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a b s t r a c t

In feed-forward networks, output pairwise correlations can increase with firing rate. Here, we study

correlations between sensory neurons with global inhibitory feedback and cross-correlated external

inputs. The average pairwise correlation coefficient is computed from simulations of a network of noisy

leaky integrate-and-fire neurons with delayed spike-driven feedback. We focus on the relation between

the correlation and the feedback strength. This relation is monotonically increasing when the common

noise is frozen, and non-monotonic when it varies across trials. In both cases, beyond a certain feedback

strength, the increase in correlation mirrors the emergence of asynchronous network oscillations

quantified by the sharpness (‘‘coherence’’) of the peak in the spike train power spectral density. Our

results suggest that pairwise correlations are strongly controlled by feedback via the interplay of mean

firing rate and oscillatory activity. For frozen common noise, correlations in fact remain near zero up

until oscillatory activity is sufficiently coherent. These results are found in both sub- and supra-

threshold dynamic regimes, for low and moderate internal noise levels, as well as for a heterogeneous

distribution of feedback gains or firing thresholds.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Correlated neural activity has been observed in a variety of
functional areas, including those involved in attention [40], audition
[12], vision [10], olfaction [14], electrosensation [6] and motor
control [34]. The properties of such activity are suspected to be
critical for sensory and cortical processing [7,16,11]. The mechan-
isms underlying pairwise correlations, including the influence of
connectivity, continues to attract the attention of theorists and
computational neuroscientists (see e.g. [15,28,7,25,42,41,44,45]).

The interpretation of correlations is difficult, especially in large
networks [43]. Precise measurements of correlations, in conjunction
with modeling studies, are key to understanding their sources and
roles. Correlations are often minute [11], and active de-correlating
mechanisms may be at work [41]. It is also important to understand
the correlating effect of specific dynamical states such as network
oscillatory states [4,8,28,18,14,31,37]. Correlations have been
described in non-delayed recurrent networks with mixtures of
excitation and inhibition [15,25,41], including balanced states [19]
or chaotic states with temporal variability that is stabilized by
inhibitory feedback [17].

Recent work has further emphasized the role of shared
stimulus inputs [14,13,47,21] and background activity [37]. Other

efforts have quantified the range of temporal scales over which
correlations occur [42], as well as the spatial extent of correla-
tions [26,23]. For example, fast correlations over a small region
appear consistent with common input, while slow correlations
over broad regions seem to be associated with feedback [2,24,43].

It is generally known that inhibition can control high
frequency [30,18] as well as spontaneous activity in cortex [1].
On the other hand gamma oscillations, thought to be fundamental
for transmitting information [3], rely on inhibitory interneurons
[48,5,33], and arise from oscillatory, synchronized firings of these
interneurons onto pyramidal cells [4]. In the electrosensory
system, oscillations and inhibition are linked via global delayed
inhibitory feedback [8,9,28,31], and will be our focus here.
Further, output pairwise correlations in feed-forward circuits
generally increase with firing rate [7,10,36]. This is so when input
correlations are not too strong, otherwise the output correlation
becomes independent of firing rate [45]. This suggests that
inhibition could on the one hand decrease correlations by sup-
pressing firing; on the other hand, it is a form of coupling which
can potentially correlate firings, especially if it induces oscilla-
tions [14,32].

Thus the question of how inhibition alone and oscillations
interact to shape correlations in spiking networks is open, and of
special interest for sensory systems. Here we investigate correla-
tions in a network of excitatory neurons. The network receives
correlated external input and can exhibit oscillations, and the
cells inhibit each other via all-to-all delayed inhibition.

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2012 Elsevier B.V. All rights reserved.

doi:10.1016/j.neucom.2011.12.004

n Corresponding author.

E-mail address: alongtin@uottawa.ca (A. Longtin).

Neurocomputing 83 (2012) 146–157



Author's personal copy

This backbone architecture is directly inspired by the electric
sense [8] and the olfactory sense to a lesser extent [14]. Correla-
tion is assessed by a measure of linear cross-correlation between
spike trains [39,2,24,7,44]. We quantify network oscillations by
the coherence of the associated spectral peak (peak height divided
by relative width: [38,27]), and evaluate the influence of feedback
strength on this coherence, mean firing rate and correlation.
Finally, since parameter heterogeneity often reduces correlations
[4,3], we further investigate the role of heterogeneity in
our model.

Section 2 presents the model under study and the numerical
methods to estimate the correlation. Section 3 presents our main
results on how feedback influences correlation. Section 4 studies
the correlative effect of emergent oscillations using spectral
methods. The effect of heterogeneity is the focus of Section 5.
A discussion and outlook onto future work follow in Section 6.

2. Model and numerical methods

We use a network of leaky integrate-and-fire (LIF) neuron
models to analyze the pairwise correlations of spiking activities.
The model comes from studies of the lateral line lobe of weakly
electric fish, where principal cells are connected foremost through
feedback [8,9,28]. These principal cells are also known as pyr-
amidal cells, and provide the main output of this lobe structure.
This model describes the dynamics of the membrane potential of
neuron i as follows:

C
dvi

dt
¼�glviþmEþZiðtÞþSiðtÞ�IG ð1Þ

where n and S are the membrane potential and input current,
respectively. The capacitance C and the leak conductance gl are set
to one. The last term IG represents feedback (see below). Also, mE

denotes the base current (referred hereafter as the bias), and Zi(t)
is an internal zero-mean Gaussian white noise of intensity DE that
represents synaptic and channel noise in-vivo. Time is measured
in units of the membrane time constant, which in the weakly
electric fish is around 6 ms [8,9]. Every time the potential reaches
the fixed firing threshold nT, the neuron is said to fire, and the
voltage is immediately reset to a value nR where it remains for the
absolute refractory time tR equal to 1 membrane time constant
(an after-hyperpolarizing current makes this refractory period
rather long). The output spike train of the LIF model is obtained
by collecting the instants of threshold crossing and modeling the
associated spikes as d-functions:

yðtÞ ¼
X

j

dðt�tjÞ, ð2Þ

where the tj are the successive firing times. The structure of the
network model, shown in Fig. 1, includes N excitatory LIF neurons,
which all provide excitatory input to an inhibitory LIF neuron
[31]. The inhibitory feedback response from this neuron reaches
all the excitatory neurons in layer 1 after a fixed time delay with
respect to when it left the excitatory cells in layer 1, mimicking
finite axonal transmission time.

Each excitatory neuron (numerated circles in Fig. 1) receives
an input Si(t) from a sensory neuron, which for simplicity just
relays the physical external stimulus. It is composed of the
following components (motivated by work on natural inputs in
the electric sense—see [9,28]):

SiðtÞ ¼ s
ffiffiffiffiffiffiffiffiffi
1�c
p

xiðtÞþ
ffiffiffi
c
p

xcðtÞ
h i

ð3Þ

where xi(t) is a noise specific to each neuron (i.e. the xi(t) are
independent across neurons) and represents local fluctuations in
the physical environment, caused e.g. by small objects, prey or
movement. The term xc(t) is a common noise, independent from
all the other xi(t) and shared by all neurons. It mimics global
stimuli such as large objects, or other fish in Doiron et al. [8,9].
These latter two noises are here made more realistic by being
band-limited as in experiments ([9,7])—in contrast to the internal
noise that is considered Gaussian white noise. The individual
noise could have been lumped with the internal noise, but we
chose it separate for our work given their different physical
source. The external noises consist of two Gaussian low-pass
filtered (0–150 Hz, eight-order Butterworth filter) noise processes
of unit variance. They are scaled by the input correlation coeffi-
cient c to determine the degree of shared input of all the
excitatory neurons: c¼0 means the neurons have no shared
external noise, while c¼1 means the external noise is completely
shared by the neurons. In this form, varying the input correlation
does not change the total intensity of the external input noise. We
set c¼0.6 throughout our study, but also quote results for a
lower value.

The last term in Eq. (1) represents the inhibitory feedback
generated by the inhibitory neuron, calculated by the convolution
of a delayed a function and the spike train yI of the inhibitory
neuron:

IGðtÞ ¼ G

Z 1
tD

aðtÞyIðt�tÞdt ð4Þ

with

aðtÞ ¼ t�tD

t2
S

exp �
t�tD

tS

� �
: ð5Þ

The feedback strength in Eq. (4) (referred hereafter as feedback
gain G) is set to be positive, but the inhibitory current in Eq. (4)
appears with a negative sign in Eq. (1). Increasing the gain G thus
means a stronger inhibitory feedback current. Here tD is half the
transmission delay around the feedback loop, and tS is the time
constant of synaptic responses. The output of an LIF neuron
provides here the inhibitory feedback to the excitatory neurons
[31], rather than the sum of spike trains from the excitatory
neurons themselves [8,28]. As shown in Marinazzo et al. [31], this
does not qualitatively affect the behavior of the excitatory
neurons, yet provides a first step towards exploring the frequency
response of the feedback, and in particular its plasticity. The
output of excitatory neurons convoluted with another delayed a

Fig. 1. Network model. A population of sensory neurons S sends afferent fibers to

a layer of principle cells in layer 1 (circles labeled 1 to N). These principle cells

send excitatory projections to a postsynaptic target. This could be another layer in

the same or different nucleus, and is modeled here by a single neuron, which in

turn sends inhibitory feedback to all the principle cells.
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function provides only part of the input to the inhibitory neuron,
as it also has a constant base current mI¼0.9 and internal
Gaussian white noise Z(t) with intensity DI¼0.112:

If ¼ mIþZðtÞþ
Z 1
tD

aðtÞ
XN

i ¼ 1

yiðt�tÞdt: ð6Þ

With this network model, we can easily change the dynamic
regime of the excitatory neurons by setting the values of mE and
DE above or below the firing threshold vT of the LIF neurons in
layer 1. For mEonT, the neurons are silent in the joint absence of
internal noise, external noise and feedback. This is referred to as
the sub-threshold regime. For this case, increasing internal noise
significantly shortens the mean firing period. The other dynamic
regime of interest is the supra-threshold regime for mE4nT, where
deterministic firing occurs even without internal noise, external
noise and feedback. For simplicity, our investigation of the
correlated activity of the excitatory neurons will be carried out
for only two different values of the intensity of the internal noise,
DE4nT and DEonT. This will be done in both the sub-threshold
and supra-threshold regimes.

The pairwise spike correlation measures the relative spike
timing of two neurons. To compute the pairwise spike correla-
tions, we use the spike train cross-correlogram (CCG) [39,2,24,6]
rather than the spike count over a small counting window [7]. It is
defined as

CCGijðtÞ ¼
PM

k ¼ 1

PL
t ¼ 0 yk

i ðtÞy
k
j ðtþtÞ

MðL�9t9Þ
ffiffiffiffiffiffiffiffi
lilj

q , ð7Þ

where M is the number of trials or realizations, L is the duration of
every trial, and li and lj are the firing rates of neurons i and j,
respectively. Spike trains of two neurons yi

k and yj
k are defined as

in Eq. (2). Here, we represent yi
k and yj

k as binary time series with
1 ms resolution. In each bin, yi

k
¼1 (yj

k
¼1) if neuron i (j) on trial k

fires one or more spikes during this millisecond; otherwise, yi
k
¼0

(yj
k
¼0). The term L�9t9 is used to correct for the degree of overlap

as a function of the discrete time lag t of the two spike trains. Due
to the division of the correlation function by the geometric mean
spike rate

ffiffiffiffiffiffiffiffi
lilj

q
, CCG ends up with units of coincidences

per spike.
The auto-correlograms (ACG) of the neurons, used below to

normalize the cross-correlograms, are calculated similarly as the
CCG, but by letting i¼ j:

ACGjjðtÞ ¼
PM

k ¼ 1

PL
t ¼ 0 yk

j ðtÞy
k
j ðtþtÞ

MðL� tj jÞ
ffiffiffiffiffiffiffiffi
ljlj

q : ð8Þ

Here we need to distinguish between correlations attributable to
the stimulus (signal correlations) from those that are not (noise
correlations). A standard technique to perform this distinction is
to correct all CCGs and ACGs by subtracting the shift predictor SPT.
This factor is based on the same normalization as above but
calculated with different trials, k and k0 [39]:

SPTijðtÞ ¼
PM

k ¼ 1

PL
t ¼ 0 yk

i ðtÞy
k0

j ðtþtÞ

MðL� tj jÞ
ffiffiffiffiffiffiffiffi
lilj

q , ð9Þ

where k0 ¼kþ1(koM) or k0 ¼1(k¼M). By subtracting the shift
predictor, the method to estimate the correlation coefficient is
very similar to that in other studies [39,2,24,6]; a slight difference
here is that the outer sum extends from 1 to M (instead of M�1).
The pairwise spike correlation of the two neurons i and j is
estimated by the ratio of the area of the CCG within a certain
range of lags defining a window T to the geometric mean area of

the ACG over the same window:

CijðTÞ ¼

PT
t ¼ �T CCGijðtÞ�

PT
t ¼ �T SPTijðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t ¼ �T ACGiiðtÞ�
PT

t ¼ �T SPTiiðtÞ
h i PT

t ¼ �T ACGjjðtÞ�
PT

t ¼ �T SPTjjðtÞ
h ir :

ð10Þ

When T is large enough, Cij saturates to a steady state value C̄ij.
Here Cij is defined as the pairwise correlation coefficient of
neurons i and j. Finally, the correlation coefficient Cor of the
network reported below is obtained by averaging the pairwise
correlation coefficients over all pairs of excitatory neurons:

Cor¼
1

NðN�1Þ=2

XN

i ¼ 1

XN

j ¼ iþ1

Cij: ð11Þ

In order to calculate Cor for each parameter set, M¼100 trials,
each with time duration L¼11 s, were simulated. We remove the
first 1 s of each trial to avoid the influence of the initial transient
response. CCGs and ACGs are computed individually for each
group, then corrected by the shift predictor. The shared input
xc(t) in Eq. (3) is either (1) fixed for all trials, or (2) different for
every trial. We report on results for both cases. The parameter
values chosen in our work are: N¼100, tD¼4 ms, tS¼0.5 ms,
s¼0.2, T¼100 ms, nT¼1,nR¼0,tR¼1. Eq. (1) is integrated using an
Euler–Maruyama scheme with a time step of 5�10�5 s.

3. Pairwise correlation results

We first illustrate the behavior of our model in open-loop
(G¼0) and for two non-zero feedback strengths. Fig. 2 shows the
raster plots, the population averaged firing rate, the feedback
current, and the membrane potential for one randomly chosen
neuron. The plot shows a drop in firing rate, and a clear progres-
sion from spike trains with little structure to network oscillations,
with firings more phase locked to this oscillation. Fig. 3 shows the
structure of the cross-correlograms at different values of G for the
case of frozen common noise. The left panels show the shift
predictors, and the right panels the CCG after subtraction of the
SPT. We note that a peak appears around lag zero. It increases
with feedback gain, which reflects increasing pairwise correla-
tions. The delayed feedback is responsible for the bumps in the
CCG, whose magnitudes increase with G. These CCGs are similar to
the ACGs except at very short lags, as in [28]. Note that, in
contrast, the SPT’s for the case where the common noise varies
across trials are flat (not shown).

We further note that the CCGs are symmetric. This is expected
because each neuron in the network has identical parameters and
receives the same delayed inhibitory feedback. This global feed-
back thus has the same effect on the firing activity of all the
excitatory neurons. CCG’s may show some asymmetry for parti-
cular neuron pairs if the neurons are different (as in Section 5),
because their firing rates will be different [45]; this will be
averaged out to a large extent when Cor is computed as an
average over neuron pairs.

We now explore the relationship between the correlation
coefficient of the network and the inhibitory feedback gain. We
focus for now on the case where the common noise is frozen
across trials. Later we show results when the common noise
varies across trials. First, a sub-threshold base current mE¼0.9
with low internal noise DE¼0.112 is chosen. In this case, spikes
are solely induced by noise (internal and external). As shown in
Fig. 4 (top), Cor first remains constant near zero for small values of
the feedback strength G, but later rises after G exceeds some
value. Afterwards, a stable and relatively high level of pairwise
correlation is maintained with further increases in G. In the supra-
threshold regime, where mE is raised to mE¼1.2, the curve of Cor vs

Jin-li Xie et al. / Neurocomputing 83 (2012) 146–157148
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G in Fig. 4 (bottom) also increases monotonically, but starts to rise
at a larger value of gain than in the sub-threshold case.

Moreover, Cor in the supra-threshold regime reaches signifi-
cantly higher values than in the sub-threshold regime. Since
correlation can be proportional to firing rate in feed-forward
networks [7], it is likely that the increase of Cor with the bias mE is
a consequence of the associated increased firing rate. To gain
more insight into the increase in Cor, we now look at the spectral
properties of the spike trains.

4. Spectral coherence and correlation

4.1. Definition of spectral coherence

To better understand the relationship between Cor and G, we
calculate the spike train power spectrum and the mean firing rate
of a single excitatory neuron in the network for different values of
G. Since the statistics of spike trains are the same for all excitatory
neurons, it suffices to show the firing rate and power spectrum for
one neuron. The spike train power spectrum of neuron i is
determined by:

SðoÞ ¼/ ~yi ~y
n

i S ð12Þ

and

~yiðoÞ ¼
1ffiffiffi
L
p

Z L

0
e�iotyiðtÞdt, ð13Þ

where ~yi is the Fourier transform of the spike train, and ~yn

i

denotes the complex conjugate of ~yi. The brackets represent an
average over multiple realizations of the external individual noise
xi and of the internal noise Zi, which change from trial to trial.
Neglecting the temporal patterning of spikes, an arbitrary neuron
i can also be simply characterized by its mean firing rate li¼

/yi(t)S, where the average is taken across trials and over time.
The sub-threshold regime with small internal noise DE is

chosen to illustrate the dynamic behavior of the network with
varying inhibitory feedback gain. As Fig. 5 illustrates, the spec-
trum of the neuron exhibits a peak at frequency in the gamma
range when G is strong enough (G40.2). The appearance of the
peak means the excitatory neurons are exhibiting epochs of
oscillatory activity that are caused by the inhibitory feedback
[8,9]. These gamma oscillations likely influence the correlations
between neurons. We further find that with the increase of G, the
height of the gamma peak, denoted hp, exhibits a drastic increase
from G¼0.3 to G¼0.5 (Fig. 5(a)–(c)), but increases only slightly
beyond G¼0.6 (Fig. 5(d)).

1000 1100 1200
0

50

100
ne

ur
on

 n
um

be
r,i

1000 1100 1200
0

50

100

fir
in

g 
ra

te

1000 1100 1200
0

1

2

fe
ed

ba
ck

 c
ur

re
nt

1000 1100 1200
0

5

10

m
em

br
an

e 
po

te
nt

ia
l

1000 1100 1200
0

50

100

1000 1100 1200
0

50

100

1000 1100 1200
0

1

2

1000 1100 1200
0

5

10

t (ms)

1000 1100 1200
0

50

100

1000 1100 1200
0

50

100

1000 1100 1200
0

1

2

1000 1100 1200
0

5

10

Fig. 2. Illustrations of the model behavior. Raster plots, network firing rate in spikes per second, feedback current and membrane potential (in dimensionless units) of a

single neuron for (a) G¼0, (b) G¼0.3, and (c) G¼0.7, for the low internal noise sub-threshold regime mE¼0.9, DE¼0.112. The input correlation is c¼0.6 here and for all

other figures except Fig. 11.
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Since the power of the gamma oscillations varies with the
inhibitory feedback gain, we then measure the regularity of
the spike train in the frequency domain for different values of
G. The tendency of the power spectrum to present a sharp peak
can then be quantified by the degree of spectral coherence used in
the stochastic dynamics literature [38,27]:

b¼
hp

Do
op, ð14Þ

where hp and Do are, respectively, the height and width-at-half-
maximum of the averaged spectrum peak at frequency op. This
measure can then be compared with the correlation coefficient of
the network.

4.2. Frozen input noise

We first consider the sub-threshold low internal noise case. Cor,
the coherence b, and the mean firing rate R are plotted as a function
of G, first for the low noise case (Fig. 6). Because of the inhibitory
feedback, the firing rate of the neuron decreases as G increases
(Fig. 6 middle). Further, as expected from Fig. 5, the coherence
increases monotonically with G (Fig. 6 bottom) following a sigmoidal
relation. This is the case for the sub- and suprathreshold regimes.

Our results with frozen common noise show relatively little
variation in Cor with G except when G goes past a certain value.
Fig. 6 shows that this value is G �0.3 in the sub-threshold regime
at lower noise, and that b is relatively low over the same range of
G. This suggests that, for lower G, any increase in Cor that one
might expect from weak global coupling is offset by the

decreasing firing rate (Fig. 6). At higher G, the mean rate decreases
more slowly, but b shows an abrupt increase. The growth in Cor

now parallels that of b, suggesting that Cor is now determined
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Fig. 4. Pairwise correlation coefficient (Cor) remains near zero, then increases

with the strength of inhibitory feedback (G) for the low internal noise case

DE¼0.112. (a) Sub-threshold base current with mE¼0.9. (b) Supra-threshold base

current with mE¼1.2. Here the common noise xc is frozen across trials. The

integration window for the CCGs is T¼100 ms.
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mainly by the oscillatory strength and less by the mean rate. Fig. 7
also shows that this reasoning holds for the higher noise case, for
both the sub- and suprathreshold regimes.

The magnification offered by Fig. 6 shows that Cor actually
increases abruptly at G�0.45 for low noise (triangles). From

Fig. 7, b is also lower for the sub-threshold case, but eventually
increases, which suggests that the lower value of b is at least
partly responsible for delaying the increase in Cor out to larger
gains compared to the sub-threshold case. Fig. 7 shows that Cor

with higher noise is insensitive to feedback over an even larger
range of G (up to �0.6) compared to the lower noise case (Fig. 6).
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feedback gain (G) for the higher noise case DE¼0.246, in the sub-threshold regime

(circles, mE¼0.9) and supra-threshold regime (triangles mE¼1.2). Here the com-

mon noise xc is frozen across trials. The behaviors are qualitatively the same as for

the low noise case (Fig. 6). In the subthreshold regime, the mean rate is higher

than in the low noise case. The integration window for the CCGs is T¼100 ms.
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At higher noise, Cor and b are also seen to be higher for the supra-
threshold regime. Finally, Fig. 7 shows that b and Cor grow
similarly in the higher noise case—even though b actually shows
a small dip around G¼0.55. So again, these results suggest that
the effects of rate and coupling offset each other up to moderate
values of G, and that the correlating effect of network oscillations
takes over at higher G. Overall in fact, one sees a clear co-variation
of Cor and b across regimes for frozen common noise. This will
also be the case when the common noise varies across trials
(Figs. 9 and 10).

4.3. Constant firing rate simulations

To gain more insight into the relative effects of mean rate and
b, we have further investigated Cor vs G (with frozen common
noise) when the mean rate is kept approximately constant and
equal to its value in open-loop. This was achieved by adjusting
the bias upwards as G increased. This was done for the
sub-threshold lower noise case. Fig. 8 plots Cor vs G and compares
it to the case where the rate is allowed to decrease (Fig. 6 upper
panel). Cor reaches higher values with the constant rate, but is
maintained near zero over a slightly wider range of G values
(0–0.4 instead of 0–0.25). Given that the rate is constant, one
might expect that the correlating effect of the oscillation, i.e. of b
(Fig. 6) be exposed for smaller values of G, and thus that Cor

would jump up for Go0.25 rather than for a larger G�0.4.
However, the comparison is not so simple, because maintain-

ing the rate constant implies that we are looking at higher biases
(see the caption of Fig. 8). In particular, when G¼0.25, the
required bias is already 1.2, i.e. the regime has changed between
the sub- and supra-threshold cases we have been studying.
A more appropriate comparison may then use Cor vs G for the
supra-threshold regime with low noise with decreasing rate
(Fig. 8 triangles, from Fig. 4b). The constant rate curve jumps up
earlier than the curve with decreasing rate. This supports the
notion that Cor is no longer held low by the decreasing rate, and
can thus reflect the correlations imparted by the coupling.

4.4. Common noise varies across trials

We have also performed simulations for the case where the
common noise xc varies across trials. Fig. 9 shows results for the
low noise case, with the same low noise value used earlier. One
now sees that the curve is non-monotonic for both the sub- and
suprathreshold regimes. The value of Cor does not start at zero in
open loop, as it did for frozen common noise. Further, the value of
Cor for G¼0 increases with the mean firing rate as in de La Rocha
et al. [7]. This can be seen by looking at the mean firing rate for
the two biases in Fig. 6 (middle panel): the higher bias of the
suprathreshold case produces a higher mean rate than the
subthreshold case, even though the rate decreases with gain in
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both cases. The higher rate case has a value of Cor¼0.79, in
contrast to the lower rate case where it is 0.42. The Cor values are
in fact consistently higher for the suprathreshold regime across
the range of feedback gains. This implies that the system is in a
regime where the output correlation is proportional to output
firing rate.

Fig. 10 shows results for higher noise in the sub- and supra-
threshold cases. The Cor vs G curve is again non-monotonic, with
a minimum around G¼0.45. This contrasts with the minimum
around G¼0.3 for low noise (Fig. 9). In both cases the drop in
correlation at low G mirrors the drop in firing rate (Fig. 6 middle
panel). Further, Fig. 10 shows that the increase in correlation seen
at higher G likewise parallels the increase in b. Thus, the
co-variations in rate and b in this case suggest that the shape of
Cor vs G is again determined by an interplay of dropping mean
rate and an increasing network oscillation. A fuller understanding
will require more theoretical and computational work beyond the
scope of this paper.

It is important to note that we have investigated two different
sets of simulations, corresponding to two types of stimulation:
across trials, the common noise is (1) constant or (2) varied. These
two kinds of stimulation can also be implemented experimentally.
In both cases, one has to correct for SPT. Our point here is that,
depending on how one does the experiment or simulation, one will
get a different view of how correlations vary with feedback gain. The
non-SPT corrected correlogram data in the frozen noise case are
non-monotonic, and have higher values than the SPT-corrected ones
for all gain values (not shown). The SPT correction thus removes the
common noise-induced correlations in the firing rates of the cells.
When the common noise varies across trials, the SPTs are flat (not
shown); then their subtraction from the CCG does not alter the
shape of the CCG, yielding overall larger areas under the curve and
consequently larger values of Cor.

All the results up to now regarding the dependence of Cor on G,
whether the frozen noise was varied or not, were obtained for the
relatively high input correlation c¼0.6. However, it is known that
the transfer of input correlations to output correlations (i.e. the
correlation susceptibility) is more significant for weaker input

correlations [45]. We thus tested whether the results were
qualitatively the same for lower input correlations. Fig. 11 shows
the results for varying common noise in the case c¼0.2. Again a
non-monotonic behavior is seen as in Fig. 9 (top), and in fact the
minimum occurs at about the same value of gain. The same story
holds with frozen common noise (not shown). While we have not
explored the full range of c values, such as very strong or very
weak ones, these results suggest that the feedback dependence of
Cor is a robust phenomenon for a good range of input correlations.
The foregoing results also show that the system is in parameter
regimes where output correlation is proportional to input corre-
lation and firing rate.

5. Heterogeneous network

Up to this point we have not taken into account the hetero-
geneity of the network. As shown by previous studies, hetero-
geneity can desynchronize networks ([3,48]), because it can
translate into variability in intrinsic action potential frequency,
which weakens correlations in the network. Also, threshold
(or bias) heterogeneity can increase firing in the presence of
recurrent excitation, because the more excitable cells can help
recruit others. Here we briefly study the effect of the hetero-
geneity on the relationship between Cor and G with global
inhibition, since this inhibition affects the rate and oscillation
regularity. We achieve this goal by distributing either G or the
firing threshold nT for each cell according to Gaussian statistics.
These are parameters that are likely to vary significantly across
cells since, for example in the electrosensory system (see [6] and
references therein) the different excitatory cells have a distribu-
tion of firing rates, and the feedback synapses are not identical
and furthermore can be plastic.

Fig. 12 shows the results of computer simulations for the
correlation coefficient of the network with delayed inhibitory
feedback described in Fig. 1, when either G (triangles) or nT
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Heterogeneity decreases Cor, yet preserves its qualitative dependence on G.
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(squares) is Gaussian-distributed. Such static Gaussian parameter
noise alters the values of Cor and R when other parameters
remain the same. The increase in G results in a similar decrease
in mean rate R for both cases (heterogeneous G or heterogeneous
nT), but R vs G is shifted down to values about 20–25% lower in the
heterogeneous case compared to the homogeneous case (Fig. 13
lower panels). While we do not explore this effect in detail (which
would require theory), intuitively the cells closer to threshold fire
more readily and produce more inhibition. Likewise the pathways
with more gain produce more inhibition. In both cases the mean
rate is lowered. This contrasts with excitatory feedback, where
heterogeneity leads to more firing as the more excitable cells
recruit the other cells.

The disordering effect of the heterogeneity also results in
lower values of Cor compared to the homogeneous case. However,
in spite of this moderate amount of heterogeneity, the same
shape is seen in the Cor vs G curve. This is also the case for non-
monotonic relationship between Cor and G in the case where the
common noise is varied across trials (Fig. 13). Thus the shape of
the Cor vs G characteristic is robust to low-variance static
parameter noise. In summary, with respect to output pairwise
correlations in this system with global inhibition, there are no
qualitatively unique effects that arise from heterogeneity of the
gain and distance-to-threshold.

6. Discussion and outlook

We have shown that the relationship between the network-
averaged pairwise correlation coefficient (Cor) of firing rates and the
strength of the global inhibition in that network is monotonic
increasing for frozen common noise. Our results in Figs. 4, 6–8 reveal
that the correlation remains near zero starting from zero gain (open-
loop, i.e. feedforward case) up to moderate gains. This implies that

factors affecting feedback strength will have little impact on the
correlation at lower gains. However, as the gain increases beyond
moderate values, the correlation increases quite rapidly, especially
when the internal noise is lower. Our results suggest that this increase
in Cor is associated with the emergence of oscillatory activity, which
is in the gamma frequency range for the parameters of interest
derived from the electric sense. Thus, Cor signals the emergence of
network oscillations in networks with global inhibitory feedback.

Our results with common noise that varies across trials
(Figs. 9–11 and 13) start at a non-zero value proportional to the
bias (and thus the firing rate). They show an initial decrease of Cor

with G, but qualitatively the same behavior as with frozen noise
for larger G. In that case also the emergence of a network
oscillation is associated with the increase in Cor. Thus, in both
the frozen and varying common noise cases, and for the four
regimes we have studied (low and high noise, sub- and supra-
threshold), the increase in peak coherence b for moderate to high
values of G is a good indicator of the behavior of the pairwise
correlation. As discussed in Section 4.4, the correlation differences
between the two stimulation scenarios arise from the different
shape of the SPTs, combined with the behavior of the shape and
area under the cross-correlogram as the gain changes (Fig. 3).

The quantity Cor is expected to decrease as the mean rate
decreases if the correlations are not too strong [7,45]. The results
of Fig. 6 along with those in Section 4.4 show that our system
operates in similar regimes (although with feedback), since Cor is
proportional to input correlation and to the mean firing rate
(the latter being increased by increasing the bias). This is the case
both for feedforward (G¼0) and for all feedback gains investi-
gated. But the inhibition causes the rate to decrease in proportion
to its strength. While we lack a full theory for these phenomena
(see below), our results suggest that this decrease is partly
responsible for maintaining Cor near zero at lower gains (or to
decrease Cor with varying common noise). This picture is further
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supported by simulations in which G is increased concomitantly
with bias to maintain a constant rate. Eventually at higher gains
the network oscillation has a more important effect on Cor.

Our model is inspired by earlier experimental work on the
electrosensory system [8,9], in which the internal and external
noises were band-limited (i.e. colored). Early modeling in [8] used
only one colored Ornstein–Uhlenbeck noise source, that drove
either a single or all neurons. In the model of Doiron et al. [9], the
noises were made Gaussian and white to simplify the theory. The
full theory developed in Lindner et al. [28] again used the
Gaussian white noise approximation. Our computational model
here uses colored external noises and Gaussian white internal
noise, because the bandwidth of the external noises associated
with stimuli is smaller than that of voltage fluctuations. Further,
the inhibitory feedback from the principle (excitatory) cells to
each other in reality involves another nucleus (nP) whose cells
provide the inhibition. This was simplified in Doiron et al. [8,9]
and Lindner et al. [28] by assuming the cells inhibited each other
directly. Here, as in Marinazzo et al. [31], we have modeled an
inhibitory neuron from nucleus nP. This also prevents a direct
application of the theory in Lindner et al. [28]. Nevertheless, that
theory can be developed further to include the inhibitory neuron.
As this neuron has internal noise (Eq. (6)) that linearizes its
response, linear response theory could be applied to it. The
external noises could also be given equivalent white noise
intensities. Alternately one could redo simulations directly for
the model in Lindner et al. [28]. In both cases, one would have to
extend the theory to compute the correlations as in [7] (Supple-
mentary Material), but with feedback input as an extra ‘‘small’’
input. Also the theoretical cross-spectra in Lindner et al. could be
integrated numerically to provide correlation information.

The structure of our model enables us to predict that the
results will not be sensitive to whether the individual noise in the
cells originates internally or externally to the sensory system. The
pairwise correlation effects reported here will also be induced by
the global inhibitory feedback component of a more general
recurrent network. It may be obscured by correlations caused
by other feedback loops of different polarities and spatial
structure.

The monotonic Cor vs G curves for frozen common noise, or
their non-monotonic version for varying common noise, are
robust over a range of noise intensities and biases, but also when
the network is heterogeneous with 73% parameter variations
around their nominal values. Gaussian-distributed firing thresh-
olds or feedback gains yield moderately smaller correlation
values, but the curve shape is preserved. We note that the
increased noise caused by the heterogeneity moves the point at
which Cor jumps up to higher values of G. This is also the case
when the internal dynamical noise intensity is increased (com-
pare Figs. 6 and 7), which makes sense intuitively.

Our simulations reveal that there are subtle effects at work in
this network. For example, the coherence b exhibits the afore-
mentioned small dip for G�0.55 (Figs. 7 and 10). Moderate
feedback gain slightly suppresses the oscillation for higher noise,
due to its effect on the three components that go into the
computation of the coherence; the origin of this effect is not
known at this time. Also, if one compares the sub-threshold
regime at lower (Fig. 6) and higher (Fig. 7) noise, one sees that
the noise has slightly increased the strength of the network
oscillation at lower gains. This appears to be an example of a
noise-induced oscillation, which is a form of coherence resonance
([29,38] and [27,35]). This is often the case for systems near the
threshold of a Hopf bifurcation. More work is needed to pinpoint
the precise origin of this effect here. The potential existence of
these subtle effects partly motivated our investigation of the sub-
and suprathreshold regimes with low and high noise.

More work is thus needed to disentangle the various effects of
the model parameters on Cor. For example, without a thorough
analysis (beyond the scope of our work), it is hard to argue that b
is also higher for the constant rate curve in Fig. 8 than for the
decreasing rate curve, without knowing how it varies as a
function of bias and gain along the curve—and how all this
depends on noise level. As the bias increases, the cells behave
more deterministically. Our simulations reveal that this subtly
affects b; in particular, the noise floor increases with bias, which
confounds measures of oscillation strength. The theory in Lindner
et al. [28] has not been explored in detail with respect to the
dependence of oscillation strength (peak height or spectral
coherence) on bias, gain and noise. Constant rate simulations as
reported in Fig. 8 partially clarify the origin of the Cor vs G

dependency, but the fuller story will have to wait more theore-
tical/numerical studies.

Throughout our work, we have considered how the pairwise
correlation covaries with the mean rate. In particular, when the
common noise varies across trials, the drop in rate accompanies
the drop in correlation. Oscillations then grow as gain increases in
spite of the further drop in rate. We have also shown in Section
4.4 that our system, at lower gains, output correlation grows with
mean rate as in de La Rocha et al. [7]. While we do not have a
theory for the numerical effects we report, our results suggest
that correlation results in part from the interplay between rate
and oscillation. It remains to be seen how this interplay plays out
in other connection topologies. Delayed feedback dynamics via
local inhibitory coupling also show oscillations ([17,20]), and thus
qualitatively the same behaviors may occur in that case. In certain
systems, the strength of correlations has been shown to be
inversely proportional to the distance between neurons [24,43].
The effects seen here may be altered by such an inverse law. Also,
while our study has focused on inhibitory feedback, excitatory
feedback present in certain systems will also play a correlating
role. Preliminary results with our network indeed reveal that the
pairwise correlation simply increases monotonically with the
strength of excitatory feedback (not shown); the system however
saturates to a high firing state if this feedback is too strong. It will
be interesting to explore the scenario where both feedback
polarities are present as is known to occur in the electric sense,
and whether this leads to low correlations [11].

In our study we have used a long time window to integrate the
correlation over a large range of time lags (Eq. (10)). Such a large
window leads to a measure of the correlation in the firing rates on
longer time scales, which has been the focus of our work. If a
small time window is used, the pairwise correlation then
becomes more a measure of synchrony. It is known that the
pairwise correlation increases with the time window T and
eventually saturates ([7] Supplementary Material; [22]). We have
verified that this is the case for our data as well (not shown).
Further, the oscillations in the CCG at higher gains (Fig. 3) will
produce a correlation value that oscillates with T on top of an
overall increase in Cor (not shown), because the integration of the
CCG (Eq. (10)) will end at a different part of the (damped)
oscillation cycle as T varies. Overall however, the dependence of
correlation on feedback gain is not expected to change qualita-
tively for a range of T values. They may change at very short T’s. In
particular, Lindner et al. [28] showed that there are differences
between cross-correlation and autocorrelation on fast time scales
for a similar system (but not beyond).

Also, several studies reveal that correlations often depend in
complex ways on network connectivity [15,37,45], filtering
caused by synapses and membranes [46] and the details of the
spike generating model [37,21,47]. For the pyramidal cells within
the electrosensory lateral line lobe, the correlations also depend
on the amount of receptive field overlap [6], with cell pairs
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sharing little receptor afferent input showing negligible corre-
lated activity. Finally, we have kept the input correlation fixed at
0.6 throughout, except for Fig. 11 where we illustrate the effect of
a lower input correlation of 0.2. This revealed an overall lower
output correlation, but the same non-monotonic shape when the
common noise varied across trials. Correlations were also lower
and depended monotonically on gain for the frozen common
noise case (not shown). Very low or very high strengths of these
common fluctuations may influence the results shown here
[21,45].

Acknowledgments

The authors thank Jérémie Lefebvre and Alexandre Payeur for
technical computing assistance. This work was supported by the
National Natural Science Foundation of China under grant no.
61075105 to ZJW, by a China Scholarship Council award to XJL
and by the Natural Sciences and Engineering Council of Canada
under grant no. 121891-2009 to AL.

References

[1] D. Amit, N. Brunel, Model of global spontaneous activity and local structured
activity during delay periods in the cerebral cortex, Cereb. Cortes 7 (1997)
237–252.

[2] W. Bair, E. Zohary, W.T. Newsome, Correlated firing in macaque visual area
MT: time scales and relationship to behavior, J. Neurosci. 21 (2001)
1676–1697.

[3] M. Bartos, I. Vida, P. Jonas, Synaptic mechanisms of synchronized gamma
oscillations in inhibitory interneurons networks, Nat. Rev. Neurosci. 8 (2007)
45–56.

[4] C. Borgers, N. Kopell, Synchronization in networks of excitatory and inhibi-
tory neurons with sparse, random connectivit, Neural Comput. 15 (2003)
509–538.

[5] N. Brunel, X.J. Wang, What determines the frequency of fast network
oscillations with irregular neural discharges? I. synaptic dynamics and
excitation-inhibition balance, J. Neurophysiol. 90 (2003) 415–430.

[6] M.J. Chacron, J. Bastian, Population coding by electrosensory neurons, J.
Neurophysiol. 99 (2008) 1825–1835.

[7] J. de La Rocha, B. Doiron, E. Shea-Brown, K. Josic, A. Reyes, Correlation
between neural spike trains increases with firing rate, Nature 448 (2007)
802–806.

[8] B. Doiron, M.J. Chacron, L. Maler, A. Longtin, J. Bastian, Inhibitory feedback
required for network oscillatory responses to communication but not prey
stimuli, Nature 421 (2003) 539–543.

[9] B. Doiron, B. Lindner, A. Longtin, L. Maler, J. Bastian, Oscillatory activity in
electrosensory neurons increases with the spatial correlation of the stochas-
tic input stimulus, Phys. Rev. Lett. 93 (2004) 048101.

[10] Y. Dong, S. Mihalas, F. Qiu, R. von der Heydt, E. Niebur, Synchrony and the
binding problem in macaque visual cortex, J. Vision 8 (2008) 1–16.

[11] A.S. Ecker, P. Berens, G.A. Keliris, M. Bethge, N.K. Logothetis, A.S. Tolias,
Decorrelated neuronal firing in cortical microcircuits, Science 327 (2010)
584–587.

[12] E. Edwards, M. Soltani, L.Y. Deouell, M.S. Berger, R.T. Knight, High gamma
activity in response to deviant auditory stimuli recorded directly from
human cortex, J. Neurophysiol. 94 (2005) 4269–4280.

[13] G.B. Ermentrout, R.F. Galan, N.N. Urban, Reliability, synchrony and noise,
Trends Neurosci. 31 (2008) 428–434.

[14] R.F. Galan, N. Fourcaud-Trocme, G.B. Ermentrout, N.N. Urban, Correlation-
induced synchronization of oscillations in olfactory bulb neurons, J. Neurosci.
26 (2006) 3646–3655.

[15] I. Ginzburg, H. Sompolinsky, Theory of correlations in stochastic neural
networks, Phys. Rev. E. 50 (1994) 3171–3190.

[16] D.A. Gutnisky, V. Dragoi, Adaptive coding of visual information in neural
populations, Nature 452 (2008) 220–224.

[17] D. Hansel, H. Sompolinsky, Chaos and synchrony in a model of a hypercol-
umn in visual cortex, J. Comput. Neurosci. 3 (1996) 7–34.

[18] A. Hasenstaub, Y. Shu, B. Haider, U. Kraushaar, A. Duque, D.A. McCormick,
Inhibitory postsynaptic potentials carry synchronized frequency information
in active cortical networks, Neuron 47 (2005) 423–435.

[19] J. Hertz, Cross-correlations in high-conductance states of a model cortical
network, Neural Comp 22 (2010) 427–447.

[20] A. Hutt, C. Sutherland, A. Longtin, Driving neural oscillations with correlated
spatial input and topographic feedback, Phys. Rev. E 78 (2008) 021911.

[21] K. Josic, E. Shea-Brown, B. Doiron, J. de la Rocha, Stimulus-dependent
correlations and population codes, Neural Comput. 21 (2009) 2774–2804.

[22] R.E. Kass, V. Ventura, Spike count correlation increases with length of time
interval in the presence of trial-to-trial variation, Neural Comp. 18 (2006)
2583–2591.

[23] K. Kitano, T. Fukai, Variability vs. synchronicity of neuronal activity in local
cortical network models with different wiring topologies, J. Comput. Neu-
rosci. 23 (2007) 237–250.

[24] A. Kohn, M.A. Smith, Stimulus dependence of neuronal correlation in primary
visual cortex of the macaque, J. Neurosci. 25 (2005) 3661–3673.

[25] B. Kriener, T. Tetzlaff, A. Aertsen, M. Diesmann, S. Rotter, Correlations and
population dynamics in cortical networks, Neural Comput. 20 (2008)
2185–2226.

[26] B. Kriener, M. Helias, A. Aertsen, S. Rotter, Correlations in spiking neuronal
networks with distance dependent connections, J Comput Neurosci. 27
(2009) 177–200.

[27] B. Lindner, L. Schimansky-Geier, A. Longtin, Maximizing spike train coher-
ence or incoherence in the leaky integrate-and-fire model, Phys. Rev. E. 66
(2002) 031916.

[28] B. Lindner, B. Doiron, A. Longtin, Theory of oscillatory firing induced by
spatially correlated noise and delayed inhibitory feedback, Phys. Rev. E. 72
(2005) 061919.

[29] A. Longtin, J.G. Milton, J.E. Bos, M.C. Mackey, Noise and critical behavior of the
pupil light reflex at oscillation onset, Phys. Rev. A 41 (1990) 6992–7005.

[30] W.W. Lytton, T.J. Sejnowski, Simulations of cortical pyramidal neurons
synchronized by inhibitory interneurons, J. Neurophysiol. 66 (1991)
1059–1079.

[31] D. Marinazzo, H.J. Kappen, S.C.A.M. Gielen, Input-driven oscillations in net-
works with excitatory and inhibitory neurons with dynamic synapses, Neural
Comput. 19 (2007) 1739–1765.

[32] N. Masuda, B. Doiron, Gamma oscillations of spiking neural populations
enhance signal discrimination, PLoS Comput Biol. 3 (2007) e236.

[33] A. Mazzoni, S. Panzeri, N.K. Logothetis, N. Brunel, Encoding of naturalistic
stimuli by local field potential spectra in networks of excitatory and
inhibitory neurons, PLoS Comput Biol. 4 (12) (2008) e1000239.

[34] K.J. Miller, E.C. Leuthardt, G. Schalk, R.P. Rao, N.R. Anderson, D.W. Moran,
J.W. Miller, J.G. Ojemann, Spectral changes in cortical surface potentials
during motor movement, J. Neurosci. 27 (2007) 2424–2432.

[35] R. Morse, A. Longtin, Coherence and stochastic resonance in threshold
crossing detectors with delayed feedback, Phys. Lett. A 359 (2006)
640–646.

[36] G.J. Murphy, F. Rieke, Signals and noise in an inhibitory interneuron diverge
to control activity in nearby retinal ganglion cells, Nat. Neurosci. 11 (2008)
318–326.

[37] S. Ostojic, N. Brunel, V. Hakim, How connectivity background activity and
synaptic properties shape the cross correlation between spike trains,
J. Neurophysiol. 29 (2009) 10234–10253.

[38] K. Pakdaman, S. Tanabe, T. Shimokawa, Coherence resonance and discharge
time reliability in neurons and neuronal models, Neural Networks 14 (2001)
895–905.

[39] G. Palm, A. Aertsen, G. Gerstein, On the significance of correlations among
neuronal spike trains, Biol. Cybern. 59 (1988) 1–11.

[40] S. Ray, E. Niebur, S.S. Hsiao, A. Sinai, N.E. Crone, High-frequency gamma
activity(80–150 Hz) is increased in human cortex during selective attention,
Clin. Neurophysiol. 119 (2008) 116–133.

[41] A. Renart, J. de la Rocha, P. Bartho, L. Hollender, N. Parga, A. Reyes, K.D. Harris,
The asynchronous state in cortical circuits, Science 327 (2010) 587–590.

[42] E. Shea-Brown, K. Josic�, J. de la Rocha, B. Doiron, Correlation and synchrony
transfer in integrate-and-fire neurons: basic properties and consequences for
coding, Phys. Rev. Lett. 100 (2008) 108102.

[43] M.A. Smith, A. Kohn, Spatial and temporal scales of neuronal correlation in
primary visual cortex, J. Neurosci. 28 (2008) 12591–12603.

[44] T. Tchumatchenko, T. Geisel, M. Volgushev, F. Wolf, Signatures of synchrony
in pairwise count correlations, Front. Comput. Neurosci. 4 (2010) 1.

[45] T. Tchumatchenko, A. Malyshev, T. Geisel, M. Volgushev, F. Wolf, Correlations
and synchrony in threshold neuron models, Phys. Rev. Lett. 104 (2010) 058102.

[46] T. Tetzlaff, S. Rotter, E. Stark, M. Abeles, A. Aertsen, M. Diesmann, Dependence
of neuronal correlations on filter characteristics and marginal spike train
statistics, Neural Comput. 20 (2008) 2133–2184.

[47] R.D. Vilela, B. Lindner, Comparative study of different integrate-and-fire
neurons: Spontaneous activity, dynamical response, and stimulus-induced
correlations, Phys. Rev. E. 80 (2009) 031909.

[48] X.J. Wang, G. Buzsaki, Gamma oscillation by synaptic inhibition in a hippo-
campal interneuronal network model, J. Neurosci. 16 (1996) 6402–6413.

Jinli Xie, born in 1983, earned her B.S. degree in
automation engineering from Shandong Polytechnic
University in 2006. She is currently a Ph.D. candidate
in Control Theory and Engineering, Donghua Univer-
sity, Shanghai, China. From 2009 to 2010, she had been
a visiting researcher in Physics Department, University
of Ottawa. Her research interests include computa-
tional neuroscience and neural dynamics.

Jin-li Xie et al. / Neurocomputing 83 (2012) 146–157156



Author's personal copy

Zhijie Wang was born in ZheJiang, China, in 1969. He
received his Bachelor, Master, and Doctor degrees in
electrical engineering from Donghua University,
Shanghai, China, in 1991, 1994 and 1997, respectively.
From 2000 to 2002, he was a visiting researcher in
Aihara Laboratory, Department of Mathematical Engi-
neering, The University of Tokyo. He is currently a
professor at College of Information Science and Tech-
nology, Donghua University. His research interests
include neural networks, fuzzy logic, and intelligent
systems.
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