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The effect of cellular heterogeneity on the coding properties of neural populations is studied analyti-
cally and numerically. We find that heterogeneity decreases the threshold for synchronization, and its
strength is nonlinearly related to the network mean firing rate. In addition, conditions are shown under
which heterogeneity optimizes network information transmission for either temporal or rate coding, with
high input frequencies leading to different effects for each coding strategy. The results are shown to be

robust for more realistic conditions.
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Neural ensembles detect and process information em-
bedded in external signals by employing a wide set of
strategies. Typical examples include the frequency-
dependent gain control associated with activity-dependent
synapses [1,2], detection of coincident spikes aided by
neural or synaptic adaptation [3,4], or stochastic resonance
mechanisms [5,6]. When addressing these and other
mechanisms of information processing, the vast majority
of studies assume for simplicity networks of identical
neurons.

Actual neural systems, however, display a prominent
heterogeneity in neuron properties, even among same-class
neurons, and this may have strong implications for infor-
mation processing. A well-known example is the so-called
population coding, a strategy which relies on the particular
responses of individual neurons of a network to code
information. This occurs for instance in V1 cortical net-
works, where the orientation preference of neurons allows
for efficient information coding [7,8]. However, very few
attempts have been made to understand the role of neural
heterogeneity in other neural coding strategies. Recently,
cell-to-cell differences have been found to be relevant in
many contexts, such as in synchronization of inhibitory
networks [9,10] or excitatory ones [11,12], coherent activ-
ity in electrically coupled neurons [13], synchronized
bursting events [14], global detection of weak signals
[15,16], or envelope and temporal processing [17].
Attending to these findings, it is plausible that neural
heterogeneity may greatly influence the performance of
neural populations when detecting and processing external
stimuli. Neither the effect of heterogeneity on the dynam-
ics of neural populations nor its influence on neural coding
are yet fully understood.

In this Letter, we present a theoretical and numerical
study of the implications of heterogeneity for the proper-
ties of neural populations, and, in particular, for their
ability to detect and codify incoming signals. We start by
showing the precise effects that neural heterogeneity has
on the mean firing rate and the synchronization properties
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of the network. Then, we find that these effects have strong
consequences for two main information processing strat-
egies used in many brain areas: rate coding and temporal
coding. More concretely, we show that certain heteroge-
neity values—which lie within the physiological range
found in actual neurons—optimize the transmission of
information in rate and temporal codes, suggesting that
cell-to-cell differences are not useful only for population
coding, but also for more general coding strategies.

We assume a fully connected network of N excitatory
integrate-and-fire neurons, each one governed by the dy-
namics

T d‘;’:t ) v+ RIS + RIS, (1)
where 7, is the neuron membrane time constant, V; is the
membrane potential of the ith neuron in the network, R is
the membrane resistance, and / f»”“, 1 ;‘e‘ are the external and
recurrent input to the ith neuron, respectively. Each neuron
i is assumed to fire an action potential (AP) every time V;
reaches a certain firing threshold, and after that the mem-
brane potential is reset to V, for a time period 7. The
external and recurrent input to the ith neuron are given,
respectively, by

171 = p + o 7,,&,(1), 2

() = %"Z Z]é(t — tf]. — D), 3)
T

where w is a constant input bias, &;(¢) is a Gaussian white
noise of zero mean and unitary variance, o is the noise
intensity, J is the synaptic coupling strength, and the kth

spike from neuron j arrives at neuron i at tf-‘j + D, with D

being a small synaptic delay.

In this framework, each neuron is characterized by a
different distance-to-threshold value, which may be related
to different neuronal features (such as reset potential, firing
threshold, leak or other conductances, etc.). We assume
here that such heterogeneity in the distance-to-threshold
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value corresponds to heterogeneity in firing threshold val-
ues. Therefore, each neuron has a firing threshold 8; which
is randomly distributed following a Gaussian profile P(6)
with mean  and standard deviation w. Such heterogeneity
reflects some of the variability in the individual excitability
properties of neurons found in actual neural systems.

‘We may obtain the stationary firing rate of the model by
employing a mean-field description based on the one pre-
sented in [18,19]. Considering the diffusion approxima-
tion, the recurrent part of the current can be written as
" = r1,Jv,, where v is the stationary mean firing rate of
the network, assuming asynchronous network states [19].
Equation (1) appears then as a Langevin equation of the
form 7,,V; = =V, + uy + o /T, &(t), where py = p +
T.J v 1s the deterministic part of the current. The mean
firing rate of the ith neuron in stationary conditions [18]
is then v; = [1yp + 7, [} f(2)dz]™!, where y;, = %
y, = @, and f(z) = /mexp(z?)(1 + erf(z)). In order
to obtain the stationary mean firing rate of the network, we
must average over all the stationary neuron rates. For large
enough networks (N — 0), it is a good approximation to
substitute the sum over neuron firing rates by an integral
over the network firing rates, given a probability distribu-
tion of rates P(v), that is,

1 & U/ Tt
Vo= Z v, = ,/0 vP(v)dv. 4)
i=1

Assuming that the variability in neuron firing rates is
mainly due to the heterogeneity of firing thresholds, one
can arrive at the following equation for v:

vo= [ Fet + 7 }i”f(z)dz]lP(mda 5)

min

where yy = 97{7""’ , and 6., 6..c are the integration
intervals. These intervals, in practice, must satisfy ,,,, >
6+ w,and V, < 6,,;, < 6 — w. Such restrictions impose
a range of validity of w for our theory; however, this range
is wide enough to include the values observed in experi-
ments, with w being around a few millivolts [20]. Note
that, due to the presence of v, in u,, Eq. (5) must be
numerically solved to obtain v,. In the following, we
rename the right-hand side of Eq. (5) as ® (v, w).

The effect of heterogeneity on the mean firing rate of the
network can be seen in Fig. 1(a): the mean firing rate
increases with the level of heterogeneity, up to several
times its initial (w = 0) value for relatively low w. This
relationship is approximately quadratic in w for low values
of heterogeneity, suggesting that the firing rate depends on
the variance of thresholds. Such a dramatic increase with w
can be explained if we consider that, for w > 0, the exis-
tence of a significant number of low-threshold neurons
induces an extra current to the neurons with high threshold,
and the overall effect is an increase in the network firing
rate. Our theoretical predictions agree very well with the
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FIG. 1 (color online). (a) Network mean firing rate v, as a
function of the level of heterogeneity w for three bias values.
(b) Stability line separating the asynchronous and synchronous
regimes. In both panels, numerical simulations of Eqs. (1)—(3)
(points) confirm our mean-field predictions (lines). Insets in
(b) show a typical time evolution of the mean firing rate for
the corresponding behavior. Coupling strength J is 10 mV (a) or
20 mV (b). Here and below, unless specified otherwise, we have
N=1500, 7,=20ms, R=0.1GQ, V,=10mV, 7, =
5ms,D=2ms, § =20 mV, and o = 3 mV.

numerical simulations for different values of the input
current w. Low-threshold neurons do not only induce an
extra current to the network, but also allow for an easier
synchronization due to their high firing rate. This may
be analyzed by employing a simplified treatment of the
firing rate dynamics of our system. Concretely, for asyn-
chronous activity states, one may assume that the dynamics
of the network firing rate evolves according to 7,7 =
—v + ®(v, w), where we set 7, =3 ms as the typical
time scale of the rate dynamics [21]. Using standard tech-
niques to study the linear stability of this dynamics, one
arrives at the local stability condition

femax ’T%,LJU(yb’) - f(yr)]P(e) 46 <1 (6)

Omin O-[Tref + Tm ji;f f(Z)dZ]2

assuming, for simplicity, D ~ 0. Figure 1(b) presents a
phase diagram displaying the synchronous and asynchro-
nous regimes of the system, and reveals the existence of a
critical stability line separating both regimes. Numerical
simulations as well as theoretical predictions indicate that
networks of heterogeneous neurons need weaker constant
inputs to display collective synchronous activity. They also
show that a homogeneous neural network may enter the
synchronous regime by simply increasing its level of het-
erogeneity (using, for instance, input-driven cellular ho-
meostatic mechanisms [20]). The synchronous regime
referred to here differs from the one found in networks
with inhibitory neurons, which involves fast oscillations
without strong cell-to-cell synchronization [19].

Taking into account these findings, one may wonder
about the implications that neural heterogeneity could
have for information processing tasks, via the two
heterogeneity-induced effects described above. The impli-
cations of the increment of v, with w may be investigated
by considering that, instead of having a constant input u,
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each neuron now receives an external input given by
n + S(r), where S(t) = A, sin(27f,t) stands for a weak,
slow modulation (1/f, > 7,). Such modulation could re-
flect information encoded in brain waves and transmitted
from other brain areas, a mechanism that has been asso-
ciated with high-level integration of information [22]. In
asynchronous conditions, the network may be able to
detect and transmit the slowly-modulated signal by mod-
ulating its own mean firing rate to follow the signal [see
Fig. 2(a)], a strategy known as rate coding [23,24]. Since
the relationship 7, — w is nonlinear, one could expect
different levels of linear performance on this task depend-
ing on the level of heterogeneity. Indeed, as Fig. 2(b)
shows, the coding efficiency of the slowly modulated
signal (measured as a standard input-output correlation
between the input signal and the network mean firing
rate) is optimized for a given (nonzero) value of neural
heterogeneity, in a stochastic resonancelike fashion
[15,16,25]. Interestingly, the optimal value (which we
denote as w* hereafter) is approximately w* ~4 mV, a
value which is close to the firing threshold variability
found, for instance, in cortical areas [20]. Thus, a moderate
level of cell-to-cell differences may optimize, via rate
coding strategies, the transmission of information em-
bedded in brain waves from another cortical region.
The effects of heterogeneity on synchronization may also
play an important role in information processing. We
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FIG. 2 (color online). (a) Time varying firing rate (lower red
line) of an heterogeneous (w = 4 mV) neural population to a
slowly modulated signal (blue upper line) in the asynchronous
regime, corresponding to a rate coding scheme. (b) Input/output
correlation as a function of w. (c) Response of an heterogeneous
(w = 2.5 mV) neural population, close to the stability line, to a
train of deltalike pulses (blue triangles), corresponding to a
temporal coding scheme. (d) PPV is optimized for a given value
of the heterogeneity. The time window used to identify a TP
event was At = 10 ms. Inset: as suggested by our analysis, w*
closely follows the mean-field stability line (blue line). For
panels (a) and (b): w =14 mV, J=10mV, A; =0.5mV,
and f; = 2 Hz. For panels (c¢) and (d): x4 = 14 mV (varying
in inset), J = 20 mV, A,=1mV, and fp = 3 Hz.

studied this possibility by considering that, in addition to
a constant input w, neurons receive coincident deltalike
impulses of small amplitude A, where the time intervals
between impulses follow a Poisson distribution of mean
rate f,. Such stimuli resemble highly synchronized events
coming from other brain areas, and constitute a weak
signal of pulses precisely localized in time. From
Fig. 1(b), one could expect that networks with different
heterogeneity levels respond differently to weak pulses,
because of their different distances to the stability line. In
particular [see Fig. 2(c)], networks which are close to the
stability line are expected to display enhanced sensitivity
to weak stimuli, producing highly synchronized population
spikes as an immediate response to an input pulse [26].
Such a detection strategy, which strongly relies on the
generation of sharp responses precisely located in time,
is known as temporal coding [23,24]. In order to measure
the time coincidence of input and output events, we employ
the positive predictive value (PPV) from receiver operating
characteristic (ROC) theory, which is defined as PPV =
TP/(TP + FP), with TP, FP being the number of true
positive and false positive detections, respectively [27].
As Fig. 2(d) shows, the efficiency of the system to detect
input pulses (measured as the PPV) is bell-shaped, with an
optimal value of neural heterogeneity of w* ~ 2 mV. This
dependence indicates the existence of an optimal neural
heterogeneity level for the detection of precisely timed
events under temporal coding strategies. As predicted,
such optimal heterogeneity level w* is close to the stability
line [inset of Fig. 2(d)], where sensitivity to small inputs is
enhanced.

We can further characterize the role of heterogeneity on
rate and temporal coding. For the rate coding scheme, we
study the optimal heterogeneity value w* as a function of
the modulation frequency f,. As Fig. 3(a) shows, w*
increases with f,, indicating that networks with low
(high) levels of neural heterogeneity are better fitted for
processing information embedded in slow (fast) brain
waves. The modulation frequency does not have a strong
influence on the peak value of the input/output (I/O) cor-
relation for f; < 30 Hz. Figure 3(b) plots w* for different
brain wave regimes. It also shows that the dependency
w* — f, follows an exponential function, suggesting that
heterogeneity in neuronal properties may serve to nicely
discriminate among high-frequency signals, since a net-
work will detect properly a signal of a given frequency f,
but not those of frequencies f + & f.

Attending to the temporal coding strategy, we have also
studied the effect that the mean pulse rate, f,, has on the
detection abilities of the network. Figure 3(c) shows that
larger f,, values tend to increase the peak value of the
positive predictive value (namely PPV™), but not the value
of w at which the peak is found, which is maintained at
w* ~ 2.5 mV. Therefore, the phenomenon is robust for
different input rates, and efficiency of temporal coding in
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FIG. 3 (color online). (a) Input/output correlation as a function
of w for different modulation frequencies f, in the rate coding
scheme. (b) Dependence of the optimal heterogeneity level w*
on f. Labels indicate the type of brain wave corresponding to
this region. For both panels (a) and (b), A, = 0.5 mV, J =
10 mV, and p = 14 mV. (c) PPV as a function of w for different
values of f, in the temporal coding scheme. (d) Dependence of
the peak value PPV* on f,. For both panels (c) and (d), A, =
1 mV, J=20mV, and x = 13 mV. (e) Mean firing rate for
a network of 800 excitatory and 200 inhibitory neurons.
Connectivity is sparse (400 afferent connections per neuron),
coupling strength is 30 mV for excitatory synapses and —60 mV
for inhibitory ones. Panel (f) shows the I/O correlation for such
a realistic network with an input sine wave as in
Fig. 2(a), except for u = 15 mV.

networks with w ~ w* will increase with f,. Such
findings, together with results shown in Figs. 3(a)
and 3(b), also indicate that the effects of the characteristic
input frequency on information transmission depend on the
coding strategy. Figure 3(d) shows the dependence of PPV*
with f,.

We have successfully tested our results in more realistic
situations, including sparsely connected networks with
excitatory and inhibitory populations. As an example,
Figs. 3(e) and 3(f) show the robustness of our findings
for the rate coding scheme in such systems, where inhibi-
tion simply modifies the /-f curve (this is also true for
temporal coding—not shown). Preliminary results reveal
the robustness to the inclusion of dynamic synapses.

Summarizing, our theory and numerics show that het-
erogeneity benefits not only population coding, but also

rate and temporal coding strategies. In particular, neural
heterogeneity produces a nonlinear increment in the net-
work mean firing rate, and such nonlinear increment leads
to an enhancement of signal detection under rate coding.
On the other hand, networks of heterogeneous neurons
synchronize more easily, which may be used by the system
to improve the detection of weak, fast stimuli under tem-
poral coding. Recent experimental findings suggest, in-
deed, that cell-to-cell differences may play a positive role
in processing the information of small and big chirps in the
brain of the electric fish for both rate and temporal coding
[28], which supports our hypothesis. It is worth noting that
the analytical approach that we developed here may be
useful for more general studies, since it is valid for sub-
threshold as well as suprathreshold neural dynamics, for a
wide type of inputs, and for weak or strong coupling. Our
results also suggest a novel research direction aimed at
understanding the role of heterogeneity on other coding
strategies such as correlation coding [29,30].
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