
Nonrenewal spike trains generated by stochastic neuron

models

Benjamin Lindner and Andr�e Longtin

Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Canada KIN 6N5

ABSTRACT

Many of the stochastic neuron models employed in the neurobiological literature generate renewal point processes,
i.e., successive intervals between spikes are statistically uncorrelated. Recently, however, much experimental
evidence for positive and negative correlations in the interspike interval (ISI) sequence of real neurons has been
accumulated. It has been shown that these correlations can have implications for neuronal functions. We study
an leaky integrate-and-�re (LIF) model with a dynamical threshold or an adaptation current both of which lead
to negative correlations. Conditions are identi�ed where these models are equivalent. The ISI statistics, the
serial correlation coeÆcient, and the power spectrum of the spike train, are numerically investigated for various
parameter sets.

1. INTRODUCTION

A common assumption made in many theoretical studies involving stochastic neurons, is the renewal property.
Given a spiking neuron model that generates spike times at random instants ti, this assumption implies that
the interval sequence Ii = ti � ti�1 consists of entirely independent intervals. The serial correlation coeÆcient,
de�ned by

�j =
h(Ii+j � hIii) (Ii � hIii)i

h(Ii � hIii)2i (1)

is equal to Æj;0 and the statistical properties of the spike train are entirely determined by the statistics of a single
interval, i.e. by the probability density function (PDF) P (I). This assumption is very convenient in particular
when dealing with large networks of neurons (see, e.g., Ref. 1).

Much experimental evidence, however, has been accumulated in recent years that many neurons generate
nonrenewal spike trains which display pronounced negative and/or positive correlations. One example are the
P-units of weakly electric �sh that display both positive and negative correlations in their ISI sequences.2, 3

By computational studies it has recently been shown that negative correlations may lead to an enhancement of
information transfer and detectability of weak signals3 (see also Ref. 4 for an analytical approach to the problem).
On the other hand, positive correlations result in an optimal time scale for a detection task which shows up as
a minimum in the Fano factor of the spike count vs counting time window.3, 5

Basically, there are two di�erent mechanisms that can give rise to correlations of ISIs. The �rst one is present
in a model neuron stimulated by a strongly correlated input, for instance, a periodic stimulus or a colored noise.
If the input signal is weak and slow, we expect that the ISI will depend in a linear fashion on the current value
of the external stimulus. In this case the correlations of the input carry over to the ISI correlations, for instance,
a weak and exponentially correlated noise with large correlation time will result in a positive exponential corre-
lation among ISIs.5

The other mechanism relies on additional internal variables that are a�ected by the spiking of the neuron and
in turn a�ect the spike generation mechanism. This can be seen as a feedback of a �ltered version of the spike
train. In this paper we will focus on this second mechanism by means of two di�erent models. We show under
which conditions these models are equivalent and study numerically their spike train and ISI statistics for various
parameter sets. Analytical approaches to these systems will be detailed elsewhere.
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2. MODELS AND QUANTITIES OF INTEREST

The �rst model we shall study is a leaky integrate-and-�re model with a dynamical threshold3, 6{8 (LIFDT,
for short). The voltage in this model is governed by the usual linear equation for a white-noise driven leaky
integrate-and-�re neuron, supplemented by the �ring-and-reset rule as follows: whenever the voltage reaches the
threshold �, say at t = ti, a spike is �red (�ring time of the i-th spike is thus ti) and the voltage is reset to
a value vR. The threshold is itself a dynamical variable that decays exponentially toward a lower bound �0

between excitations but is increased by a constant amount at every spike. Suppose i � 1 spikes have already
been generated. Then the dynamics can be written as follows:

_v = �v + �+
p
2D�(t); (2)

_� = � (���0)

�
+A

X
tj2T

Æ(t� tj); (3)

v(t) = �(t) ) ti
:
= t ; i! i+ 1 ; and v(t+) = vR; (4)

with � being the characteristic time of decay of threshold toward its lower bound �0 and the last term in eq. (3)
stands for rapid increases of the threshold after each �ring.
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Figure 1. Trajectories of LIFDT model (left) and LIF model with adaptation current. Voltage variables are shown by
solid lines, dynamical threshold (left) and adaptation variable (right) are indicated by dashed lines. Spikes occur at the
instants of incrementation of �(t) or a(t). Parameters in both models: A = 0:1; D = 0:001; � = 1:5; � = 100.

The second system is a white-noise driven LIF model with an adaptation current. This is a simpli�cation
of a conductance-based LIF model with a Ca2+ gated K+ current IAHP (see, Ref. 7), i.e., we replace the time
dependent conductance by a current. The dynamics for this model for the generation of the i-th spike is given
by

_v = �v + �� a+
p
2D�(t); (5)

_a = �a=� +A
X
tj2T

Æ(t� tj); (6)

v(t) = �0 ) ti
:
= t ; i! i+ 1 ; and v(t+) = vR; (7)

where �rings are generated with a constant threshold �0. The variable a stands for the cytoplasmic Ca2+

concentration. Apart from an o�-set, it is governed by the same dynamics as the dynamical threshold in the
�rst model. The dynamics of both models are illustrated in Fig. 1.
It is possible to shift and rescale the variable v in both models such that

vR = 0; �0 = 1: (8)

These values are used throughout the following.
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Evidently, both models generate nonrenewal spike trains since the ISI depends on the respective additional
variable a or �. Either models have been used in slightly di�erent versions to model spike frequency adaptation.7, 8

The LIFDT model with an additional periodic stimulation has been used to reproduce ISI statistics (including
negative correlations among intervals) of P-type electroreceptors in weakly electric �sh.3, 6

Let us now consider quantities that characterize the ISI and spike train statistics. Given a spike train

x =
X
tj2T

Æ(t� tj) (9)

generated by one of these models, we may construct a sequence of ISIs. From this sequence, we can estimate the
probability density P (I) of a single ISI, the mean ISI hIi and the coeÆcient of variation (CV) of the ISI

CV =
p
hI2i � hIi2=hIi (10)

as well as the serial correlation coeÆcient according to eq. (1). Another useful measure is the power spectrum
of the spike train eq. (9), given by

S(!) =

1Z
�1

d�ce
i!�chx(t)x(t + �c)i: (11)

A renewal spike train with the same statistics for a single ISI as in the original spike train can be obtained
by shu�ing the ISI sequence. We will also look at the power spectrum of this shu�ed spike train in order to
illustrate the e�ect of nonrenewal properties such as negative correlations on the power spectrum.

3. RELATION BETWEEN LIFDT AND LIF WITH ADAPTATION CURRENT

A relation between the models can be established by means of the transformation

~v = lim
"!0+

v(t)=�"(t) ; �"
:
= �(t� "): (12)

Applying this to the voltage variable of the LIFDT model leads to a model with constant threshold and reset
values and the dynamics

_v = �v
�
1� 1

�

�
1� 1

�(t)

��
+

�+
p
2D�(t)

�(t)
� lim

"!0

v

�"

A
X

Æ(t� (tj + ")); (13)

_� = � (�� 1)

�
+A

X
tj2T

Æ(t� tj); (14)

v(t) = 1 ) ti
:
= t ; i! i+ 1 ; and v(t+) = 0; (15)

where we have omitted the tilde and used eq. (8). The last term in the �rst line is zero (voltage is zero immediately
after reset) and can be omitted. Thus the LIF with dynamical threshold is equivalent to a model with constant
threshold but with leakage term and input current multiplying functions of the variable �(t). For small amplitude
A, the leakage term will be just �v. This is evident for large � but holds also to a good approximation if � � 1
since in this case the mean threshold will be close to �0 = 1. On the other hand, a weak amplitude A also implies
that the variable � will only weakly deviate from its stationary mean value h�i. Under these assumptions and
using a new variable a(t) = �(t)� 1 the dynamics can be approximated by

_v = �v +
�
1� hai2

(1 + hai)2
�
(�+

p
2D�(t)) � a

�+
p
2D�(t)

(1 + hai)2 ; (16)

_a = �a=� +A
X

Æ(t� ti): (17)

This looks similar to the LIF with adaptation current, however, there are two di�erences: (i) base current and
noise intensity as well as the variable a in the voltage equation are rescaled by factors that depend on the
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stationary mean of a; (ii) the variable a enters the voltage equation by a rescaling factor which is a�ected by the
input noise. It is obvious that the factor multiplying base current and noise intensity is smaller than one. The
factor multiplying the variable a can be both smaller or larger than one, depending on the system's parameters.
Both factors will be not too far from one for a base current about one, a weak amplitude A, and small up to
moderate noise intensity. Under these conditions, we expect to �nd similar statistics for the LIFDT model and
the LIF model with adaptation current.

4. NUMERICAL RESULTS FOR THE LIFDT MODEL

We have numerically integrated the model using a simple Euler procedure with a time step of �t = 10�3. The
�rst 100 spikes were discarded as transients, then the dynamics were simulated until 105 spikes were obtained
yielding reliable estimates of the spike and ISI statistics. In the following we show a sample trace of voltage
and threshold, the power spectrum of the spike train, the ISI density, and the serial correlation coeÆcient as
a function of lag. We kept the amplitude �xed at A = 0:1 and varied the base current �, the noise intensity
D, and the decay time of the second variable � . Regarding the choice of the base current �, it is important to
distinguish subthreshold (� < �0 = 1) and suprathreshold (� > �0 = 1) values of �, qualitative di�erences for
these two cases are expected especially in the weak-noise limit.

In Fig. 2 we show results for a suprathreshold base current (� = 1:5) at moderate noise D = 0:01, and
moderate decay time � = 1, the latter being of the same order of magnitude as the time scale of the voltage
variable as well as the mean ISI. Clearly, the threshold dynamics has only little e�ect on the spike statistics at
these parameters. The ISI correlations are essentially zero, except for a very small negative value at lag one.
The spike train power spectrum is peaked at the eigenfrequency and its higher harmonics as it is typical for a
standard LIF driven by suprathreshold base current and white noise (see, Ref. 9). The spectrum of the shu�ed
ISI sequence is much the same as that for the original data indicating that correlations between intervals (also
nonlinear ones not measured by �l) do not e�ect the power spectrum. The ISI density is also peaked and looks
pretty much like that of a standard LIF model. So for a decay time comparable to the ISI, the e�ect of a
dynamical threshold is - at least for small amplitude A - comparably weak.
Fig. 3 shows how the statistics change when choosing a decay time � = 100 while keeping all other parameters
unchanged. First of all, the mean ISI and the CV both considerably increase. A slower threshold is driven up to
a higher stationary level as can be clearly seen in the panel depicting the trajectories. So the LIF dynamics sees
a higher mean threshold and consequently generates larger and more variable ISIs. The shape of the ISI density
is remarkable: its peak is widened and \topped o�". Most interesting are the pronounced negative correlations
found for �l, in particular at the �rst lag. This non-renewal e�ect is clearly due to the dynamical threshold and
implies that long ISIs are followed by short ones and vice versa. There are two e�ects of the threshold dynamics
on the power spectrum of the spike train. First, the enlarged variability of the single ISI removes the pronounced
peaks that were present for � = 1 (or also for a standard LIF model). Second, the e�ect of negative correlations
can be seen by comparison to the spectrum of the shu�ed spike train which is renewal. The original data show
less power at very small frequencies (! < 0:1) and slightly more power for 0:1 < ! < 0:3 than the spectrum
of the shu�ed spike train. We can understand the former result by a relation between the sum of correlation
coeÆcients and the variability of spike count n(t) given by Cox and Lewis.10 The variability of the spike count
(i.e. its di�usion coeÆcient) in turn determines the power spectrum at zero frequency and one �nds

S(! = 0) = lim
t!1

hn(t)2 � hn(t)i2i
t

=
CV 2

hIi

 
1 + 2

1X
l=1

�l

!
(18)

Hence, negative correlations lead to a decrease of power at low frequencies.

In Fig. 4 and Fig. 5 we show how the statistics change for � = 1 and � = 100 if we use a subthreshold base
current � = 0:7. In general, mean and variance of the ISI increase by decreasing the base current. For � = 1,
the trajectory of the threshold variable shows nearly always a complete decay to its lower bound �0 = 1 due to
the much longer ISIs. For these parameters the spike train will be e�ectively a renewal process. Consequently,
we observe again the typical statistics of a standard LIF model but with subthreshold base current, i.e. the ISI
density is close to that of a Poison process with a high CV about 0:96, the power spectrum is almost 
at, and
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Figure 2. Results for the LIFDT model: trajectories, ISI density vs normalized interval (top left and right), serial
correlation coeÆcient, and spectrum of spike train (bottom left and right) for the suprathreshold regime with � =
1:5; D = 0:01; � = 1. Mean and CV of the ISI were hIi = 1:180 and CV = 0:154.
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Figure 3. Results for the LIFDT model: trajectories, ISI density vs normalized interval (top left and right), serial
correlation coeÆcient, and spectrum of spike train (bottom left and right) for the suprathreshold regime with � =
1:5; D = 0:01; � = 100. Mean and CV of the ISI were hIi = 13:784 and CV = 0:482.

there are no correlations between ISIs (�l � 0 for l > 0).
For � = 100, the CV decreases to a value CV � 0:54 that is surprisingly close to the one obtained for suprathresh-
old base current (CV � 0:48), thus the threshold dynamics makes the variability largely independent of the base
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Figure 4. Results for the LIFDT model: trajectories, ISI density vs normalized interval (top left and right), serial
correlation coeÆcient, and spectrum of spike train (bottom left and right) for the subthreshold regime with � = 0:7; D =
0:01; � = 1. Mean and CV of the ISI were hIi = 97:5 and CV = 0:965.
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Figure 5. Results for the LIFDT model: trajectories, ISI density vs normalized interval (top left and right), serial
correlation coeÆcient, and spectrum of spike train (bottom left and right) for the subthreshold regime with � = 0:7; D =
0:01; � = 100. Mean and CV of the ISI were hIi = 228:5 and CV = 0:542.

current (note, however, that the mean ISI still di�ers considerably for � = 0:7 and � = 1:5 at � = 100). From
another point of view, one can also state that the threshold dynamics can decrease variability in the subthreshold
regime whereas it increases the variability in the suprathreshold regime. Negative correlations are also present
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Figure 6. Results for the LIFDT model: trajectories, ISI density vs normalized interval (top left and right), serial
correlation coeÆcient, and spectrum of spike train (bottom left and right) for the suprathreshold regime with � =
1:5; D = 0:001; � = 100. Mean and CV of the ISI were hIi = 16:7 and CV = 0:27.
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Figure 7. Results for the LIFDT model: trajectories, ISI density vs normalized interval (top left and right), serial
correlation coeÆcient, and spectrum of spike train (bottom left and right) for the suprathreshold regime with � =
1:5; D = 0:1; � = 100. Mean and CV of the ISI were hIi = 9:3 and CV = 0:64.

for � = 100 at subthreshold base current, they are, however, slightly weaker and also restricted to the �rst lag
compared to the corresponding suprathreshold case (for � = 1:5, �l is also di�erent from zero for lag 2 and 3, cf.
Fig. 3). Finally, the e�ect of these negative correlations on the power spectrum are similar to the suprathreshold
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case: the spectrum for the spike train with ISI correlations is smaller around ! = 0 than for the shu�ed (renewal)
spike train.

Turning back to the suprathreshold regime, we now ask how the statistics at large decay time change with
the noise intensity. We �x base current and decay time at � = 1:5 and � = 100 and choose in Fig. 6 a lower and
in Fig. 7 a higher noise intensity than in Fig. 3, respectively.
Clearly, a smaller noise intensity like D = 0:001 as in Fig. 6 leads �rst of all to a larger mean ISI and to a lower
ISI variability compared to Fig. 3 with D = 0:01, as it would be also the case for a standard LIF model. The
ISI density does not exhibit the broad maximum as for D = 0:01. Remarkably, the negative correlation grows at
lag 1 (it is close to �0:5) but gets closer to zero for higher lags compared to D = 0:01. The pronounced negative
correlation in the ISI sequence leads to a new feature in the power spectrum: the peak at the eigenfrequency of
the spike generator is much higher than in the spectrum of the shu�ed spike train. Hence, in the suprathreshold
regime at weak noise, negative correlations lead to a strong periodic component or equivalently to a strong phase
coherence. In order to illustrate phase coherence the reader may imagine the voltage started at its reset value
at a certain instant: after a few intervals one may still be able to estimate the initial instant if the jitter of
intervals is low. The time interval for which this estimation is yet feasible can be called a coherence length. A
large coherence length will manifest itself by a high peak in the power spectrum (in fact, systems driven by a
sinusoidally input possess an in�nite coherence length and show consequently Æ spikes in their power spectra).
The negative correlations in the spike train will enlarge the coherence length: an ISI shorter than the mean ISI
is on average followed by an ISI larger than the mean ISI; thus deviations from the mean ISI that result in losing
phase coherence are \corrected" by the subsequent ISI. This mechanism works best for a negative correlation
that is restricted to the �rst lag.
This is also con�rmed by the results for large noise intensity (D = 0:1, Fig. 7): small negative correlations
become apparent at many lags slowly decaying with increasing lag. The e�ect of this correlation is pretty weak
(weaker than for both D = 0:01 and D = 0:001) and restricted to very low frequencies. We also �nd a mean ISI
smaller and a CV larger than for lower noise intensities as can be expected.

How do these noise-dependent features change if we use a subthreshold base current? No qualitative di�erences
are expected at strong noise since in this case the dynamics does not depend much on the base current. The
weak noise limit, however, will strongly di�er, since even for a standard LIF with constant threshold, the rate
decreases exponentially with the inverse noise intensity for D ! 0. When there is essentially no spiking in this
limit, the dynamical threshold will be almost always close to its lower bound �0 = 1 and hence acts as a constant
threshold. In other words, if the mean ISI for a standard LIF with constant threshold at �0 = 1 gets much
larger than the decay time � of the threshold dynamics, we expect a renewal spike train. Both predictions (no
qualitative di�erence between the high-noise limits in sub- and suprathreshold regimes; renewal process in the
weak-noise limit in subthreshold regime) are con�rmed by our numerical simulation (not shown).

5. NUMERICAL RESULTS FOR LIF WITH ADAPTATION CURRENT

Adopting the parameters of the previous section for the second model we �nd for all parameter sets considered
above the same qualitative behavior as for the LIFDT model. Even without a rescaling of the parameters, the
ISI statistics, the serial correlation coeÆcient, and the power spectrum agree fairly well with those found for the
LIFDT model at the same parameter sets. As an example we show data for the suprathreshold regime (� = 1:5)
at large decay time (� = 100), and weak (Fig. 8) and strong (Fig. 9) noise. These should be compared to Fig. 6
and Fig. 7, respectively.
For low noise we observe strong negative correlations indicated by a correlation coeÆcient at lag one that is
close to �0:5. Furthermore, we �nd a peak in the power spectrum that is much higher than in the spectrum of
the shu�ed spike train and only slightly lower than this in Fig. 6. The only noticeable di�erence between the
results for the models at these parameters is found at strong noise: in Fig. 7 we found a weak hump at ! � 2
in the power spectrum which is absent in the spectrum of the LIF model with adaption current. A look at the
spectrum of the shu�ed spike train, however, reveals that this di�erence is rather related to the statistics of the
single ISI than to the negative correlations induced by the adaptation current. The e�ect of negative correlations
on the power spectrum is comparable to that of a dynamical threshold, that is a lowering of spectral power at
low frequencies.
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Figure 8. LIF with adaptation current: trajectories, ISI density vs normalized interval (top left and right), serial
correlation coeÆcient, and spectrum of spike train (bottom left and right) for the suprathreshold regime with � =
1:5; D = 0:001; � = 100. Mean and CV of the ISI were hIi = 16:9 and CV = 0:275.
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Figure 9. LIF with adaptation current: trajectories, ISI density vs normalized interval (top left and right), serial
correlation coeÆcient, and spectrum of spike train (bottom left and right) for the suprathreshold regime with � =
1:5; D = 0:1; � = 100. Mean and CV of the ISI were hIi = 9:2 and CV = 0:72.

6. CONCLUSIONS

We have studied two spiking neuron models that generate nonrenewal spike trains with pronounced negative
correlations. It was shown that LIF models incorporating either a dynamical threshold or an adaptation current
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can generate spike trains with similar statistics when the coupling between the respective variable to the voltage
(LIF) dynamics is weak and its typical time scale is large. It was furthermore demonstrated that the additional
variable may decrease or increase the variability and the coherence of the ISI sequence and the corresponding
spike train. There are two e�ects of negative correlations on the power spectrum: in general these correlations
result in a decrease of spectral power at low frequencies; for strong enough correlations they can also strongly
enhance the phase coherence of spiking, i.e. they sharpen the peak at the eigenfrequency of the neuron. In
conclusion, we have shown that both models reveal a rich dynamical behavior that certainly deserves further
investigations. An analytical treatment of the problem will be presented in a future publication.
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