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Abstract. We recorded the electric organ discharges of
resting Gymnotus carapo specimens. We analyzed the
time series formed by the sequence of interdischarge
intervals. Nonlinear prediction, false nearest neighbor
analyses, and comparison between the performance of
nonlinear and linear autoregressive models fitted to the
data indicated that nonlinear correlations between
intervals were absent, or were present to a minor extent
only. Following these analyses, we showed that linear
autoregressive models with combined Gaussian and shot
noise reproduced the variability and correlations of the
resting discharge pattern. We discuss the implications of
our findings for the mechanisms underlying the timing of
electric organ discharge generation. We also argue that
autoregressive models can be used to evaluate the
changes arising during a wide variety of behaviors, such
as the modification in the discharge intervals during
interaction between fish pairs.

1 Introduction

The fish Gymnotus carapo emits brief electric pulses in
water. These pulses are produced by the electric organ, a
biological “battery” commanded by a neuronal pace-
maker located in the hindbrain. The electric organ
discharge (EOD) consists of such pulses separated by
comparatively longer intervals of silence (for review, see
Bastian 1996). In resting Gymnotus carapo, the duration
of the inter-EOD intervals displays low variability in the
absence of stimulation (coefficient of variation ranging
from 0.01 to 0.03). This regularity is intermediate
between the highly regular EOD of South American
wave-type species and the very irregular EOD of African
mormyrids (Bullock 1969; Russell et al. 1974). The
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purpose of our study was to qualitatively and quanti-
tatively analyze the resting discharge train in Gymnotus
carapo.

The EOD of Gymnotus carapo is controlled by the
electromotor pathway which subserves the coordination
of the electric organ activation (for review, see Lorenzo
1990; Caputi 1999). Its pacemaker nucleus activates a
group of relay neurons. These excite the spinal electro-
motorneurons, which in turn activate the electrocytes of
the electric organ. Our companion study of Gymmnotus
carapo (Capurro et al. 1999b) has revealed that the
variability of delay intervals between pacemaker dis-
charges and their associated EOD pulses is one order of
magnitude smaller than the resting variability of either
the pacemaker or the EOD intervals. Further, the fluc-
tuations of this delay series are uncorrelated, and the
linear correlation between pacemaker and EOD interval
series is 0.99, even during large interval decreases during
“novelty responses’ (NRs). A major consequence of this
finding is that the variability in the inter-EOD intervals,
and in particular its serial correlation, closely reflect
those of the pacemaker. This implies that the inter-EOD
intervals recorded in water provide a “low distortion
window” for observing the intervals between pacemaker
discharges, and that a statistical model for one can be
used for the other.

The pacemaker nucleus consists of approximately 70—
100 neurons. The field potential that they produce lasts
around 1.2 ms. Interestingly, an intracellular spike lasts
around 2 ms (Bennett et al. 1967; Lorenzo 1990), sug-
gesting a high degree of synchronization between the
neurons. It is thought that their strong electrical cou-
pling to one another allows them to act as one large
single neuron, or ‘“‘syncitium”, with several electrotonic
compartments, each having its own axon (Bennett et al.
1967). The ionic currents underlying pacemaker activity
has been studied in a related species (Dye 1991), but not
yet in Gymnotus carapo.

In the wave-type fish Eigenmannia and Apteronotus,
the pacemaker receives input from a few hundred neu-
rons in the diencephalic pre-pacemaker structures. Some
of these neurons fire at rest, and their changes in firing
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rate mediate the jamming avoidance behavior (Heili-
genberg 1991). The pre-pacemaker neurons receive input
from several higher-order sensory nuclei as well as from
motor systems and forebrain structures. In Gymmnotus
carapo, pre-pacemaker neurons have not yet been iden-
tified, although preliminary results (D. Lorenzo, per-
sonal communication) have found two small groups of
neurons retrogradely labeled after injection of biocytine
in the pacemaker nucleus, as in Eigenmannia. Studying
the pre-pacemaker structures may thus provide the key
to the origin of inter-EOD interval variability.

Previous studies of the inter-EOD intervals variability
have dealt mainly with the mean and standard deviation
of the intervals, as well as with the shape of the interval
histogram (Bullock 1969; Westby 1975; Kramer 1990;
Capurro 1994; Moortgat et al. 1998; Capurro et al.
1999a). We take these analyses further in the case of
Gymnotus carapo, by formulating a statistical model that
accounts for the correlation between successive intervals.
More precisely, nonlinear local interval prediction
(Longtin 1993; Schiff et al. 1994), false nearest-neighbor
analysis (Kennel et al. 1992), and a systematic compar-
ison between the performance of fitted nonlinear and
linear autoregressive (AR) models (Barahona and Poon
1996) reveal that the correlations in the data are essen-
tially linear.

AR models are finite-order parametric models used to
parsimoniously “describe’ the linear temporal proper-
ties of time series in many disciplines, since the model
parameters determine the autocorrelation function.
These models are linear difference equations relating the
“state” at time n (here: the nth interval fluctuation) to
a finite number of previous states. They incorporate a
zero-mean noise term that assumes a different value at
each n; successive values of this noise are uncorrelated
(““white noise”) and distributed identically, usually in a
Gaussian manner. Examples of the use of AR models in
biological systems can be found in the analysis of elec-
trophysiological data, in particular EEG measurements
(see, e.g., Gersh 1970; Franaszczuk et al. 1985). Multi-
variate AR time series models were also used in the ki-
nematic analysis of antennal scanning movements in two
species of millipede (Giszter et al. 1984), in measuring
different levels of synchronization of observed activities
between channels (Fukunishi and Murai 1995; Fran-
aszczuk and Bergey 1999), in detecting directionality of
neural interactions (Bernasconi and Koenig 1999), and
in parametric spectral analysis of cortical event-related
potentials (Ding et al. 2000).

Our study shows that linear ARs generally provide
better one-step prediction than nonlinear ARs for our
data, and further, that linear ARs with shot noise (as
well as the usual Gaussian white noise) provide a highly
satisfactory model of EOD variability. A shot noise
consists of impulses acting at discrete points in time. It is
an idealization of physical processes producing very lo-
calized effects in time. For instance, such perturbations
of an AR model were used for the detection of discrete
secretory pulses of luteinizing hormone, involved in
the control and disorders of reproductive functions
(Thomas et al. 1992). In our study they are probably

related to spikes or fast changes in the spiking rate of
pre-pacemaker neurons (see below).

AR models are particularly useful when no other
physically-based model is available. For example, there
exists no biophysical model of the pacemaker and its
synaptic inputs in Gymnotus carapo. AR modeling can
then guide physical modeling, e.g., by helping to choose
between different classes of physical models (e.g., non-
linear deterministic or linear stochastic). Also, EOD
intervals generated by any candidate biophysical model
should behave like the data, with respect to linear and
nonlinear time series statistics.

The study of the resting discharge regime is thus a
prerequisite of biophysical modeling studies. It is also
required to quantitatively analyze changes in EOD
variability during specific behaviors, which can be de-
scribed only in comparison to the resting variability
pattern. For example, in Gymnotus carapo, EOD vari-
ability increases due to shortening of some intervals: (1)
in response to sensory stimulation, i.e., the NR (Bullock
1969), (2) after pharmacological treatments with sero-
tonergic agents (Capurro et al. 1994), (3) during the
interaction between two fish (Capurro et al. 1999a), (4)
during active phases of the circadian cycle (Black-Cle-
worth 1970), (5) during the reproductive social behavior
(for review, see Hagedorn 1986), and (6) during the
escape response (Falconi 1997). Statistical models of the
resting discharge can also be used in simulation studies
of these behaviors (e.g., Capurro et al. 1998, 1999a).

2 Experimental recordings

Five specimens of Gymnotus carapo, with lengths in the
range 7-10 cm, were gathered from Laguna del Sauce, a
lake in Departamento de Maldonado in southeastern
Uruguay. The fish were placed in separate tanks. Each
tank contained a plastic tube that was open at both ends,
with carbon electrodes to record the EOD. The tube was
the preferred position of the fish during most of the light
phase (which is the resting phase) of the circadian cycle,
so that no constraint was necessary to make the animal
enter the tube or remain in it. All experimental
procedures were performed during the light phase of
the circadian cycle, when the variability in the duration
of the intervals is lowest. The voltage of the EOD was
digitally recorded at equal time intervals of 0.05
milliseconds (i.e., sample frequency of 20 kHz). From
these data, a file was created that contained two
columns: one for the discharge time, and the other for
the EOD interval ending in that discharge time.

The starting point of our analysis is the time series of
the EOD interval sequence from which the mean EOD
interval was subtracted. The resulting sequence is de-
noted throughout this paper as I, >, ... Iy. Thus, when
we refer to the EOD interval sequence or time series, we
refer to the sequence of variations of the intervals
around their mean value. Since novel stimuli, such as
weak mechanical vibrations or electric fields, as well as
small movements of the fish induce transient frequency
increases in the EOD (Capurro et al. 1994), we checked



visually that the fish were at rest during recordings, and
that even small movements of the fins were absent.
Furthermore, the recordings were done in a silent room
with no changes in the lighting level, and used an antivi-
bration table. Digital recordings that were contaminated
by electric fields due to external sources were discarded.

3 Analysis methods

The time series and its autocorrelation function are first
inspected visually. Then we assess whether the fluctua-
tions have a deterministic component or whether they are
predominantly stochastic (see Grassberger et al. for a
review). This is achieved using nonlinear prediction
(Sect. 3.1) and false nearest neighbor analysis (Sect. 3.2),
as well as an approach based upon the comparison of
best fitted linear and nonlinear ARs (Sect. 3.3). Follow-
ing these analyses, we develop a statistical model for the
sequence of inter-EOD intervals.

3.1 Nonlinear prediction

The first step of the nonlinear prediction algorithm
(Farmer and Sidorowich 1987; Sauer 1994) is to
construct an m-dimensional delayed embedding space
containing vectors of the form ¥, = (I, ly—c, In—2¢, - - -
I_(m-1):), where I; is the kth interval in the sequence
Li,...,Iy, and 7t is the embedding delay, i.e., the
separation in time of the intervals used for each
coordinate. 7 is chosen to keep these coordinates as
“independent” as possible. We present results for
7 =40, for which the autocorrelation of intervals has
decayed significantly. We find qualitatively similar
results for t = 1, which assesses neighbors and predict-
ability on a finer time scale. For each X,, we identify f
nearest neighbors Xp = Ly Dy - dpy 1)
j=1,...,8; we choose § = 10. Nearest neighbors close
to X, in time are omitted. Finally, the predicted interval
fn 1s computed as the average of the first components of
the X4 1, i.€.,

B
=53 b (1
=

The prediction error corresponding to f, is thus
the difference f, — 1,1, where [, is the actual value of
the next interval in the sequence of intervals. For the
detection of nonlinearities, a normalized prediction error
(NPE) is computed by first averaging the squares of all
the prediction errors (f — I )2 over the whole data set, and
then dividing this result by the average error incurred by
predicting the mean of the interval sequence, I:

2 71/2
NPE — l((fn ~ ) >] |
(= 51))

An NPE value close to zero signifies that there is
predictability in the data; a value near one signifies that

(2)
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there is little predictability, and one can do just as well
by forecasting the mean /. This NPE is calculated as a
function of the embedding dimension m, i.e., of the
number of intervals used to identify neighbors and make
predictions. This is because nonlinear structure in the
data is not necessarily visible in a low-dimensional space
where trajectories may intersect (i.e., the time evolution
is not unique).

Since linear correlations in the data can also yield
values of NPE less than one, it is crucial to compare
nonlinear prediction results for the raw data with those
for surrogate data sets (Theiler et al. 1992), i.e.,
stochastic processes having similar linear correlations as
the raw data. If results for the raw data overlap those for
various surrogate sets, one cannot make a case for
nonlinearity in the dynamics.

Here we have generated surrogates using AR models
for the sequence I;,1...,1,,... — see also Farmer and
Sidorowich (1987) and Casdagli (1992), in the context of
ordinary time series. These models are of the form:

Ly = plln + p21n71 + p3]n72 +eee pplnf(pfl) + oWt
(3)

where the W, are independent, identically distributed,
truncated, and centered Gaussian random variables, ¢ is
the noise amplitude, and the coefficients p; control the
level of correlation. To determine the AR model for the
data, we first estimated the first twenty autocorrelation
coefficients of the time series using the Yule-Walker
algorithm (Kay 1988). Subsequently, we estimated the
coefficients of AR models of order one to ten by
applying the Levinson-Durbin algorithm (Kay 1988).
These algorithms are described in Appendix A.

Residuals — the difference between the one-step pre-
diction of the AR model and the data — were computed
for each of these models. The mean square error (i.c.,
mean residual) decreased as the order increased, until it
reached a minimum. We selected the value of p at the
first minimum of the mean square error as the order of
the AR model for the data. We checked in all cases that
the Akaike information criterion (Kay 1988) also
reached its first minimum at the same value of p. The
AR models were then used to generate surrogate data
sets that captured the linear behavior of the data. Our
method for generating surrogates contrasts with the
common approach for time series based on Fourier
transform phase-randomization procedures (Theiler
et al. 1992).

3.2 False nearest-neighbor analysis

The analysis of the previous section was complemented
by false nearest-neighbor analysis, which assesses how
neighbors in the reconstructed phase space behave as the
dimension of that space is increased (Kennel et al. 1992).
For mainly deterministic nonlinear systems (i.e., those
with low noise), neighbors are true neighbors if they
remain neighbors as the embedding dimension m
increases. Therefore, in such systems the percentage of
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false nearest neighbors decreases near zero and remains
there as m increases. Data generated by stochastic
processes usually fill in the phase space differently, and
the dependence of the percentage of false nearest
neighbors on m can then be different from that above.

3.3 Autoregressive analysis

We further search for nonlinearity by using a technique
that is particularly effective for time series heavily
contaminated with noise and which, furthermore, di-
rectly compares the performance of linear AR models
with nonlinear ones (Barahona and Poon 1996). This
approach uses nonlinear autoregressive (NAR) models
of the form

Ir(l;alc =po+ Pl + -+ pplap + Pp+11371

+ ppiodp-tly2 + -+ /’Mljfp + oW, (4)
M

= Z PmZm(n) + oW, (5)
m=0

where {z,,(n)} is composed of all the distinct product
combinations of the reconstructed p-dimensional state-
space coordinates (/,_1,7,—2,...,1,—,) up to degree d,
the W,’s are independent and identically distributed
Gaussian random variables, and o is the noise standard
deviation.

The basic idea is to compare the best linear model
(d = 1) and nonlinear model (d > 1) for each data set.
The best linear model is obtained by searching for the
value of p that gives the first minimum of the Akaike
information criterion with d = 1. Repeating this proce-
dure for values of d > 1 yields the best nonlinear model.
For each data set and each value of d and p, we esti-
mated the AR and NAR coefficients p; using Koren-
berg’s fast orthogonal algorithm (Korenberg 1988). This
algorithm is described in Appendix A.

For each of the resulting models, the residuals were
computed and the standard deviations of each of the
series of residuals were estimated. The presence of non-
linear determinism is established when the best nonlinear
model is more predictive than the best linear model, i.¢.,
oNAR 18 significantly smaller than oag, where onar and
oar are the standard deviations of the residuals of the
best NAR and best AR, respectively. Practically, we
compared the variances 6% ,r and o3y using the non-
parametric squared ranks test for variances (Conover
1980), which is described in Appendix A. We want to test
the null hypothesis that {W,},p and {W,}yar — the re-
sidual series of, respectively, the best AR and best NAR
models — are identically distributed except for possibly
different means, and the alternative hypothesis being
03ar < 0agr- The null hypothesis is rejected at the level
of significance « if the test statistic Uy, is greater than its
(1 — a)th quantile, denoted here as U,,.

3.3.1 Linear autoregressive plus innovational outlier model.
The observation of a given time series may sometimes be
affected by unusual events or disturbances, such as

environmental fluctuations or sudden changes in a
physical system. Such unusual observations may be
referred to as outliers. To account for the presence of
outliers in the data, we consider that instead of (5), the
data can be modeled by a linear AR subject to a
combination of both Gaussian and shot noise. The
model is of the form:

P k

I, =po+ Z ol + Z a,PnT’ + oW, (6)

r=1 r=1

where Pl represents an innovational outlier (10) equal
to 1 if n=T,, and equal to 0 if n # T,; k is the total
number of outliers in the series, and a, is the amplitude
of the rth outlier. To fit this (AR + I10) model to the
data, i.e., to estimate the parameters, we follow the
scheme of Box et al. (1994), which is described in
Appendix A. To detect the timing of the outliers, the
model is first estimated assuming that no outliers are
present. The residuals are computed and the maximum
of their absolute values is obtained. If this maximum is
larger than three standard deviations, then it is an
outlier and the time of occurrence is recorded. A new
seriecs of residuals is then obtained by setting the
maximum value to zero, and the standard deviation is
re-estimated. This procedure is repeated until the
maximum value of the residual series is less than three
times the standard deviation. After all the outliers are
detected, the coefficients in (6) are re-estimated using fast
Korenberg algorithm. A revised set of residuals is
obtained using this new set of coefficients. The same
iterative procedure described above is applied to revised
residual series until no new outliers are detected.

The resulting AR + IO models were compared to the
best AR models as well as to the best NAR models.
Comparisons based on the one-step prediction perfor-
mance of the models were performed. The nonpara-
metric squared ranks test for variances is used to test
whether the best NAR models are performing signifi-
cantly better than the AR + IO models. Furthermore,
we tested whether the residuals for the best fit AR and
AR 4+ 10 form a sequence of independent Gaussian
random variables. To this end, we estimated the first one
hundred autocorrelation coefficients of the residuals,
and the Ljung and Box statistics (see Appendix A) was
used to test for the lack-of-fit of the model (Ljung and
Box 1978). The standard deviations of the residuals of
the best fit ARs were compared to those of the AR + 10
models. An extensive description of the methods used in
this section can be found in Bagarinao (2000).

4 Results
4.1 Time series and autocorrelation function

The voltage versus time of the EOD of a Gymnotus
carapo specimen recorded in water is shown in Fig. 1A
and B. The high regularity of the train can be observed
in Fig. 1A, while the typical EOD waveform of the
species is depicted in Fig. 1B. Figure 1C shows an
example of the sequence of inter-EOD intervals. Despite
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Fig. 1. A Electric organ dis-
charge (EOD) voltage vs time
(recorded in water with the pos-
itive electrode near the head of
the fish and the negative elec-
trode near its tail). B Same as A,
but with a more expanded time
scale to appreciate the multi-
phasic EOD waveform, which is
a taxonomic feature of Gymno-
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tus carapo. C Time series of the
inter-EOD intervals of a resting
Gymnotus carapo, 40 s of re-
cording of fish 1. D Autocorre-
lation function of the time series
shown in C (circles with lines),
autocorrelation function of one
realization of the linear autore-
gressive AR model fitted to the
series in C (solid line) and aver-
aged autocorrelation function of
1000 realizations of the same AR
model (dotted line). The AR
coeflicients in this case were

p; = 0.667790, p, = 0.103294,
p3 = 0.305663, p, = —0.029653,
ps = —0.039228,
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the regular aspect of the train shown in Fig. 1A, the
variability of the intervals is noteworthy. One example
of the autocorrelation function of the variability is
shown in Fig. 1D. Its decay is slow, usually reaching 0.5
in 15-100 EOD cycles, depending on the fish.

4.2 Results of the nonlinear prediction analysis

The results of our NPE analysis for one-step-ahead
prediction are shown in Fig. 2. The error increases
naturally with the prediction time (not shown), and with
embedding dimension m. The fact that the NPE values
are significantly less than one suggests some predictabil-
ity in the data, since it is possible to do better than
forecasting the mean.

The results for five surrogate data sets generated from
the AR model fitted to the respective data sets (Eq. 3)
are also shown in Fig. 2 for the corresponding values of
m. The order p was between four and seven in all cases.
The AR model for each data set is given in Table 1. It is
important to perform the analysis for more than one
surrogate data set for each raw data set, because these
sets are stochastic by nature (each one uses a different
sequence of pseudorandom numbers), and any statistic
calculated from them will have some variation about a
mean. Comparison of the NPEs for the surrogates with
those for the corresponding raw data sets shows that — in
all cases — there is some significant overlap between the
raw and surrogate NPE values. We thus conclude (see,
e.g., Theiler et al. 1992) that we cannot reject the null
hypothesis that the nonlinear predictability is in fact due
to the linear correlations in the data. In other words,

200 300 400 500

Order

ps = —0.014113, and
p7 = —0.043400

EOD fluctuations or ‘‘jitter” about their mean periodic
motion are likely to be due to linearly correlated noise,
rather than to some deterministic property such as
chaotic dynamics. Our results cannot exclude the pos-
sibility of noise-perturbed chaotic patterns or periodic
phase-locked patterns with noise. The key point is that
when there is a minor indication of nonlinearity (as in
Fig. 2C and D), this property does not endow the data
with much more predictability than the linear data
properties do alone; thus, if present, nonlinear dynamics
are likely to be only a minor component of the
dynamics. Our results are qualitatively similar for an
embedding delay t = 1; NPE values are then relatively
constant across embedding dimensions (data not
shown).

The percentage of false nearest neighbors was found
to remain near zero for m > 4 for all data sets (data not
shown), for both embedding delays of 7 =40 and 7 = 1.
This suggests that some nonlinear structure may be
present for these data. However, our surrogate data sets
also have similar behavior. This is presumably due to the
very long-lived linear correlations in these data sets.
Thus, the false nearest-neighbor analysis, corroborates
the results of the NPE analysis, in that there are no
significant differences between the linear surrogates and
the data.

4.3 Results of the autoregressive analysis
As the NPE and false nearest-neighbor analyses did not

detect significant differences between data and surrogat-
es, we proceed further by comparing the performance of
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Table 1. Coefficients of the -
surrogate ARs Fish P1 1% P3 P4 Ps Pe P71
Fish 1 0.806564  0.127666 0.164781 —-0.066841  —0.034220
Fish 2 0.539676  0.315605 0.252485 —-0.056097  —-0.022186  —0.046117 —0.003731
Fish 3 0.544062  0.275485 0.250865  —0.006365 0.013795  -0.067874 —0.024061
Fish 4 0.800585  0.010637 0.166458 0.003430
Fish 5 1.001973  0.051346  —0.009777 —0.063952 0.032197 0.005926 —0.045951

Table 2. Comparison of the best AR and the best NAR model.
oar 18 the SD of the residuals of the AR model, onar is the SD of
the residuals of the best NAR model, U, represents the estimated
squared ranks statistics, and Upgs is the value of U at the 0.05
significance level

Fish OAR ONAR Ucale Uo.05
Fish 1 0.133 0.125 1.766 1.645
Fish 2 0.115 0.113 0.665 1.645
Fish 3 0.192 0.185 0.876 1.645
Fish 4 0.289 0.283 0.428 1.645
Fish 5 0.171 0.144 3.438 1.645

linear AR models with nonlinear ones. These results are
summarized in Table 2. The U values indicate that the
nonlinear models are not significantly better than the
linear ones for fish 2, 3, and 4. This agrees with the NPE
and the false nearest-neighbor analyses. Surprisingly, for
fish 1 and 5, the U test indicates that the NAR is a better

one-step predictor than the AR. This seems to contradict
the results of the NPE and false nearest-neighbor
analyses. However, in the following, we show that the
reason for this apparent discrepancy is not the presence
of nonlinearities that went undetected in the previous
methods, but rather it is due to the fact that the
assumption about the noise in the AR models is not
appropriate.

To establish this latter point, we consider — instead of
(5) — that the data can be best modeled by a linear AR
subject to a combination of Gaussian and shot noise
(AR 4+ 10; see Eq. 6). Tables 3 and 4 summarize the
results of the comparison between AR 4+ 10 and NAR
models and AR + 10 and AR models, respectively. The
U values indicate that the NARs are not significantly
better than the AR + IOs. In fact, for fish 5, which has
the largest number of outliers, the performance of the
AR + IO model as a one-step predictor is significantly
better than the best NAR model. Furthermore, the



Table 3. Comparison of the AR+IO and the best NAR model.
aar+10 18 the SD of the residuals of the AR + 10 model

Fish GAR+IO ONAR Ucalc Uo.05
Fish 1 0.124 0.125 0.780 1.645
Fish 2 0.106 0.113 -0.711 1.645
Fish 3 0.180 0.185 -0.092 1.645
Fish 4 0.262 0.283 -1.024 1.645
Fish 5 0.132 0.144 -0.242 1.645

residual time series of the ARs with 10s are completely
free of outliers, as compared to that of the AR alone.
These result in a significant decrease of the standard de-
viations of the residuals. Furthermore, for the AR + IO
model, all lack-of-fit tests of the autocorrelation of the
residuals were satisfactory. For the standard ARs, this
was not the case for fish 3. These results show that the
AR + 10s perform better or as well as the best NARs and
the best ARs. Furthermore, the residuals of the
AR + 10s, in contrast with some of those of the best ARs
and best NARs, successfully pass all the tests pertaining
to their independence and Gaussian distribution. This is
illustrated in Fig. 3, which shows the residuals of the best
fit AR, NAR, and AR + IO models for fish 5. The AR
coefficients of the final models are given in Table 5.

We would like to remark that the oscillations that
have variable amplitude and regularity present in the
autocorrelation function of the experimental data (cir-
cles with lines in Fig. 1D), are not incompatible with
linear AR models. As illustrated by the solid line in
Fig. 1D, similar oscillations were also obtained when
the autocorrelation coefficients were estimated from the
same length of data obtained from the simulations of
the AR model (fitted to the original data). Given that
such marked oscillations are absent from the averaged
autocorrelation function of 1000 realizations of AR
simulations (dotted line), their presence can be attrib-
uted to the sample path variability resulting from the
finite length of the data used for the estimation of the
autocorrelation coefficients (the bigger oscillations ap-
peared in the autocorrelation function of fish 1, while in
the other fish they were present to a lesser extent). This
is also supported by the Ljung and Box test performed
on the residuals of the fish data, which indicate that the
sequence of residuals is compatible with independent
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realizations of a Gaussian random variable, so that
henceforth the data can be accurately modeled by AR
models.

In summary, our analysis indicates that the EOD
interval fluctuations can be essentially modeled by a
linear AR, with sudden jumps. The present data do not
allow the development of a statistical model for occur-
rence times and amplitudes of these jumps; this will be
dealt with in a future study.

5 Discussion

We studied the fluctuations of the EOD intervals of the
electric fish Gymnotus carapo in resting conditions, and
we presented a statistical model for the sequence of
intervals observed. The analysis of the correlations in the
inter-EOD intervals constitutes, to our knowledge, the
first study that qualitatively and quantitatively describes
the higher-order statistics of the EOD intervals in
electric fish. Indeed previous studies have mainly
concentrated on the evaluation and comparisons of the
means, standard deviations, and coefficient of variation
of the inter-EOD intervals.

Our analysis shows that a linear autoregressive model
perturbed by both white Gaussian noise and shot noise
is the most satisfactory model for the data. This model is
the only one that fits all the data, in the sense that the
resulting sequence of residuals are independent and have
a Gaussian distribution in all cases. A remarkable
property of this model is that most of the time it cor-
responds to the standard AR, with occasional interval
shortening caused by the shot noise. More precisely,
segments of the data devoid of outliers (of 2040 dura-
tion) were systematically analyzed and were found to be
satisfactorily modeled by the standard AR with Gauss-
ian white noise (data not shown).

Our recording method allows effective non-invasive
monitoring of the fluctuations of the pacemaker nucleus,
and indirectly of the pre-pacemaker nucleus. In light of
our current knowledge of mechanisms of pacemaker
variability and of our results, here we discuss the
significance of linear versus nonlinear correlations,
comment on the functional role of noise in neural sys-
tems, and provide an outlook into future directions of
research.

Table 4. Comparison of the

AR and the AR +10 models. N Fish Model N p g 0 Ocrit DSD (%) NO
is the number of residuals used . AR 2055 5 0.133 87.847 129.97 16
in the analysis, @ is the esti- AR+I0 2055 5  0.124 93.571 129.97 7.1 0
mated Ljung and Box statistics, ) ) ) )
Ouit gives the value of Q at the  Fish 2 AR 1940 6 0.115 98.759 128.80 21
0.01 significance level, DSD is AR +1I0 1940 6 0.106 97.021 128.80 7.8 0
éﬁ‘;ﬂfﬁfﬁfg&’; ;};Z dsfsndard Fish 3 AR 1875 6 0192 133123  128.80 13
16 AR +10 1875 7 0.180 126.647 127.63 6.2 0
DSD = (64r — 04r+10)/ 0 ars
and NO is the number of Fish 4 AR 1775 3 0.289 100.931 132.31 21
outliers present in the residual AR +10 1775 3 0.262 98.139 132.31 9.3 0
series fish 5 AR 1587 4 0.171 86.409 131.14 27
AR+10 1587 7 0.132 100.678 127.63 28 0
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Fig. 3A-C. Residuals of fish 5 models: A AR; B nonlinear autore-

gressive (NAR); C linear autoregressive plus innovational outlier
(AR +10)

Table 5. AR coefficients of the final models

5.1 Linear and nonlinear correlations

Nonlinearity is the rule rather than the exception in
biological systems, especially for pacemakers (e.g., Glass
and Mackey 1988; Hayashi and Ishizuka 1992; Longtin
and Racicot 1997a; Segundo et al. 1998). An important
point to realize is that the pacemaker nucleus oscillates
without external periodic input. This system is then
likely to be in a autonomous limit cycle state, and this is
a nonlinear property. This limit cycle has a mean period
equal to the mean EOD interval, which was subtracted
from our data prior to our analyses. The results of our
analysis do not question this nonlinear behavior.
Rather, they concern the fluctuations around the mean
inter-EOD period, arising from intrinsic and extrinsic
influences on this limit cycle.

We have assessed whether these fluctuations can be
modeled by linear AR processes, or whether further
nonlinear processes are involved. Our analysis reveals
that they are best modeled by linear AR processes with
long-decaying correlation and outliers, i.e., by noise.
Our analysis thus excludes the possibility that the fluc-
tuations arise from strong dynamic nonlinearities, as
would be the case if, for example the oscillation were
chaotic rather than a limit cycle. It is of course possible
that weaker dynamic nonlinearities are at play, and that
the “noise” is in fact an unresolvable (using our meth-
ods) combination of noise and determinism.

The variability of firing in simple neuron models,
measured for example by the coefficient of variation of
firing intervals, is known to depend on a number of
parameters such as the distance between resting poten-
tial and threshold and, for pacemakers, on the precise
dynamical mechanisms underlying periodic spike gen-
eration (see, e.g., Lansky and Sato 1999). There is little
knowledge however on the correlation properties of
interval fluctuations for different models. And to our
knowledge, no models yet account for the long-lived
correlations seen in our pacemaker data. These corre-
lations will depend on the stability of the pacemaker
limit cycle to perturbations. Such issues are currently
under investigation.

5.2 The origin and functional significance
of the variability

To a certain extent the origin of variability may be
separable from that of its potential functional signifi-
cance. Functional implications may however depend on

Fish Po P1 P2 P3 P4 Ps Ps P7

Fish 1 0.000942 0.671543 0.203362 0.237763 —-0.036813 —-0.076328

Fish 2 0.005311 0.491533 0.314534 0.283100 —-0.052195 —-0.008962 —0.048943

Fish 3 0.007252 0.503950 0.287591 0.249927 0.015180 0.024365 -0.071875 —-0.031984
Fish 4 0.012477 0.777074 0.025463 0.176697

Fish 5 0.013912 0.784023 0.089700 0.047697 0.009994 0.090963 0.012050 -0.070122




how sources of variability are modified by behaviorally
relevant stimuli. A strong interaction between experi-
ment, data analysis and theoretical modeling, guided
by the results of the present study, will be key to
understanding these issues.

We know from our previous study (Capurro et al.
1999b) that what is observed in water is already present
in the pacemaker. Our analyses of the EOD train suggest
significant variability and correlations in these pace-
maker discharges. The variability depends on several
factors, which can be divided into two groups: intrinsic
and extrinsic to the pacemaker nucleus. The internal
sources, common to all excitable cells, include conduc-
tance fluctuations, channel noise, thermal fluctuations,
and ionic-pump current fluctuations. The coupling and
resulting synchrony of the pacemaker cells will also af-
fect the expression of these noises. The main extrinsic
source is likely to be synaptic noise arising from the
synaptic release mechanism itself as well as from the
random arrival times of action potentials. One can also
add external electrical fields, and other biological
rhythms such as respiration (Westby 1975).

The extrinsic influence that is likely to have the most
important influence on the correlations of the pace-
maker is its synaptic input from a pre-pacemaker nu-
cleus. It is possible that post-synaptic potentials fit the
time scale corresponding to 3—7 EOD intervals, i.e., the
order of our best AR + OI models (90-210 ms consid-
ering a mean EOD interval of 30 ms). Correlations may
be related to the resting activity of the pre-pacemaker
neurons. Further, shots of noise may be caused by fast
changes in the discharge pattern of these neurons, or by
the activation of one or many pre-pacemaker neurons
that are usually silent under resting conditions (for a
review on pre-pacemaker neurons, see Heiligenberg
1991). Whether these last changes are of the same type as
those induced by novelties in the sensory system remains
an open question that deserves further investigation.
Indeed, the neuronal systems that produce a transient
shortening of intervals in response to environmental
stimuli include the pre-pacemaker neurons. Thus, the
shots may be due to spontaneous variations in their
discharging pattern, or correspond to small NRs due
to very weak environmental stimulus that could have
escaped our experimental controls. This last possibility,
which could reflect the exquisite sensitivity of the fish to
environmental fluctuations (Westby 1975), is more likely
when the IOs occur in trains, because the NR involves
shortening of many intervals. Although most outliers are
isolated (i.e., not in trains) we detected a train of outliers
around interval 1100 of fish 5 (upper panel of Fig. 3),
and the shortening of intervals that caused this train has
the typical time course of a NR (data not shown). The
possible relation between NR and the shots of noise
deserves further investigation.

Synaptic noise in the form of spontaneous release of
synaptic vesicles is not likely to cause the shots, because
the membrane potential of the pacemaker rises in a
smooth way, and reaches the threshold with a high slope
thus making the pacemaker quite robust to such small
perturbations. After a peripheral stimuli the slope of
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the pacemaker increases, producing a shortening of the
intervals (D. Lorenzo, personal communication), in a
similar way to that which occurs with an intracellular
current pulse (Bennett et al. 1967). Thus, in order
to produce a shot of noise, at least one spike in the
pre-pacemaker neurons (spontaneous or induced by
peripheral stimuli) is probably needed. The origin and
statistics of these shots deserve further study, because
they may be related to the changes that occur during
behavior. A final issue is whether correlations are due
mainly to inputs to the pacemaker, or whether they arise
from the response of the pacemaker to noise that is
largely uncorrelated.

5.3 The AR + OI model as a basis for

further behavioral studies

The statistics of the times of occurrence of the shots in
the AR + OI model may vary during different behav-
ioral displays. For example, shots of noise are quite
rare in resting conditions, but not in the active stage of
the circadian cycle. Such models can also provide a
basis for understanding the changes that occur during
other behaviors. For example, the resting discharge
pattern, simulated by an AR model, can be used to
simulate the jamming avoidance response, e.g., by
adding adequate frequency transients to the predicted
intervals (Capurro et al. 1999a). The efficiency of the
transients in preventing jamming (i.e., avoiding simul-
taneous discharges between two EOD trains) may
improve significantly when the actual variability of the
EOD is simulated with our fitted AR models, rather
than with less correlated or uncorrelated noise (Ca-
purro 1999).

5.4 Concluding remarks

The inter-EOD intervals are modulated by pre-pace-
maker neurons that receive input from very wide areas
of the brain. Thus, it seems natural that every behavioral
display, including resting conditions (which is the goal of
the present effort), will be reflected in the correlation
of the inter-EOD intervals. This time series contains
information that can then be used to characterize the
state of the system that produces this signal, since
changes in electroencephalograms or electrocardiograms
are related to the behavioral state of mammals.
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Appendix A: Statistical methods
A.1 Yule—Walker equations

Consider an autoregressive process of order p given by
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Xp = A1Xp_1 + @2Xp2 + -+ ApXy_p + &4 . (Al)
An important relation of the autocorrelation function of
this process is found by multiplying x,_; throughout, to
obtain

Xpn—kXn = A1 Xp—fXp—1 + -+ + ApXp—fXn—p + Xpn—kEn - (A2>
Taking the expectation gives
Ve =@V T @Vt T a4V, s (A3)

where 7y, = E[x,;x,] and El[g,x,—4] =0 when k> 0.
Dividing this equation by y, gives the autocorrelation
function p, satisfying the relation

Pk = A1Pp—1 T Q2P+t APy - (A4)
To get the coefficients a; values from p,, & is substituted
for values 1,...,p in (A4) to form the set of equations

pr = artap+ A app,
pr = aipytax+---+app,

. . (AS)
pp = alpp—l +a2pp—2+'”+ap

where p, =1 and p_, = p,. The above equations are
usually called the Yule—Walker equations, and the Yule—
Walker estimates of the parameters are obtained by
replacing the theoretical autocorrelations p, by the
estimated autocorrelations. The solution of (AS) for
the parameters in terms of the autocorrelations may be
written as

-1
ap 1 P1 P2 Ppai P1
a Pi 1 i Pp— P2
ap Pp-1 Pp—2 Pp-3 " 1 Pp

A.2 Estimation of AR coefficients
by Levinson—Durbin algorithm

The Yule—Walker estimates of the parameters of an
AR(p + 1) model may be obtained when the estimates
for an AR(p) model, fitted to the same time series, are
known. This is given by the following recursive formulas
(Levinson—Durbin algorithm):

ai(p+1) = Ppt1 — Zf:l a./'(p)PpH—j
r 1- Zf:l a;(p)p;

(A7)

aj(p+1) = a;(p) = aps1 (p + 1)aps1-(p)

where the a;(p) values are the known parameters of the
AR(p) model, the a;(p + 1) values are the parameters of
the AR(p+1) model that needs to be computed, and

j=1L2....p.

(A8)

A.3 Korenberg’s fast orthogonal algorithm

This section briefly explains Korenberg’s algorithm that
is used to estimate the coefficients of a nonlinear
autoregressive model given by

yﬁalc = g(Y,,,l; a) + €
=ao+a1Yp—1+ -+ aiyp-a+ ad+1y3_1

+ da2Vn V2 + o auy_y + e (A9)
M
= Z amZm(Ynfl) + €, (AIO)
m=0

where Y, 1 = (Vu—1,Vn-2,- - -, Vu_a) TEPTESENtS a vector in
the reconstructed d-dimensional state space (embedding
space), the functional basis {z,(X)} is composed of all
the distinct combinations of coordinates up to degree k,
d is the delay which also corresponds to the dimension
of the embedding space, €, represents the random
forcing of the system, and M + 1= (k+d)!/(d'k!)
determines the number of coefficients to be computed.

The basic idea is to use auxiliary orthogonal functions
to estimate the model parameters. To do this, the right-
hand side of (A10) is rearranged into a sum of terms that
are mutually orthogonal over the given time series:

g(n;a) = mewm(n) (A1)
m=0

where wy,(n) are orthogonal functions constructed from
the z,(n) using the Gram-Schmidt orthogonalization
procedure

m—1
Wi(n) = zu(n) — Z O Wy (1) (A12)
r=0
where
mr — Zf;l:o Zm(n)wr(n) (A13)

Soolwe(n)]?
The expansion coefficients, b,,, are computed using the
orthogonality of w,(n) and is given by
y _ Taodin(n)

T ebw ()

The main advantage of this formulation is that the

explicit creation of the orthogonal functions wy(n) in
(A12) is unnecessary. Define

(A14)

| &
D(m,r) = N_-i-l,,:o zZm(n)w,(n) (A15)
|- )
Em) = > o) (A16)
n=0
| &
C(m) = N—HZynwm (n) (A17)



Using (A12) and the orthogonality of w,,(n), it can be
shown that these quantities satisfy the following rela-
tions

1 N r—1
D(m,r) =—— zm(n)z-(n) — o D(m, i Al8
() =5y Do)~ 3 Dlmd) (A1)
E(m) = — Y 2 E Al9
(m)—N—H;[Zm(n)] T2 %, E(r) (A19)
1 N m—1
C(m) *m;%ﬂrn(n) - 2 o C(7) (A20)

The above equations can be used to compute D(m,r),
E(m), and C(m) iteratively. o,, and b, can now be
obtained using

B D(m,r)
Ol = E(I") (Azl)
by = S (A22)

E(m)

The original model parameters a,, are determined from
the computed b,, and «,, using the following relations:

M
am = thl/; ) (A23)
where V,, = 1 and
i—1
Vi==Y b, (A24)

fori=m+1,...,.M .

A.4 Nonparametric squared ranks test for variances

Let X7,X5,...,Xy denote the residual series of the best
AR model. Also, let 17, 7Y>,...,Yy denote the residual
series of the best NAR model. To compute Uy, the
series {X;} and {Y;} are first converted to their absolute
deviation from their respective means, that is,
U= |Xi—w| and V=Y — |, where i=1,...,N
and y; and u, are their respective means. The combined
samples are then ranked from 1 to 2N, where N is the
length of each residual series. If a tie occurs among
several values of the absolute deviations, each is assigned
the average of the ranks that would have been assigned
to them had there been no ties. Let R(U;) and R(V;)
denote the ranks and the averaged ranks thus assigned
for the absolute deviations of the two residual series {X;}
and {Y;}. The test statistics is defined as

N
7= R (A25)
=1
if there are no ties. Or,
_NR2
T = TNk (A26)

N2 2N p4 N2 7\ 2
\/2N(2N71) Y R = (R?)
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where

2= {ZWW + Z[sz} (A27)
N N N

SR =DCIRW) 4D R (A28)

if there are ties. Uy is defined as being equal to T if
there are no ties, or equal to 7 if there are ties. The
null hypothesis H, is that X and Y are distributed
identically except for possibly different means, and the
alternative hypothesis H; is that the variance of X is
greater than the variance of Y. One can reject H, at the
level of significance o if U,y is greater than its 1 — ath
quantile.

A.5 Estimation of AR+ 10 model parameters
using the scheme of Box

Let z, denote the underlying time series process which is
free of the impact of outliers, and let ¥, denote the
observed time series. Assume that

P
Zy = E aiZy—i -
i=1

In the presence of observational outliers (additive
outliers), the observed time series can be written as

(A30)

where PI' = 1if n=T or PT =0if n # T is the impulse
indicator at time T, and wy is the corresponding weight.

To detect the timing of the outliers, the following
iterative procedure is used:

(A29)

Y, = wrP! + 2z,

1. Estimate an AR model using the observed time series
{Y,}, that is, Y®c =3 bY, ;.

2. Compute the residuals and the variance using
én =Y, — Y% and 62 = N_' 32V | &2, respectively.

3. For each time n, compute 4, = ¢é,/6,.

4. Compute y; = max,|4,|, where T denotes the time of
the occurrence of the maximum. An outlier occurs at
T if y; > 3. Record the value of T.

5. Set the residual to zero at time 7, i.e., ér = 0. Then,
compute again 6, from the modified residuals.

6. Repeat step 3 using the modified residuals until all
outliers are identified and their timing is recorded.

7. After all the outliers are detected, compute again the
parameters of the model Y= Zjil ij,,T’ +
> biY,_;, where T; denotes the occurrence times of
the K outliers.

8. With the new estimates of the model parameters, steps
1-6 can be repeated to check for the presence of ad-
ditional outliers.

9. The AR +10 model parameters can now be estimated
using the known timing of the outliers by Korenberg’s
algorithm, with P! as an additional term to the
model.
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A.6 Ljung and Box statistics

Consider the residuals of the best AR model:

P
ey =Xy — E aiXy—i .
i=1

It is useful to study the adequacy of the fit by examining
{é,} and, in particular, their autocorrelations

(A31)

> i1 €
n=k+1 En€n—k

N A
Zn:l e%

for k=1,2,...,m. The test statistic Q is given by

=

(A32)

O(F) =N(N +2) zm:(zv .

k=1

(A33)

which for large N would be distributed as Xl2n—p if the
fitted model is appropriate. The values of Q estimated
from the residuals is compared to that of the an_p to
check for the lack of fit of the model used.
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