasing total conductance via an increase in

shunting inhibition decreases the slope of the V �/I

curve. However, Holt and Koch (1997) showed

that, when a cell fires, shunting inhibition causes a

shift of the f �/I curve to higher input currents, yet

the slope of the f �/I curve remains unchanged.

This is a consequence of the resetting of the

voltage following spikes, which qualitatively alters

the relation between voltages and currents aver-

aged over short times.

In a recent paper, Doiron et al. (2001a) have

found that noise associated with inhibitory synap-

tic input causes a decrease in slope in the f �/I

characteristic of model pyramidal cells at lower

frequencies, rather than a shift. The compartmen-

tal ionic model was built from anatomical and

physiological data from a pyramidal cell of the

electrosensory lateral line lobe of the weakly

electric fish Apteronotus Leptorhynchus (Berman

and Maler, 1999). The frequencies where this

‘noise-induced divisiveness’ (NID) was found

were relevant to the normally behaving fish. In

an independent experimental study, NID was also

observed in the context of balanced excitatory and

inhibitory synaptic inputs (Chance et al., 2002).

The inclusion of noise in the gain control problem

thus revealed a feedforward mechanism for divi-

sive gain control at the single cell level. The noise

arose naturally from simulations of the inhibitory

synaptic input on the compartmental model using

the program NEURON. An even simpler leaky

integrate-and-fire (LIF) model showing the effect

was

C
dV

dt
��[ḡ�s(ḡ)h(t)]V�I (1)

where h (t ) was lowpass-filtered Gaussian white

noise (of zero mean and unit variance) added to

the mean conductance ḡ: It is meant to represent

the mean total inhibitory input in the compart-

mental model. The reversal potential for this input

has been set to zero, a good approximation for

shunting inhibition. Also, s is the standard devia-
tion of the fluctuations in ḡ; and depends on ḡ:
Note also that in general, ḡ includes all conduc-

tances, but we have focussed only on the inhibitory

one for simplicity. The correlation time of this

Ornstein�/Uhlenbeck noise was matched to that of

the mean total conductance fluctuations observed

in the full compartmental model; these fluctua-

tions were the result of inhibitory synaptic activity
distributed across the dendrites and soma. The

noise on the total conductance was necessary to

obtain sigmoidally increasing f �/I curves, as seen

experimentally and in the compartmental model.

f �/I curves for increasing mean levels of inhibition

ḡ simply shifted rightwards (as in Holt and Koch,

1997) if the noise intensity s2 was independent of

the mean inhibition, i.e. subtractive gain control
occurred. However, if s2 was increased monoto-

nically with ḡ; as expected for Poisson inhibitory

inputs, divisive gain control was observed at lower

frequencies, with subtractive behavior at higher

frequencies.

The NID effect can be quantified using the

average slope of the f �/I curve (see Doiron et al.,

2001a), which can be simply determined as the
ratio of some interval of mean firing frequencies

(e.g. 0�/40 Hz) divided by the corresponding range

of input currents. Due to the statistical nature of

the f �/I curves with noise, some criterion must be

used to define these lower and upper frequency

bounds (especially the lower one which in principle

is never zero with finite noise and has a large

variance). The essence of the NID effect was that
the denominator of this ratio increases. This

occurs in spite of the fact that the f �/I curve shifts

to the right for higher inhibition; this is because

the increased noise makes firings appear for

relatively lower values of input current. Note

also that the actual f �/I curve is sigmoidal, yet it
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can be adequately approximated by a linear curve
at lower frequencies, at least for the purpose of

quantifying NID simply.

In this paper we consider how shunting inhibi-

tion interacts with Gaussian white noise to modify

the f �/I characteristic in simple standard neuron

models that approximate more accurate Hodgkin�/

Huxley type models. The first goal is to assess the

generality of the NID. This is useful in particular if
one wishes to model networks of cells performing

this novel kind of gain control. It is also useful to

identify the key ingredients of this effect, and how

they may interact with other aspects of stochastic

firing activity. Our paper also considers how the

effect occurs in the same large-scale model used in

Doiron et al. (2001a) in which the input parameter

is the rate of arrival of excitatory inputs, rather
than a constant bias current. This involves extend-

ing the model to include synaptic excitatory

inputs. This part of our study examines what

happens when the noise level automatically in-

creases along with the rate of excitatory inputs (as

expected for Poisson processes), which is even

closer to the physiological situation.

We have emphasized so far that the noise is
mainly related to synaptic activity. In particular,

when a pre-synaptic cell increases its firing rate,

the total conductance of the postsynaptic cell

increases, and thus its membrane time constant

decreases. All but one of the four models studied

in our paper include this effect on the conduc-

tance. It is informative nevertheless to see that the

NID effect does not require that this conductance
change, as will be illustrated in the next section on

the standard LIF model which is still widely used.

On the other hand, we will find that an increase in

the noise intensity along with the level of inhibi-

tory input is necessary for the effect in all models.

The particular physiological context and phe-

nomenon under study will motivate the choice of a

given model. This choice however will constrain
the way in which noise can be made input-

dependent. This issue is nicely discussed in a recent

study of gain control in the presence of synaptic

inputs, where it is argued that one can focus

specifically on two factors, the ratio of inhibition

to excitation, and the total current equal to

excitatory minus inhibitory contributions (Lánský

and Sacerdote, 2001). That study considered
models without synaptic reversal potentials. Our

study focusses strongly on models with synaptic

reversal potentials, and can thus be seen as

complementary to it in many aspects. Also, in a

given experiment, it may be possible and desirable

to vary the bias using intracellular injected current,

and for this reason we include this current in the

total current along with synaptic inputs. For all
models studied here, we discuss the choices avail-

able for varying noise with input, and due to lack

of space, focus on one reasonable choice to study

noisy gain control. Our goal is to determine if and

how each model can exhibit NID, since these

models are used in a variety of contexts on a

variety of cells.

Section 2 analyzes noise-induced divisive inhibi-
tion in the standard LIF model with additive

Gaussian white noise. In Section 3, the effect is

studied in an LIF model with inhibitory synaptic

input and reversal potentials. Section 4 considers

how the effect arises in a simple one-dimensional

model, known as the theta-neuron, that has a

saddle-node bifurcation to periodic firing (para-

digm of type I membrane). Section 5 studies the
effect in a large-scale compartmental model

(Doiron et al., 2001a) in which the f �/I curves

are computed for increasing frequency of excita-

tory inputs, rather than increasing I as in Doiron

et al. (2001a). The paper closes with a discussion of

results and an outlook onto future research.

2. Leaky integrate-and-fire: additive noise

The LIF models focusses simply on the effect of

currents on neuron firing activity. Since LIF

models replace real action potentials by a simple

voltage reset condition following a threshold

crossing, they account for the effects of non-

spiking currents on firings, in contrast to the fast

currents such as the sodium and delayed rectifier
currents that generally underlie action potential

generation. With additive noise, it can be used to

describe the response to a noisy injected current,

or to stochastic synaptic input in a first approx-

imation. This latter approximation is good if the

subthreshold voltage fluctuations are far away
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from inhibitory and excitatory reversal potentials,
or when the synaptic conductance is small com-

pared with the total membrane conductance with-

out synaptic input (see e.g. Koch, 1999, Chapter 1;

Tuckwell, 1989).

The noise of interest here is Gaussian white

noise, following the usual approximation for

synaptic input in the diffusion limit where the

rates me,i of arrival of postsynaptic potentials
(PSPs) go to infinity and their amplitudes ae,i go

to 0. The total driving current can be written as

aeme�/aimi�/I where I is some external applied

current (e.g. via an electrode). In this form, the

equation is of course an approximation since the

input is partly synaptic, yet the synaptic conduc-

tances do not multiply battery terms of the form

V�/Vrev as they normally would; yet the equation
has more ‘biophysical detail’ than the standard

LIF model which lumps all inputs into the

parameter I .

The first passage time density for this Ornstein�/

Uhlenbeck process cannot be solved analytically

except when the steady state coincides with the

threshold. However, it is possible to obtain the

mean FPT in terms of quadratures. One can then
compute f �/I curves from this formalism for

varying degrees of inhibition. More precisely, we

consider

C
dV

dt
��gV �m�sj(t) (2)

where we have written m�/I�/aeme�/aimi, and as

usual the intensity of the Gaussian white noise

sj (t) is s2�/2D . Bulsara et al. (1996) have derived

a relatively simple expression for the first passage

time density (Z ) for this process in terms of m ,

using the method of images (C�/1):

G(t)�
2a e�gtffiffiffiffiffiffiffiffiffiffi

2pa3
p

�
ga�

ȧ

2

�
e�w2

�
ċ

2
[1�F(z)] (3)

where

a(t)�
D

g
(1�e�2gt) (4)

b(t)�
m

g
(1�e�gt) (5)

z�
a � 2a e�gt � b(t)ffiffiffiffiffi

2a
p (6)

w�
a � e�gt � b(t)ffiffiffiffiffi

2a
p (7)

c(t)�
2a

a(t)
[�a�b(t)�ae�gt]e�gt

F(z)�
2ffiffiffi
p

p g
z

0

e�y2

dy (8)

i.e. F (z ) is the error function. This expression is

approximate, and its accuracy increases as the

(deterministic) asymptotic voltage m /g approaches

the threshold value (it is exact when both are equal

to one another). As we explore the behavior of this

model around this boundary between the sub-
threshold and suprathreshold regimes, this ap-

proximation is acceptable.

In computing an f �/I characteristic for this

model with increasing inhibition, we are immedi-

ately confronted with choices, as for all models

studied in our paper (see Introduction). First, what

exactly is varying when the ‘I ’ in ‘f �/I ’ is increas-

ing? One possibility is to assume that only the
injected current I increases, keeping me and mi

constant; curves for different inhibition levels can

then be obtained using different (positive) values

of mi. The noise intensity s2 then does not change

with I , but just stays at some chosen value meant

to represent baseline noise. This somewhat trivial

case will amount to shifting the f �/I curves right-

ward as mi increases. Alternately, one can increase
s along with mi. Yet another possibility is to

increase me instead of I , for a given level of

inhibition mi (and keeping I fixed); the f �/I curve

then reflects how the mean firing rate changes with

increasing frequency of excitatory synaptic inputs.

In that case again, one must decide how s varies

with me and mi.

In this section we conform to the standard
simplified picture in which the f �/I curve for the

LIF is obtained for increasing injected current I ,

for different values of mi (i.e. different levels of

inhibition), keeping me�/0 for all simulations.

Further, s does not increase with I (which is

approximately true for injected current), but does

A. Longtin et al. / BioSystems 67 (2002) 147�/156150



increase with mi (which is true for synaptic

current); we have set s(m)�/ai�mi), as expected

in the diffusion approximation without reversal

potentials (Tuckwell, 1989). As we will see, this

will give us a baseline NID effect for an LIF model

with additive Gaussian white noise. It does not

account for the change in total conductance as mi

changes, as is the case for LIF models without

reversal potentials (Lánský and Sato, 1999). The

dynamics are then:

dV

dt
��gV �I�aimi�s(mi)j(t) (9)

Fig. 1 shows three f �/I curves from this model

for three levels of inhibition (mi). It is seen that the

slope of the f �/I curve in the lower frequency range

decreases as mi increases, i.e. NID is seen. Further,

at higher mean output firing rates, the curves

appear simply shifted to the right as mi increases

(subtractive inhibition). If the noise intensity s2

had not been increased along with the rate of

shunting inhibition mi, the curves would then be

purely shifted versions of one another, without

slope changes (not shown). This increase in s2 is

thus crucial to seeing the NID effect in this model.

Note that the absolute refractory period was set

equal to zero for this model. For a positive

absolute refractory period, subtractive inhibition

at higher rates would still be seen, except that all

the curves would then merge at high input levels.
The lower panel of Fig. 1 shows that slope of the

f �/I curve as a function of the level of inhibition.

One sees a hyperbolic behavior, and the change in

slope in stronger for the value of I above the

deterministic threshold set at I�/1. In fact, the

data can be fitted to a form 1/(x�/a)c (not shown)

where a and c are constants that depend on the

value of input at which the slopes are estimated.

This form is close to pure divisive behavior (1/x),

and it is in this sense that we use the term noise-

induced divisive inhibition in our study. This

applies also to the other models studied in our

paper.

3. Leaky integrate-and-fire: multiplicative noise

We now consider an LIF model where the rate

of excitatory synaptic inputs is increased rather

than I , and where the change in total conductance,

i.e. the change in membrane time constant, result-

ing from this synaptic input is taken into account.

It can be derived under certain assumptions from

Stein’s original model with reversal potentials

(Lánská et al., 1994). It accounts for excitatory

and inhibitory synaptic events, random variations

in the amplitudes of these events, and reversal

potentials. It has been devised in part because the

Fig. 1. Upper panel: Mean firing frequency reciprocal of Eq.

(3) vs. input current from the analytical expression for the mean

firing rate for the LIF model with additive Gaussian white noise

Eq. (2), for three levels of inhibition (legend) mi�/0, 0.1, 0.4; the

corresponding noise levels are D�/0.0, 0.0125, 0.05. The m�/0

case is the control case without inhibition; the corresponding

curve was calculated using the exact expression for the

frequency of the deterministic LIF model. The slope of the

f �/I curve decreases with increasing inhibition over the lower

frequency range, while a subtractive shift is seen at higher

frequencies. Lower panel: Analytically determined slope of the

f �/I curves in the upper panel as a function of the level of

inhibition, for two values of the input current (I�/0.9,

subthreshold, and I�/1.3, suprathreshold). Parameters are

a�/1 (threshold), g�/1, ai�/0.5, me�/0 and s�/ai�mi. The

absolute refractory period is zero, so the curves asymptote to

linear non-saturating behavior.
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diffusion approximation applied to Stein’s model
with reversal potentials has a determistic diffusion

limit, i.e. no noise is left in the diffusion approx-

imation (Lánský and Lánská, 1987). These same

authors have shown that randomness in the

amplitudes, seen experimentally, allows for a noisy

limit. We note that, at present, there does not seem

to be a unique way to arrive at a Langevin

equation in the diffusion approximation of Stein’s
model with reversal potentials and random EPSP

and IPSP amplitudes (Lánská et al., 1994). We use

the version described in Lánská et al. (1994):

dX (t)

dt
��

X

t
�m(VE�X )�n(X �VI)

�s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(VE�X )(X �VI)

p
j(t) (10)

The rate of arrival of EPSP’s is given by l ; the

EPSP amplitude is given by a mean value a plus a

zero-mean random component A , al�/m , and
lE (A2)�/sA

2 where E denotes the expectation

value. The rate of arrival of IPSP’s is given by

v ; the IPSP amplitude is given by a mean value i

plus a zero-mean random component I , iv�/v

with vB/0 since i B/0, and vE (I2)�/sI
2. The noise

intensity in Eq. (10) is thus defined as s2�/sE
2 �/sI

2.

Note the special ‘multiplicative noise’ form for the

diffusion term. Lánský and Lánská (1987) have
derived an analytical expression E (T ) for the

expectation value of the interval T between firings

for this model:

E(T)�
1

b

X�
n�0

(2a=s2)n

(2b=s2 � 1)n

Sn�1
t � yn�1

o

n � 1
(11)

where (a)n �/a (a�/1)(a�/2). . .(a�/n�/1), St �/(S�/

VI)/(VE�/VI), S is the spiking threshold, yo�/

(xo�/VI )/(VE�/VI ), xo is the reset voltage after a

spike, a�/t�1�/m�/v and b�/m�/VI /[t(VE�/VI )].

We have chosen to compute f �/I curves by

computing the reciprocal of E (T ) for increasing

EPSP arrival rate l , for a given rate of IPSP’s v .

Parameters must also satisfy the following inequal-
ity in order that the reversal potentials VE and VI

be inaccessible:

s2B
�2VI

t(VE � VI )
(12)

Assuming for simplicity that s2�/(l�/v )o , one

can compute the variation of the noise intensity

with the rate of EPSP’s. This latter relationship for

s2 can be made to satisfy Eq. (12) and the

parameters used by Lánský and Lánská (1987)

(their ‘example 1’) by using o�/0.0145 (see caption

of Fig. 2). The ‘f �/I ’ curves are shown in Fig. 2 for

three frequencies of arrival of IPSP’s. One clearly

sees the decrease in slope as v increases. Interest-

ingly, for our chosen parameters, the curves do not

shift much to the right with increasing inhibition,

as seen e.g. in Figs. 3 and 4 for two models where

the onset of repetitive firing occurs via a saddle-

node bifurcation (this is based on numerical

evidence for the model in Fig. 4). Rather, the

gain control as seen in the decrease in slope is

actually effective right around this bifurcation

Fig. 2. Upper panel: Mean firing frequency vs. input current

for the LIF model Eq. (10) obtained in the diffusion limit of the

Stein model with reversal potentials and randomly varying

EPSP and IPSP amplitudes; the analytical expression for this

mean rate given by the reciprocal of Eq. (11) was used. The

different levels of inhibition are controlled by the parameter v

shown in the legend. Lower panel: Slope of the curves in the

upper panel as a function of inhibitory rate for two values of l .

Parameters are as in Lánská and Lánský (1994): example 1):

VI �/�/10 mV, VE �/100 mV, S�/10 mV, t�/5.8 ms, i�/�/0.2,

a�/0.02 and the reset voltage is xo�/0. An absolute refractory

period of 5 ms was included in the calculation.
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point. We also note in the lower panel that the

presence of NID depends on the value of the

excitatory input rate l at which the slopes are

calculated. For low l , it is seen here that the slope

goes through a maximum, instead of decaying in a

hyperbolic manner. This maximum underlies the

stochastic resonance effect in the model (Chialvo
et al., 1997; see Section 6).

4. Theta-neuron

LIF models are useful to model the subthres-

hold dynamics, but totally disregard the actual

spiking process. The effect of noise on ionic

models with spiking currents and realistic repolar-

ization mechanisms is thus of interest (see e.g.

Brown et al., 1999 for a recent reference), as are

studies on simplified versions of such ionic models

that preserve some aspect of the spiking and

reporalization dynamics (see e.g. Yu and Lewis,

1989; Longtin 2000 and references therein). One

Fig. 3. Upper panel: Mean firing frequency vs. input current

for the ‘theta-neuron’ model of type I membrane Eq. (13) . We

have used I�/b�/mi and s2�/0.3125mi. Lower panel: Slope of

the functions in the upper panel as a function of inhibitory rate

mi, for two values of the bias b (see legend). Parameters are

mi�/0 (D�/0), mi�/0.2 (D�/0.03125) and mi�/0.4 (D�/0.0625).

Mean firing rates were obtained at each value of b using five

realizations of 2�/105 time steps (one time step equals 0.01 s);

the firing threshold was set at p . Slopes were estimated by first

performing ten point running averages of the data in the upper

panels, and then calculating their slope using a central

difference scheme.

Fig. 4. Upper panel: Mean firing frequency vs. mean rate of

arrival of excitatory synaptic input for the compartment model

of a pyramidal cell (Doiron et al., 2001a), simulated using the

program NEURON. Lower panel: estimated slope of the curves

in the upper panel as a function of inhibitory firing rate. The

slope was estimated using the slope of the chord between the

point where the firing rate becomes non-zero to the point where

it crosses 40 Hz. The input synaptic activity innervates the basal

dendrites through 250 AMPA synapses distributed uniformly

over the basal bush (distal input). The response of these

synapses was modeled as an alpha function (Koch, 1999;

Doiron et al., 2001a) with time constant 1.5 ms, reversal

potential 0 mV (resting is �/70 mV) and gmax�/0.5 nS. The

inhibitory drive was provided by 1000 GABAA synapses

(shunting, i.e. reversal potential is also �/70 mV) spread

uniformly over the entire apical tree (proximal and distal) and

the soma. The mean Poisson rates of these inhibitory synapses

for each curve is indicated in the figure legend. The time

constant for their alpha function was 7 ms, and gmax�/3 nS. All

synapses fired randomly with time intervals generated from an

exponential distribution (Poisson input). An ‘f �/I ’ curve was

generated by varying the rate of excitatory events from 1 to 20

Hz in intervals of 0.5 Hz, keeping the inhibitory rate fixed. Each

mean firing rate was computed using 1000 ms simulation data,

following a (discarded) 100 ms transient.
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such model is the so-called theta-neuron model
(Ermentrout, 1996). It is derived from ionic

models such as the Morris�/Lecar model that

have a transition to repetitive firing via a saddle-

node bifurcation upon increasing a bias additive

current. Its dynamics (on the circle) are governed

by

du

dt
�1�cos u�(1�cos u)(I�sj(t)) (13)

where we have denoted the input to the cell by I�/

sj (t), j (t) being Gaussian white noise as in

Section 2. This noise is meant to represent all

noise sources in the cell, especially synaptic noise

(see also Gutkin and Ermentrout, 1998). It is an
approximation to real synaptic input that accounts

not only for the effect of such input on the mean

bias but also on the total conductance of the cell

(and thus on its time constant). The approxima-

tion gets better as the system approaches the

saddle-node bifurcation, which occurs at I�/0.

Here we study whether this model can exhibit the

NID effect. In our experience so far, we suspect
that it should, since its f �/I curve has a sigmoidal

shape in the presence of noise. Here we assume a

hybrid version where I �/b�/mi, with b a constant

bias that will vary as the abscissa in the f �/I curve,

and mi is the level of inhibition. We use the

relationship for Poisson inputs s2�/cmi where c

is a constant. Interestingly, this model also has a

built-in refractory period, due to the finite time to
go around the (circular) phase space back near the

resting phase (resting voltage) following a spike.

For this model, we have opted to use numerical

simulations to obtain the f �/I curve. Results are

shown in Fig. 3, where it is again seen that the

NID effect is present in this dynamical model, in a

manner similar to the full compartmental model

(that has a saddle-node bifurcation, Doiron et al.,
2001b) studied in the next section.

5. Compartmental model of a pyramidal cell

In the original study of Doiron et al. (2001a),

the NID effect was investigated using LIF models

as well as a large scale compartmental model

simulated using the NEURON package. In the latter
case, the I in the f �/I curve was simply the

magnitude of an injected current. This is relevant

to certain experimental settings, such as slice

preparations. However, in the real system, the

input is the mean rate of arrival of spikes at

synapses, excitatory ones in particular (Berman

and Maler, 1999). As is clear from the previous

sections, an increase in excitatory input will also
result in an increase in noise level. Here we study

the NID effect using the rate of excitatory events

instead of I . This is similar to an f �/I curve, except

that the noise on the input increases as the mean

rate of Poisson inputs increases, and the same is

true for the inhibitory activity (the same was true

for the LIF model with reversal potentials studied

above); this increase better mimicks the biophysi-
cal reality for uncorrelated synaptic inputs.

The model used in this section is the same as the

one in Doiron et al. (2001a). Note that that model

has been studied in great depth recently with

respect to its novel bursting properties (Doiron et

al., 2001b). For simplicity, the main current

responsible for bursting (slowly inactivating K

current) has been removed from our simulations.
The result is a mode that mimicks well many

known features of the real pyramidal cells, includ-

ing the active and passive loading of the soma. The

results are shown in Fig. 4, and are qualitatively

similar to those shown in Doiron et al. (2001a).

Thus the effect is expected to occur in the more

realistic situation where ‘input’ is actually ‘noisy

synaptic input’ whose intensity depends on the
mean synaptic input. Note also that the simulation

fully takes into account the decrease of the

membrane time constant with increasing input

strength.

6. Discussion

We have presented an analysis of the change of
slope of f �/I curves for increasing levels of inhibi-

tion in commonly used neuron models, as well as

in a multicompartment model of a pyramidal cell

with random synaptic input. It was found that the

decrease in slope with increasing inhibition was a

universal feature of all models studied. This was
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true for both models with (Fig. 4) and without
(Figs. 1�/3) actual synaptic input; in fact the LIF

models and the theta-neuron models studied here

were all ‘diffusive’ approximations of neural

dynamics with either injected and/or synaptic

input. Only the full NEURON simulation (Fig. 4)

actually included synaptic responses to discrete

incoming spikes. The observed differences across

models in the noise-induced divisive inhibition
(NID) effect were more of a quantitative nature,

and had most to do with the amount of rightward

shift of the f �/I curve upon increasing inhibition.

This is true despite the fact that in some simula-

tions the f �/I curve was obtained by actually

varying I, while in others, it was obtained by

varying the rate of arrival of EPSP’s (me).

The NID effect was generally more pronounced
for slopes measured above but near the determi-

nistic onset of firing. Also, it was seen only if the

noise level in the stochastic differential equation

was increased along with the inhibition. If the

noise intensity was kept fixed, the slopes of f �/I

curves for different levels of inhibition did not

change significantly (not shown), as found in

Doiron et al. (2001a) with colored noise on an
LIF model. So to first order, the noise changes the

gain (the slope), while inhibition generates a shift

of the input-output function. However, a slope

calculation on a complex model (Fig. 4) or on

experimental data is more problematic, since the

data are sparser and have inherent fluctuations.

The slope can then be estimated as a chord (see

Fig. 4 legend), which will depend mainly on noise,
but also on the shift.

The similarity of the results in Figs. 3 and 4 also

suggest that the precise bifurcation to repetitive

spiking behavior, which both the compartmental

model and the theta-neuron model share, may

determine some aspect of the effect, such as the

amount of shift. Those figures are also similar to

our earlier results (Doiron et al., 2001a), including
the LIF with additive colored noise; the correla-

tion properties of the noise may thus also influence

aspects such as the shift.

We have used analytical expressions for the

mean firing rate for the LIF models with and

without reversal potentials. It is nevertheless

difficult to obtain analytical insight into the NID

effect, due in great part to the complexity of the
expressions. More analytical work would also be

possible starting from other exact or approximate

expressions for the mean firing rate (see e.g.

Ricciardi, 1977; Tuckwell, 1989; Lánský and

Sacerdote, 2001). The effect will depend quantita-

tively on the input level at which the slope is

estimated, as we have shown.

This slope is an important characteristic for the
encoding of slow subthreshold input signals (Yu

and Lewis, 1989). It can be used to estimate the

linear correlation between an input signal and the

firing rate when the signal time scales are slower

than the slowest neuron time scale (Chialvo et al.,

1997). In fact, the range of input currents over

which NID is seen overlaps the subthreshold

regime where stochastic resonance (SR) occurs.
For slow input signals to the LIF model, this effect

is related to a maximization of this slope with

increasing noise (Longtin, 2000; Chialvo et al.,

1997). It is worth studying how NID affects the

‘optimal noise’ from the SR point of view. We

expect that the slope of the f �/I curve can in some

cases still go through a maximum as a function of

noise intensity; this is clearly seen in Fig. 2. Our
study of noise-induced gain control, in concert

with recent studies of noise-coded signals (i.e. of

coding signals into both drift and diffusion terms

of Langevin equations*/Lindner and Schi-

mansky-Geier, 2001; Lánský and Sacerdote,

2001; Silberberg et al., 2002 in preperation), point

to the necessity of properly identifying the neuro-

nal input signals and control signals and the
behavior of their means and variances before

reaching conclusions about signal scaling, thresh-

olding and amplification.

It has recently been shown that the response of

the firing rate of a neuron to an increase in the

intensity of the noisy input is instantaneous,

because the probability flux at the threshold is

directly proportional to the noise intensity (Silber-
berg et al., 2002 in preperation; Lindner and

Schimansky-Geier, 2001). This means that the f �/

I characteristic can adjust itself instantaneously to

changes in the intensity of stochastic processes

driving the membrane potential. As a conse-

quence, one can expect that the noise-induced

divisive gain control discussed here and elsewhere
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(Doiron et al., 2001a; Chance et al., 2002) can
operate virtually in real time, in the sense that the

slope changes ought to rapidly follow the changes

in the amount of inhibition received by the cell. In

other words, a time-varying inhibition will result in

a time-varying gain control. This is expected to be

the case in particular in circuits where the inhibi-

tory input is actually proportional to the firing

activity of the cell performing the gain control.
Such feedback is ubiquitous in the nervous system,

and is present for example in the pyramidal cells of

the weakly electric fish Apteronotus Leptor-

hynchus (Berman and Maler, 1999). Our future

work will consider the joint effect of NID and

feedback in the presence of both excitatory and

inhibitory inputs.
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Lánský, P., Sato, S., 1999. The stochastic diffusion models of

nerve membrane depolarizations and interspike interval

generation. J. Periph. Nerv. Syst. 4, 27�/42.
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