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ABSTRACT

The pyramidal cells of weakly electric fish respond to environmental broadband electrical stimuli. They have
recently been shown to exhibit oscillations in mean firing rate in response to global stimuli that affect the whole
body simultaneously similar to communication stimuli for these animals. In contrast, for spatially localized
stimuli such as those produced by prey, the firing rate simply fluctuates around a constant mean.? This switch
in coding strategy relies on delayed negative (inhibitory) feedback connections in the neural network. We first
summarize these experimental findings, as well as our mathematical modeling of this effect using a globally-
coupled delayed inhibitory network of leaky integrate-and-fire neurons (LIF’s). Here we study the mechanism of
the transition from oscillatory to non-oscillatory firing states in such networks. This is done using simulations
of a simpler network of LIF’s with current based Gaussian white noise stimuli, rather than conductance based
bandlimited Gaussian stimuli. We focus on the effect of feedback gain, current bias, and stimulus intensity
on the oscillation under global conditions, and see how the decrease of these parameters brings on a response
characteristic of the local case. These simulations are performed for a fixed amount of individual synaptic noise
to each cell. We also show how insights into these results can be obtained from the analysis of stimulus-induced
oscillations in a simpler rate model description of this spatially-extended excitable system.
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1. INTRODUCTION

In order to survive in complex environments organisms must discriminate between sensory inputs with varying
spatiotemporal structure. Weakly electric fish offer a simple case study of this phenomenon, since prey stimuli
are spatially localized (hereafter refered to as local stimuli) whereas communication stimuli are spatially diffuse
(hereafter refered to as global stimuli). In the time-domain, the stimuli of interest are often considered as band-
limited Gaussian noises for simplicity.? It has recently been shown? that the sensory circuitry of one species
of weakly electric fish, Apteronotus Leptorhynchus, can produce two distinct kinds of output firing patterns to
stimuli with Gaussian temporal structure, depending on the local/global categorisation of the spatial aspect of
the stimulus. Local stimuli produce a noisy Poisson-like firing pattern with some mean firing rate and yields a
unimodal inter-spike interval (ISI) probability density. Global stimuli, on the other hand, produce an oscillatory
firing pattern, in which the firing can still be considered noisy, yet the rate clearly oscillates around a mean
value. Futhermore the ISI probability density are distinctly bimodal suggestive of a stochastic burst discharge.
Thus, the neural circuitry of periphery sensory stages can differentially encode global versus local stimuli, and
accordingly, communication versus predation, using the presence/absence of spike train oscillations. This study
focusses on a simplified network model that oscillates in reponse to a spatially global stimuli with Gaussian
spectral characteristics. In contrast to our more detailed model? , here we assume that the global stimulus is
Gaussian white noise, rather than bandlimited Gaussian noise. Further, we assume that the feedback enters
the current balance equation in an additive manner, rather than multiplicative; while this latter form is a
better representation of synaptic input, its multiplicative nature makes the theoretical analysis of the network
dynamics more difficult. Since such an analysis is one of our eventual goals, the present study serves to pinpoint
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the features of the detailed model in? which are key for the observed phenomena. In section II we provide some
background on our recent modelling of the oscillatory coding. Next we introduce a simpler leaky integrate-and-fire
network model, and show how inhibitory feedback gain, intrinsic cell firing rate, and global stimulus intensity
can control the oscillatory behavior of this system in response to a global stimulus. Section III introduces a
further simplified rate description of the network, which allows for mean field theory to be derived. It is shown
that the deterministic mean field undergoes a supercritical Hopf bifurcation as both driving input and feedback
gain are increased. A stochastic forcing of the mean field then shows how a noise-induced oscillation occurs as
a global stimulus intensity grows. Finally section IV gives some concluding remarks.

2. BACKGROUND

In? we show the specific cells that exhibit the aforementioned switch in coding are the pyramidal cells of a
structure known as the electrosensory lateral line lobe (ELL). These cells receives input from the outside world
via an array of electroreceptors in the skin of the fish. ELL pyramidal cells also project to higher brain areas,
but also, importantly, receive feedback input from these areas (for a review see?). This well-characterized
circuitry underlies our recent neural network model which predicted that simple, diffuse, delayed and fast-
acting inhibitory feedback could support the presence of oscillations for global input. This prediction was
experimentaly verified when reversible blockade of feedback inhbition removed oscillatory behavior in response
to communication stimuli.? By ”diffuse delayed feedback” we mean the following. The output of all ELL cells
drives cells in another neuron population; these in turn inhibit indiscrimately all ELL cells after a time delay
representing long range axonal connections and synaptic delays. Our original study used bandlimited Gaussian
white noise input to mimick the temporal characteristics of the physical (electrical) environmental stimuli. Here
we consider a simplified version of such a network in which the stimulus is now Gaussian white noise. Consider
a nonautonomous network of N leaky integrate-and-fire (LIF) neurons coupled via diffuse delayed pulsatile
inhibition. Let the membrane potential of the ith neuron at time t is given by Vi(t). The dynamics of Vi(t)
evolve according to the following stochastic delay differential equation:

d

dt
Vi(t) = −Vi(t) + µi +

√
2Diξi(t) + σsξs(t) − g

N

∑
j

∑
m

α2(t− tjm − τd)eα(t−tjm−τd)Θ(t− tjm − τd) (1)

Eq (??) gives a standard LIF neuron with time measured in units of membrane time constant. A ”spike” occurs
when the voltage Vi reaches an imposed threshold Vth. The spike is recorded as a time tim where m is the spike
number for cell i. We have nondimensionalized Vi to be in units of Vth so that Vth = 1. After a spike occurs Vi

is reset to 0 and remains at 0 for a period τr modeling an absolute refractory period. The excitabilty of each
cell is determined by a bias current term µi; in this study we assume µi = µ for all cells. Each cell has its
internal source of noise, considered here as a zero-mean Gaussian white noise for simplicity (they were Ornstein-
Uhlenbeck processes in our early study?), with standard deviation σi =

√
2Di, and Di is assumed to be the same

for all cells. The cells also receive the environmental stimulus which is also considered as a zero-mean Gaussian
white noise with standard deviation σs =

√
2Ds. In our paper, we study how the oscillations depend on certain

parameters of the system, all the while applying the stimulus noise to all cells, as in the global configuration.
Some of the resulting firing patterns will mimick those seen under local conditions, even though the input is
global throughout our study (i.e. spatially homogeneous). The last term in the model, i.e. the feedback term,
is a sum of alpha functions, each of which is activated τd time units (the feedback delay) after a neuron in the
network has fired. Θ is the standard Heaviside function where Θ(t) = 0 for t < 0 and Θ(t) = 1 for t > 0; this
imposes a causality between LIF spike discharge and synaptic response. The gain of the feedback pathway is set
by the parameter g. Note that this feedback input is the same for all cells, mimicking the all-to-all, or diffuse,
nature of the connectivity. We will use two statistics to assess the presence of oscillations in our network. The
interspike interval probability density (PD) is a first order statistic. From our previous study, we know that
it makes a transition from unimodel for the non-oscillatory case to bimodal in the oscillatory case. The power
spectral density (PSD) of the sum of the spike trains of all neurons, which is a second order statistic, will also be
used. Other studies? use statistics that involve all the neurons in the network, such as network spike histograms
for example. We have used this measure in our previous work? however in the present study we probe network
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activity with statistics from one representative cell in the network. Such an approach is better suited to motivate
future experimental studies since multi-unit recordings are difficult.

3. RESULTS WITH LIF MODEL

In Fig.1, we show the effect of feedback gain g on the network oscillation. Without feedback (open loop), the
neurons lack any influence over one another and thus the spike time statistics as shown by the PSD and PD
are those of a LIF neuron driven by Gaussian white noise of standard deviation

√
2Di + σs. In particular, the

PSD shows no oscillatory behavior in the spike train and the PD is unimodal in character. In contrast, when
g = 100 (closed loop) we have a distinct oscillation in the spike train at approximately 25 Hz and a well-defined
bimodality in the PD. The timescale of the oscillation is naturally sensitive to the exact value of the feedback
delay τd. This case is qualitatively similar to the results shown in? when the LIF network was given a global
stimulus. We note that the mean firing rate of the network increases in the absence of inhibition. This can
be seen by observing the power in the spike train at high frequencies (> 80Hz) and noting that in the limit
of large frequency the PSD is equal to the mean firing rate of the neuron.? In Fig.2, we show the effect of
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Figure 1. Effect of feedback gain. Spike train power spectral density PSD (left) and ISI probability distribution PD
(right) when inhibitory gain is g = 100 (closed loop) and g = 0 (open loop). Other model parameters N = 100, µ = 0.9,
α = 3, τd = 1, τr = 0.1, Di = 0.03, σs = 0.12. We have assumed a membrane time constant of 10 ms. All network
simulations were computed using an Euler-Maruyama scheme with a fixed time step of ∆t = 0.005.

the intrinsic bias current µ on the network oscillation. As µ is reduced from 0.9 to 0.7 the firing rate of the
neuron reduces by about a factor of 2 and interestingly the oscillatory characteristic of the spike train observed
from the PSD and the bimodality of the PD are significantly compromised. Upon further reduction of µ it is
possible to enhance this effect so that the oscillation disappears completely (results not shown). Finally, in Fig.
3 we show the effect of the stimulus intensity σs on the network oscillation. When σs is set to 0 (autonomous
network) the spike train no longer oscillates and the ISI structure is unimodal. The firing rate of the network
also decreases as expected from the significant change in membrane fluctuation when σs = 0. Taken together,
these results show that the potential of the network to respond in an oscillatory manner to a global stimulus
is dependent upon (at least) network connectivity, intrinsic membrane excitabilty, and stimulus characteristics.
The fine structure of these dependencies can be further explored using simulations of our complex stochastic
network model. However, we have found a simple dependence of the oscillation strength on three parameters,
and it is of interest to understand this behavior in an analytically simpler framework that avoids the spiking
nonlinearities of LIF neurons. In particular, the results of Figs. 1-3 motivate a simple rate model? of the network
dynamics where some of these issues can be addressed. This is the focus of the next section.
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Figure 2. Effect of bias current. Spike train power spectra PSD (left) and ISI probability distribution PD (right) when
is µ = 0.9 and µ = 0.7. g = 100 and other parameters are as in figure 1.
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Figure 3. Effect of stimulus intensity. Spike train power spectra density PSD (left) and ISI probability distribution PD
(right) when is σs = 0.12 and σs = 0. g = 100 and other parameters are as in figure 1.

4. RATE MODEL

We now consider a network of N neurons where the dynamics of each neuron is described by a rate model. This
differs from an LIF description in that the representative state variable of each neuron is firing rate rather than
membrane potential. Similar to the LIF network we coupled all cells via a delayed “mean rate” which mimicks
a global inhibitory feedback projecting to all cells. Specifically the dynamics of the firing rate of the ith neuron
at time t, labelled ri(t), is governed by

dri(t)
dt

= −ri(t)
τm

+ µ+
√

2Diξi(t) + σsξs(t)− gG(R(t− τd)) (2)
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R(t) =
1
N

N∑
i=1

ri(t) (3)

where R(t) is the mean field, or average firing rate, of the network at time t. The effective “membrane” time
constant is given by τm as in the LIF model and µi is a time independent input to cell i. µi represents the
steady state, or spontaneous, firing rate of cell i in the absence of feedback or time dependent forcing. ξi(t) and
ξs(t) are stochastic processes with means 〈ξi(t)〉 = 〈ξi(t)〉 = 0 and with correlations 〈ξi(t)ξj(t′)〉 = δijδ(t − t′),
〈ξs(t)ξs(t′)〉 = δ(t− t′), and 〈ξi(t)ξs(t′)〉 = 0. ξi(t) represents an intrinsic Gaussian white noise source specific to
each cell with intensity given by Di. In contrast ξs(t) is Gaussian white noise of variance σs shared by all cells
; ξs(t) may be viewed as a stochastic global stimulus. Finally G is the network coupling function of which the
argument is the network mean field R evaluated at a delay τd in the past. To motivate the coupling function
G we consider the network of cells projecting their outputs uniformly to a distant region of the brain. This
region then integrates the ouput and projects back uniformly to the network with a delay τd modelling the finite
velocity of axonal transmission and delays due to chemical transimission at a synapse. In this intepretation the
function G is the input/output relation (or f-I curve) of this distant region and, for the purposes of this study,
we consider the projection as strictly inhibitory with strength g > 0 (the inhibition is due to the minus sign in
Eq ??). As is common in such network studies we choose G to be

G(R(t)) =
1
2

[tanh(αR(t) + β) + 1] (4)

Multiplying Eq (??) by 1/N and summing over all the elements and taking the limit N → ∞ gives the dynamics
of the mean field in the thermodynamic limit as:

dR(t)
dt

= −R(t)
τm

+ σsξs(t) + µ− g

2
[tanh(αR(t− τd) + β) + 1] (5)

Note that the influence of the intrinsic noise sources ξi(t) on the mean field dynamics is negligible when N is
large, however the common stimulus ξs(t) remains. We will study network oscillations by understanding first
the deterministic (σs = 0) behavior of Eq (??) and then following with the full stochastic case (σs > 0).

4.1. Deterministic network
Let σs = 0 so that the network evolves deterministically. We nondimensionalize the system Eq (??) with the
transformation R → α(R− β) and t → t

τd
. This gives

dR(t)
dt

= −κR(t)− κḡ tanh(R(t− 1)) + κ(µ̄− ḡ) (6)

with
µ̄ ≡ α(τmµ− β); ḡ ≡ gτmα

2
;κ ≡ τd

τm
(7)

We drop the¯ to simplify notation. We will analyze Eq (??) using standard nonlinear dynamics techniques as
appropriate for scalar delay differential systems.? Fixed points, R∗, of the system are given by the roots of the
following

−R∗ + (µ− g) − g tanh(R∗) = 0 (8)

This equation only admits one real root for all values of g > 0 and µ. To indicate the dependence of this point on
µ and g, we relabel the fixed point as R∗

µ,g. Linearizing about the fixed point gives the following local dynamics

dR(t)
dt

= −κR(t)− hR(t− 1) (9)

where h ≡ g d
dR tanh(R)|R=R∗

µ,g
= g(1 − tanh2(R∗

µ,g)). Note that g ≥ h ≥ 0 for all g > 0 and µ. The anastz
R(t) = Aeλt (with A some constant) gives the following characteristic equation for Eq (??)

λ+ κ(1 + µe−λ) = 0 (10)
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In general, λ is complex; let λ = a+ ib. Substitution of this into Eq (??) gives

a = −κ(1 + he−a cos b) (11)
b = κhe−a sin b (12)

Consider the case when a = 0, from Eqs (??) and (??) we have

1 + h cos b = 0 (13)

b = κ
√
h2 − 1 (14)

For b in R we require that |h| ≥ 1 and since we have shown above that h ≥ 0 we have that the case of interest is
h ≥ 1. From this restriction it can be shown that Eqs (??) and (??) can be satisfied an infinite number of times
by the following sequence

bk = arccos
1

−hk
+ 2πk (15)

µk =

√(
bk

κ

)2

+ 1 (16)

with k in N0. For eack k we have a pair of conjugate eigenvalues, λk = ±ibk, that lie on the imaginary axis.
Differentiating Eqs (??) and (??), rearranging terms, and setting a = 0 gives(

∂a

∂µ

∣∣∣∣
a=0

)
k

=
κ(cos bk − τhk)

2κhk cos bk − (κ2h2
k + 1)

(17)

The Hopf bifurcation theorem for delayed systems is similar to the case for non-delayed systems.? In order for
a system to be at a Hopf bifurcation we require that (1) a = 0, (2) bk �= 0, and (3)

(
δa
δh

∣∣
a=0

)
k
�= 0. Condition (1)

is satisfied by assumption and condition (2) by substituting that h ≥ 1 into Eq (??). It is simple to show that
condition (3) is satisfied for any k in R. Consider the converse of condition (3), i.e that ( δa

δh |a=0)k = 0. Then we
have from Eq (??) the following relation

cos bk − κhk = 0 (18)

Substituting bk from Eq (??) and rearraging terms in Eq (??) gives that h2
k = − 1

κ . This cannot be satisfied
for h ≥ 1 and κ > 0, thus ( δa

δh |a=0)k �= 0 for all k in N . Eq (??) shows a countably infinite number of Hopf
bifurcations, one for each h = hk. However, we are only interested in the case when Rµ,g loses stability. This
occurs when Re(λ) < 0 for all λ satisfying Eq (??) and then two conjugate λs pass across the imaginary axis as
h goes through hk for some k in N . We contend that this occurs for k = 0 in the series given in Eqs (??) and
(??). Letting k = 0 and fixing κ, substituting b0 from Eq (??) into Eq (??), and rearranging gives h0 as the root
of the following trancendental equation

h2
0 − 1 −

(
arccos −1

h0

κ

)2

= 0 (19)

Eq (??) has one real root for all h0. In Fig. 4 we plot a curve Hopf bifurcations in g-µ parameter space. This
is accomplished by first determining h0 for a given κ using standard root finding methods on Eq (??). We then
again use root finding methods to solve Eq (??) for the µ and g values which give |h−h0| to be within some small
tolerence (10−4). This curve partitions parameter space into oscillatory (upper part) and non-oscillatory (lower
part) regimes. The ”U”-like shape of the curve suggests that for a fixed g it is possible to switch from stable to
oscillatory behavior as µ is varied near 0 and to return to stable behavior as µ grows large. This is demonstated
in the Fig. 5 where we show the bifurcation diagram of Eq (??) for g = 5. Two distinct supercritical Hopf
bifurcations are shown, one for low µ and the other for high µ. The interpretation of the second bifurcation is
that the driving force is so strong that the inhibitory feedback fails to influence the mean field dynamics. This
is caused by the eventual saturation of inhibition at high firing rates imposed by our choice of G (Eq ??). Note
how such behavior does not occur as we increase g; only one bifurcation is possible. For the next section we will
focus on the first Hopf bifurcation which occurs only for µ near 0.
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Figure 4. Boundary in the gain-bias subspace of parameter space for the rate model. Crossing this boundary from below
produces a Hopf bifurcation from a fixed point (constant firing rate) to a limit cycle (oscillatory firing rate). The relative
delay κ was set to 3.

4.2. Stochastic Stimuli and noise induced oscillations

We now consider the case of σs > 0 so that the network evolves with a stochastic driving force. Using the same
set of transformations as the previous section we rewrite Eq (??) as

dR(t)
dt

= −κR(t)− κg tanh(R(t− 1)) + κ(µ− g + σ̄sξs(t)) (20)

where R, µ, and g are as in the previous section and σ̄s ≡ ατmσs. Again we drop the¯notation for simplicity. In
Fig. 6 we show the stochastic dynamics of R(t) when the system is subthreshold but near to the Hopf bifurcation
(µ = −0.8, g = 5). A noise induced oscillation is observed for σs > 0, such behavior for delay systems is well
known.? However, note that this effect is distinct from coherence resonance? in that the PSD scales in a simple
multiplicative manner with σs for moderate values of σs. This is standard behavior for linear stochastic delay
differential equations. At present the effect of the nonlinearity in G upon the stochastic dynamics of Eq (??)
remains unclear. Further work will be presented in subsequent publications.

5. CONCLUSION

We have presented an analysis of oscillatory behavior in a network of LIF neurons with global delayed feedback;
in contrast to our previous study, the input to this network was a spatially homogeneous additive Gaussian white
noise. The oscillation is found to increase in strength as the feedback gain, the bias current, or as the stimulus
intensity increases. Similar findings are also explained by a simpler mean field rate model of neural firing in
this network. Such a simplified network provides insight into the induction of oscillations by the stimulus noise
in the vicinity of a Hopf bifurcation in such an extended globally-coupled excitable system. We comment here
on how the LIF network and rate network differ in two important ways. First, the feedback in the LIF model
is linear, i.e summation of independent α-functions. This is in contrast to the feedback of the rate network
which is nonlinear (Eq (??)). Second, the intrinsic dynamics of the LIF model are quite nonlinear due to the
influence of the threshold, whereas the intrinsic dynamics of the rate equations do not have this nonlinearity.
How this ”transfer” of nonlinearity from the single cell to the network connectivity affects oscillatory discharge
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Figure 5. Bifurcation diagram for the rate model. The asymptotic firing rate is plotted as a function of the bias current.
A Hopf bifurcation to an oscillatory firing rate occurs as the bias increases, and a reverse Hopf bifurcation occurs for an
even higher bias. The dashed line represents the unstable fixed point. The upper and lower branches correspond to the
maximal and minimal amplitude of the limit cycle.

is, at the moment, unclear. Nevertheless, certain qualitative features are present in both systems indicating that
the analytic simplicity of the rate formalism can offer some insight on the issue of stimulus-induced spike train
oscillations to global stimuli. From a neural systems perspective, while changes in parameters g, µ, and σs can
affect pyramidal cell spike discharge in similar ways, they are representative of quite distinct operations. A shift
in g is typical of a plastic change in synaptic strength which can occur over a variety of time scales in these
animals.? However, a change in µ models shifts in membrane excitability; recently, ELL pyramidal cells have
displayed intrinsic mechanisms in which spike (and burst) thresholds can vary significantly within a single cell.?

Finally, changes in σs mimic either the effects of a feedforward gain control mechanism? or more simply the
distance between the animal and the stimulus (conceiving of ξs(t) as mimicking communication σs would decay
as communicating fish move away from one another). Thus understanding an abstract model of global stimulus
induced oscillation which places all such operations in a simpler framework could produce predictions that span
a range of neural behavior.
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