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Oscillatory response in a sensory network of ON
and OFF cells with instantaneous and delayed

recurrent connections
BY J. LEFEBVRE1,*, A. LONGTIN1 AND V. G. LEBLANC2

1Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa,
Ontario K1N 6N5, Canada

2Department of Mathematics and Statistics, University of Ottawa,
585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada

A neural field model with multiple cell-to-cell feedback connections is investigated. Our
model incorporates populations of ON and OFF cells, receiving sensory inputs with direct
and inverted polarity, respectively. Oscillatory responses to spatially localized stimuli are
found to occur via Andronov–Hopf bifurcations of stationary activity. We explore the
impact of multiple delayed feedback components as well as additional excitatory and/or
inhibitory non-delayed recurrent signals on the instability threshold. Paradoxically,
instantaneous excitatory recurrent terms are found to enhance network responsiveness by
reducing the oscillatory response threshold, allowing smaller inputs to trigger oscillatory
activity. Instantaneous inhibitory components do the opposite. The frequency of these
response oscillations is further shaped by the polarity of the non-delayed terms.

Keywords: neural field; delayed feedback; sensory inputs; oscillations; ON and OFF cells

1. Introduction

Rhythmic activity in the brain is commonly associated with the processing of
neural information. Such oscillatory patterns are ubiquitous in many areas of the
cortex, where they take part in higher brain functions and memory, displaying a
vast range of frequencies. They are found in the thalamus, the thalamo-cortical
system and in many sensory pathways such as vision (Gray & Singer 1989;
Engel et al. 1992; Lumer et al. 1997), electroreception (Doiron et al. 2004) and
auditory processing (Galazyuk & Feng 2001). Oscillatory behaviour in sensory
systems has been proposed to be one of the basic mechanisms of input selection
and detection, where oscillatory activity is triggered on the basis of stimulus
properties. Specifically, oscillatory response has been observed in various sensory
networks under spatially non-homogeneous stimulation. Excitatory populations
are known to enter states of rhythmic activity when the input shows sufficient
spatial contiguity (‘binding stimulus’; Engel et al. 1992; Wang 1999; Marinazzo
et al. 2007; Borgers et al. 2008), or is noisy but shows sufficient spatial correlation
(Doiron et al. 2004).
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Aside from sensory stimuli structure, specific circuit geometry plays a crucial
role in the presence of rhythmic activity. Network oscillations in sensory systems
typically refer to synchronous states achieved by the means of Andronov–Hopf-
type instabilities commonly observed in inhibitory networks (Campbell et al.
1995; Dhamala et al. 2004; Roxin et al. 2005). However, the effect of multiple recu-
rrent connections blurs the notion of what causes oscillatory behaviour, as the
combined actions of local and global signals are poorly understood. Models in ele-
ctroreception commonly incorporate global, i.e. all-to-all, recurrent connections.
In vision, models introduce an elaborate mixture of global and local recurrent
circuitry to mimic sensory information processes and exhibit oscillatory activity,
a feature which can be amplified by feedback connections (Lumer et al. 1997).
Generically, sensory pathways incorporate sets of recurrent connections with dis-
tinct polarities, i.e. either excitatory or inhibitory, where these are associated with
excitatory and inhibitory synaptic connections, respectively (Wilson & Cowan
1972; Golomb & Ermentrout 2001; Blomquist et al. 2005; Laing & Coombes
2006). For example, Laing & Longtin (2003) studied oscillation thresholds for
paired excitatory and inhibitory delayed feedback, where delays were either fixed
or distributed. Further, Hahnloser et al. (1999) suggested that combined positive
and negative feedback may describe attention modulation in cortical networks.

Most sensory systems exhibiting oscillatory activity also involve ON and OFF
cells (Kandel & Schwarz 1983; Robin & Royer 1987; Fields et al. 1995). While the
connection between rhythms and sensory inputs has been partially established,
there is currently no consideration of the distinct ON and OFF cells’ behaviours
in the treatment of sensory information and the genesis of temporal activity
oscillations. We now question how these populations might behave in a feedback
system under stimulation: can oscillations still be observed? Does the system have
the same oscillation threshold?

In our previous work (Lefebvre et al. 2009), precise conditions on which
oscillatory input responses are seen in a general ON/OFF system with a unique
global inhibitory delayed feedback were established, along with a study of network
responses to periodic forcing as well as the gain of the system in the equilibrium
regime. Here, we want to investigate the more generic case of a mixture of local
and global recurrent connections, and investigate how this change in the network
architecture influences the genesis of oscillatory activity. Our aim is to understand
generic properties beyond those studied for the standardly studied equivalent
ON cell system, where local circuitry reinforces global oscillations (Wang 1999)
or vice versa (Lumer et al. 1997). To do so, we will first present our model in
§2, and review in §3 the conditions on which oscillatory instabilities occur in
a model with delayed inhibitory feedback components and how the interplay
between ON and OFF populations input responses results in oscillatory activity.
In §4, we introduce a mixture of instantaneous and delayed recurrent connections
and demonstrate how the mixed feedback profile alters the instability threshold
and the response frequency to spatially localized pulses.

2. Model

Our analysis is particularly motivated by electroreception, but also applies to
other senses. The architecture considered in figure 1 is inspired by the physiology
of the electrosensory lateral lobe (ELL) found in the brains of the weakly electric

Phil. Trans. R. Soc. A (2010)

 on April 30, 2010rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Oscillations in a driven ON/OFF network 457

k1 k2 … kN

g1

ON

OFF OFF OFF

I(x,t)

OFF OFF OFF

W
ON ON ON ON ON

g2 gM…

t

Figure 1. Schematic of the multi-loop feedback circuit. The system consists of a layer of ON
and OFF pyramidal cells. These integrate spatio-temporal inputs I (x , t) and project their output
activity to higher brain centres, which process and feedback the signal via multiple feedback loops,
after some time delay τ and with polarity ki . Instantaneous, i.e. non-delayed, feedback loops mimic
local connectivity with polarities gj .

fish Apteronotus leptorhynchus, acting as the primary operator in stimuli encoding
(for an exhaustive physiological discussion see Berman & Maler (1999)). The
sensory layer is populated by ON and OFF pyramidal cells that feed-forward their
activity vertically to higher brain centres; these in turn integrate ON and OFF
activity and feed it back to the sensory layer via delayed interactions of different
polarities. Here, these higher brain centres do not contribute to spatial encoding,
but merely act as activity accumulators. This fact distinguishes our approach
from typical neural field models that usually exhibit spatial connectivity profiles
(Pinto & Ermentrout 2001; Bressloff et al. 2003; Hutt et al. 2003; Coombes &
Owen 2004, 2005; Folias & Bressloff 2005; Hutt & Atay 2005). Non-delayed
recurrent connections are nevertheless added to mimic local anatomy, connections
which are weak in the ELL of the electric fish. As there are very few lateral
connections between units in the sensory layer in electrosensory systems, these
connections are typically neglected, the dynamics of the system being described
using delayed feedback components.

As in many sensory pathways, spatio-temporal inputs are processed through
the interplay of ON and OFF neural populations. The distinct input response
mechanism between these cell types is mainly because of the presence of extra
preprocessing within the OFF pathway, where an intermediate cellular body
called an interneuron transfers an inverted image of received inputs to the OFF
cells, while ON cells receive the input directly, with preserved polarity. Thus, when
the input stimulus increases, ON cell activity increases while that of OFF cells
decreases. Given the synaptic response functions ηon and ηoff and some applied
pre-synaptic input I (x , t), the post-synaptic potentials PSPj for j = ON, OFF at
the sensory layer are given by

PSPon(x , t) = ηon ∗ I (x , t)
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and
PSPoff(x , t) = ηoff ∗ I [I (x , t)],

where ∗ is a temporal convolution and I stands for the interneuronal process.
We make the hypothesis that the operator I is linear to first order such
that it may be approximated by I (u) ≈ −u. Thus, for simplicity, we consider
the situation where, without sensory inputs I (x , t) = 0 and in open loop,
stationary activity states correspond to both dormant ON and OFF populations
ūon = ūoff ≈ 0.

The system is composed of N distinct feedback loops where the delay
τ > 0 accounts for processing and axonal conduction times and is assumed to
be identical for all delayed circuits. The mean somatic membrane potentials,
or activities, uon(x , t) and uoff(x , t), at the sensory layer obey the following
dynamics:

(1 + a−1
on ∂t)uon(x , t) =

N∑
i=1

kiS(uon, uoff , t − τ) +
M∑
j=1

gjS(uon, uoff , t) + I (x , t)

and (1 + a−1
off ∂t)uoff(x , t) =

N∑
i=1

kiS(uon, uoff , t − τ) +
M∑
j=1

gjS(uon, uoff , t) − I (x , t),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

where we chose exponential synapses, i.e. ηp(s) = ape−aps, p = ON, OFF. We
use k for delayed feedback strengh, and g for non-delayed or instantaneous
feedback strength. Polarities of the recurrent connections are individually
weighed by ki , gj > 0 for excitatory and ki , gj < 0 for inhibitory feedback, where
i = [1, N ] and j = [1, M ]. A spatio-temporal stimulus I (x , t) with arbitrary
polarity (either excitatory or inhibitory) is presented with inverted polarity
to the OFF layer, while ON cells receive the input directly. The recurrent
term

S(uon, uoff , t) =
∫
Ω

dy[αonfon(uon(y, t)) + αoff foff(uoff(y, t))] (2.2)

corresponds to global, i.e. all-to-all, coupling, for which fj(u) ≡ (1 + e−β(u−hj ))−1

(j = ON,OFF) is a smooth sigmoidal firing rate function with threshold hj and
gain β. The finite spatial domain is Ω, while αj is the relative proportion of j-type
cells in the population. ON and OFF populations project evenly to all cells in
the system via the multiple feedback connections, irrespective of their polarity,
which might be either excitatory or inhibitory, or both.

3. Oscillatory activity and stimulation

Let us first consider the non-stimulated case, i.e. I (x , t) = 0, and the regions
in parameter space where global oscillations may be found. We will neglect
all non-delayed recurrent signals, i.e. gj = 0, ∀j , and describe the evolution
of activity in the context of multiple delayed loops. Oscillatory activity is
typically characterized by determining Andronov–Hopf instability thresholds.
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Figure 2. Andronov–Hopf curve in (K , τ) parameter space. The horizontal line K = 0 separates
the parameter space between excitatory and inhibitory regimes. The bifurcation curve delimits
regions of damped oscillations and regions where global oscillations are stable. As the number
of inhibitory delayed components increases (K decreases), smaller delays are needed to stabilize
oscillatory solutions, reducing the instability threshold.

The solutions ūon and ūoff of equation (2.1) for gj = 0 are spatially uniform and
can be implicitly written as

ūon = K
Ω

2
[f (ūon) + f (ūoff)]

and ūoff = K
Ω

2
[f (ūon) + f (ūoff)],

⎫⎪⎪⎬
⎪⎪⎭ (3.1)

where K ≡ ∑N
i=1 ki . For simplicity, we chose αon = αoff = 1/2, aon = aoff = 1 and

hon = hoff ≡ h. We further fixed the response gain β = 25, so that the firing rate
function f is smooth.

Since all the delays in equation (2.1) are identical, the multiple feedback
components of figure 1 are analogous to the single delayed connection case
with gain K . In figure 2, whenever K > 0, no oscillatory solutions are possible,
as excitatory connections dominate the dynamics and bring the system to
a regime of multistability. However, if K < 0, linearizing the system around
equation (3.1) indicates that a supercritical Andronov–Hopf bifurcation occurs
for smaller values of the delay as K decreases, meaning that a dominant number
of inhibitory components versus excitatory components first makes oscillatory
activity possible, and further encourages the stability of global oscillations by
decreasing the magnitude of the critical delay. Consequently, additional delayed
feedback components with identical delays but different polarities do not alter
the dynamics qualitatively, if the condition K < 0 is fulfilled.

The stimulated case, i.e. I (x , t) �= 0, can be analysed in a similar fashion, to
determine the effect of distributed input on the genesis of rhythmic activity.
We will assume from now on that a single inhibitory delayed connection is
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present, weighed at K = k1 = −1, which we now know is analogous to the
case of several delayed feedback connections dominated by inhibition, treated
previously. A spatially distributed stimulus of the form I (x , t) = I (x) induces a
non-homogeneous solution, determined from equation (2.1) by

ūon(x) = S(ūon, ūoff) + I (x)

and ūoff(x) = ūon(x) − 2I (x).

}
(3.2)

Oscillatory response corresponds to an input-triggered supercritical Andronov–
Hopf bifurcation. We can isolate the instability and specify the input response
threshold by linearizing equation (2.1) around equation (3.2) for ūon,off(x , t) =
ūon,off(x) + uλ(x)eλt , λ ∈ C. This particular choice of ansatz restricts our stability
analysis to spatially homogeneous modes. We obtain the characteristic equation

λ + 1 + Reλτ = 0. (3.3)

An input is expected to cause an Andronov–Hopf bifurcation if Re(λ) = 0 for
λ = a + iw, w �= 0, which occurs whenever the parameter R satisfies

tan(ω(R)τ ) + ω(R) = 0, (3.4)

where ω(R) = √
R2 − 1 is the frequency at the bifurcation. The parameter R is

defined by

R =
[
αon

∫
Ω

dyf ′(ūon(y)) + αoff

∫
Ω

dyf ′(ūoff(y))

]
. (3.5)

The parameter R arises from linear stability considerations, and is an integral over
the solutions ūon(x) and ūoff(x), measuring how close these are to the feedback
activation threshold h. Spatially distributed inputs I (x , t) are expected to bring
the solutions either closer to or away from h, subsequently changing the value of
R and triggering oscillatory solutions via Andronov–Hopf instabilities whenever
R = Rc, where Rc satisfies equation (3.4). As opposed to the non-stimulated
case where an increase in the delay τ caused the oscillations for K < 0,
spatially profiled stimulation alone triggered oscillatory activity by balancing
local excitation and recurrent inhibition at some critical feedback amplitude,
specified by h, which will be fixed throughout the analysis. Lefebvre et al. (2009)
studied the exact dynamical impact of a modification of h.

For concreteness, we numerically test these results with a pulse stimulus defined
by I (x , t) = Io for x ∈ 
 = [x1, x2] and to < t < t1 while I (x , t) = 0 otherwise. The
width of the pulse is defined by 
 = |x1 − x2|. This input distribution is ideal
for separating local and global dynamics and identifying feedback effects, and
is coherent with many stimulation patterns studied experimentally in spatially
extended systems. From figure 3, stationary uniform activity states ūon and ūoff
are stable on the basis of well-chosen parameters until t = to. The equilibrium
(3.2) becomes unstable for the duration of the pulse and recovers stability
at the offset of stimulation, delimiting the oscillatory response time of the
combined ON and OFF population. Figure 4 illustrates the condition equation
(3.4) fulfilled at the onset of the stimulus t = to and again at the offset t = t1
for Rc ≈ 1.823 and τ = 2, where the eigenvalues cross back and forth the
imaginary axis.
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Figure 3. ON/OFF network oscillatory response to a localized pulse. Parameters are τ = 2, Ω = 1
and h = 0.25. The input has the amplitude Io = 0.4 between x1 = 0.25 and x2 = 0.75, and 0 otherwise
for 15 < t < 40.
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Figure 4. Eigenvalues crossing the imaginary axis as the critical parameter Rc is met. At the onset
of the pulse stimulus, the Andronov–Hopf curve (3.4) is crossed for the chosen delay τ = 2, where
the parameters are such that the solutions enter a regime of stable oscillations. Unstable eigenvalues
cross the imaginary axis accordingly. At the offset of the bump, the opposite process takes place
and the stationary activity states recover their stability and the oscillations disappear at the same
time as the stimulus.

This behaviour is coherent with many findings on recurrent neural networks,
where a spatially localized pulse generates global oscillations when the input
width is sufficiently large (Borgers et al. 2008), even though no delay is present.
Further findings also seem to agree for stochastic integrate-and-fire models with
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delayed feedback, where the input spatial correlation must meet a critical value
to trigger an oscillatory response (Doiron et al. 2004), or require the use of
dynamic synapses to establish the required level of non-linearity (Marinazzo
et al. 2007). Our results incorporate distinct ON/OFF population responses, and
indicate that oscillatory activity as a response mechanism is possible even when
individual cell responses to external inputs are not purely excitatory. The dynamic
distinctiveness and sensitivity of ON/OFF networks when compared with the
purely excitatory case, i.e. ON/ON networks, are studied elsewhere (Lefebvre
et al. 2009).

4. Instantaneous and delayed feedback dynamics

Although delayed feedback connections have been studied extensively (Campbell
et al. 1995; Chacron et al. 2003; Meyer et al. 2008 and references therein), little
is known about mixed feedback profiles, where non-delayed (‘local’) and delayed
(‘global’) recurrent terms are combined. This set-up is further complicated by the
presence of distinct ON and OFF populations. This raises an important question
as to how robust are the dynamics seen in a delayed feedback system when
additional recurrent terms are considered. Non-delayed or instantaneous recurrent
components account for local signals, mimicking local spatial connectivity and
lateral activity propagation. Eventually, we would like to understand the role
of spatial connectivity profiles (which greatly complicates the analysis), but this
knowledge will build on the simpler all-to-all instantaneous plus delayed coupling
studied here.

Of particular interest is how delayed and non-delayed components combine and
alter the oscillatory activity threshold. For simplicity, we set M = 1 and look at
the case where a single non-delayed recurrent component of polarity g is present.
Equation (2.1) becomes

(1 + a−1
on ∂t)uon(x , t) = −S(uon, uoff , t − τ) + gS(uon, uoff , t) + I (x , t)

and (1 + a−1
off ∂t)uoff(x , t) = −S(uon, uoff , t − τ) + gS(uon, uoff , t) − I (x , t),

}
(4.1)

where we set αon = αoff = 1/2, aon = aoff = 1, hon = hoff ≡ h and β = 25. Note, the
first terms on the right-hand side are delayed, while the second ones are not. As
before, we assumed here that we have a predominantly inhibitory feedback loop,
weighted by K = k = −1. Fixed points of equation (4.1) are now given by

ūon(x) = (g − 1)S(ūon, ūoff) + I (x)

and ūoff(x) = ūon(x) − 2I (x);

}
(4.2)

similarly, for the purely delayed case above, linearizing the system around
equation (4.2) for the ansatz ūon,off(x , t) = ūon,off(x) + uλ(x)eλt , λ ∈ C, yields a
perturbed version of the previous eigenvalue problem

λ + 1 + Reλτ − gR = 0, (4.3)
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Figure 5. Andronov–Hopf curve (4.4) for g = 0.5, 0 and −0.5. Shaded regions correspond to
parameter sets where oscillatory solutions are stable. These regions are delimited by Andronov–
Hopf curves as in equation (4.4) for different values of g. The instability thresholds for τ = 2 are such
that R0.5

c < R0
c < R−0.5

c , indicating that the additional non-delayed excitatory component (g = 0.5)

increases the ‘oscillatory’ sensitivity of the system, promoting oscillatory responses to pulse inputs.

where R is given in equation (3.5). The instantaneous recurrent term is expected
to shift the spectrum, according to the magnitude of g. Oscillatory solutions are
stable in parameter space in a region delimited by the curve

w(R)(− cos(w(R)τ ) + g) = sin(w(R)τ ), (4.4)

where the frequency is now given by w(R, g) = √
(R2 − 1 + 2Rg − R2g2).

The parameter R can be treated as a function of the instantaneous recurrent
strength, i.e. R = R(g), so that we may identify the oscillatory response threshold
by solving equation (4.4) for Rc(g) ≡ Rg

c . Surprisingly, the response threshold is
found to be inversely proportional to g, indicating that increasingly excitatory
non-delayed components decrease the value of the threshold Rg

c and facilitate
the genesis of oscillation. Figure 5 shows this by comparing the values of R−0.5

c ,
R0.5

c and R0
c , the last value corresponding to the purely delayed case, i.e. without

any instantaneous recurrent term. Excitatory non-delayed interactions (g = 0.5)
reduce the oscillatory response threshold, so that R0.5

c < R0
c . The opposite occurs

for inhibitory non-delayed interactions (g = −0.5), where R−0.5
c > R0

c . This implies
that minimal input distribution requirements are relaxed when g > 0, increasing
the system sensitivity to pulse inputs that cause oscillations. In the case of a
localized pulse (figure 6), the minimal pulse spatial width 
 = |x1 − x2| causing
oscillations is significantly smaller, while the interval of amplitudes Io generating
oscillations is greatly enlarged. We also note the characteristic symmetry between
excitatory (Io > 0) and inhibitory inputs (Io < 0), owing to combined ON and
OFF responses, indicating that evenly distributed inputs of opposed polarity will
generate the same network response.
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Figure 6. Pulse widths 
 and amplitudes Io generating oscillatory responses. Shaded regions
correspond to the input configurations where oscillatory responses to a localized pulse are
observed, for g = −0.5, 0 or 0.5. The response threshold changes induced by additional non-delayed
connections, on top of the global delayed inhibitory feedback, alter the criteria imposed on the input
in order to trigger an Andronov–Hopf instability in the system. Parameters are Ω = 1, τ = 2 and
h = 0.25.

In order to test this prediction, we stimulate the network response in figure 7
with a pulse-shaped stimulus of different strengths, i.e. g = −0.5, 0 and 0.5. The
system exhibits small damped oscillations for g = −0.5, indicating that the input
width and amplitude are not sufficient to trigger stable oscillations. When g
is increased to 0, damped oscillations are still observed, although with longer
decay rate, indicating that the system is closer to the oscillation threshold.
When g = 0.5, the input triggers stable oscillations. In all these cases, the same
input distribution was used. The extension to multiple instantaneous feedback
connections may be done in a similar way to that of delayed connections, setting
G = ∑M

j=1 gj , yielding similar quantitative results (not shown).
We can identify the values of R satisfying equation (4.4) and consider how the

response frequency w(Rc, g) varies as a function of g, at the threshold. As figure 8a
shows, an increasing instantaneous recurrent strength g decreases the response
frequency, indicating that local signals shape oscillatory patterns, even in the case
where global inhibitory delayed connections are present. Throughout this work,
we restricted our analysis to the strength interval g ∈ [−1, gSN]. For g < −1, the
frequency w(R, g) becomes imaginary and oscillatory activity disappears inside
the associated region of parameter space. At gSN, a saddle-node bifurcation occurs,
as shown in figure 8b. At this point, network oscillations collide with the basin
of attraction of the new fixed points, and multistability is observed. The saddle-
node bifurcation point is determined by the firing rate threshold h and response
gain β, fixed earlier.
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Figure 8. (a) Input response frequency as a function of the instantaneous recurrent signal polarity
g. The input response frequency at the threshold decreases as the non-delayed recurrent signal
becomes more and more excitatory. (b) Saddle-node bifurcation occurring at gSN ≈ 1.375, delimiting
the region investigated. Parameters τ = 2 and h = 0.25.

5. Conclusion

In this paper, we first demonstrated how oscillations appear in a delayed feedback
network of ON and OFF cells with external stimuli, and investigated the issue
of multiple delayed feedback loops. We then analysed the effects of a mixture
of delayed and non-delayed recurrent connections and demonstrated how the
stability of the input-induced oscillations depends on the strength of non-delayed
connections. When a delayed inhibitory term is present, instantaneous excitatory
connections increase the network oscillatory responsiveness by decreasing the
response threshold and allowing a greater range of pulse inputs to trigger
oscillatory activity. Non-delayed inhibitory connections do the opposite by
increasing the oscillatory response threshold. Further, the response frequency
decreases when g increases.
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