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Abstract The joint influence of recurrent feedback and
noise on gain control in a network of globally coupled spik-
ing leaky integrate-and-fire neurons is studied theoretically
and numerically. The context of our work is the origin of
divisive versus subtractive gain control, as mixtures of these
effects are seen in a variety of experimental systems. We
focus on changes in the slope of the mean firing frequency-
versus-input bias ( f –I ) curve when the gain control signal
to the cells comes from the cells’ output spikes. Feedback
spikes are modeled as alpha functions that produce an addi-
tive current in the current balance equation. For generality,
they occur after a fixed minimum delay. We show that purely
divisive gain control, i.e. changes in the slope of the f –I
curve, arises naturally with this additive negative or positive
feedback, due to a linearizing actions of feedback. Nega-
tive feedback alone lowers the gain, accounting in particular
for gain changes in weakly electric fish upon pharmacolog-
ical opening of the feedback loop as reported by Bastian
(J Neurosci 6:553–562, 1986). When negative feedback is
sufficiently strong it further causes oscillatory firing patterns
which produce irregularities in the f –I curve. Small positive
feedback alone increases the gain, but larger amounts cause
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abrupt jumps to higher firing frequencies. On the other hand,
noise alone in open loop linearizes the f –I curve around
threshold, and produces mixtures of divisive and subtractive
gain control. With both noise and feedback, the combined
gain control schemes produce a primarily divisive gain con-
trol shift, indicating the robustness of feedback gain control
in stochastic networks. Similar results are found when the
“input” parameter is the contrast of a time-varying signal
rather than the bias current. Theoretical results are derived
relating the slope of the f –I curve to feedback gain and noise
strength. Good agreement with simulation results are found
for inhibitory and excitatory feedback. Finally, divisive feed-
back is also found for conductance-based feedback (shunting
or excitatory) with and without noise.

Keywords Gain control · Feedback · Noise · Leaky
integrate-and-fire · Electric fish · Spiking networks · Delays

1 Introduction

There is a long standing interest in the mapping from pre-
synaptic input rates to postsynaptic firing rates (Segundo
1970; Perkel et al. 1964). In many situations the brain per-
forms a scaling operation on the neural response to input. For
instance, gaze direction scales the response strength in pri-
mary visual (Trotter and Celebrini 1999) and posterior pari-
etal cortex (Andersen and Mountcastle 1983; Salinas and
Abbott 1996). Contrast invariance of receptive field prop-
erties (Alitto and Usrey 2004) and orientation selectivity
(Ferster and Miller 2000) requires a contrast dependent scal-
ing of responses in primary visual cortex. Subject atten-
tion sets the response gain of cells in primary visual cortex
(McAdams and Reid 2005), as well as in V4 (McAdams
and Maunsell 1999). Response scaling is measured by the
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changes in the frequency-versus-input current ( f –I ) charac-
teristic of a cell. More specifically, the neuronal gain
describes the sensitivity of the output firing frequency in
response to changes in the strength of the stimulus input.
Many studies have shown that gain control can be an impor-
tant computational tool in the central nervous system
(Douglas et al. 1995; Salinas and Thier 2000) and subse-
quent references therein).

Gain sensitivity has been characterized in a large number
of experimental and modeling studies, most often as the slope
of the f –I characteristic. If the slope of this f –I curve is
high, a small range in input current is mapped by the cell into
a larger variation in instantaneous firing rate. Conversely, a
small gain serves to limit the range of firing rates that stimuli
can produce, thereby scaling down the influence of the input
on the output. This picture of a static f –I curve performing
an input–output operation holds as long as the input signal
fluctuations are slow compared to the membrane time con-
stant; in this case the cell adjusts its firing rate to the cur-
rent signal (see Ly and Doiron 2009 for a discussion of gain
control for non-stationary responses). The membrane time
constant, which governs the input resistance and reflects the
complement of conductances present in the cell, along with
membrane fluctuations in the cell, are the main determinants
of the gain of a single cell in isolation.

Gain control mechanisms alter a neuron’s f –I curve.
Figure 1 shows several schematic examples of common gain
manipulations, and in the next few sections we list specific
cases from the literature where such gain manipulations are
reported. From a neuro-computational perspective, divisive
gain manipulation (Fig. 1b) is often assumed in rate-based
models of neurons (Carandini and Heeger 1994; Chance
and Abbott 2000), and is a central feature in both visual
and motor control (Salinas and Thier 2000). However, bio-
physical mechanisms for divisive gain control have been
elusive (Holt and Koch 1997; Chance et al. 2002). Our paper
details how divisive gain control arises naturally with feed-
back, with or without noise. To give context to feedback-
induced divisive gain control we first review past gain control
mechanisms.

1.1 Gain control with stochastic shunting inhibition

One commonly assumed fast-acting mechanism of gain con-
trol is shunting inhibition, i.e. through a large amplitude con-
ductance Gs with a reversal potential Vs near the resting
potential Vr of the cell. Even though Gs is large, since Vs ≈
Vr , the current Is = Gs(V − Vs) contributed will be small.
The main effect of this inhibition, classically mediated by
G AB AA type channels, is through the reduction of the input
resistance and thus of the membrane time constant τ . This
decreases the effect of excitatory input, whether due to an
injected current input or to synaptic input. This form of divi-
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Fig. 1 Schematic description of various types of gain modulation. a
A subtractive gain modulation preserves the slope of the transfer curve
yet shifts the onset of firing. This occurs for a shift in the leak conduc-
tance (Holt and Koch 1997; Chance et al. 2002; Mehaffey et al. 2005). b
‘Pure’ divisive gain modulation reduces the slope of the transfer function
yet preserves the onset of firing. Known mechanisms include balanced
conductance fluctuations in the input conductance (Chance et al. 2002),
inhibition of the dendrite in deterministic spiking systems (Mehaffey et
al. 2005), recurrent connectivity in neural populations (Douglas et al.
1995), and spike frequency adaptation (Ermentrout 1998). c Divisive
modulation with an offset, or rheobase, shift occurs when an unbal-
anced conductance-based fluctuations combine the mechanisms in a
and b (Doiron et al. 2001; Chance et al. 2002)

sive rate control is often assumed in rate formulations of
firing in neural networks (Chance and Abbott 2000). The
hope that this would follow naturally for more realistic spik-
ing neurons was guided by the fact that membrane voltage
does relate to input current in a divisive manner in the sub-
threshold regime (i.e. the regime where no spikes occur).
This is simply Ohm’s law: the slope of the V –I curve is the
reciprocal of the total conductance. Thus, it was expected
that shunting inhibition would lead to a divisive gain manip-
ulation of the f –I curve (Fig. 1b). However, Holt and Koch
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(1997) showed that this subthreshold divisive gain control
gives way to subtractive gain control (Fig. 1a) in the supra-
threshold firing regime. This is a consequence of the resetting
of the voltage following spikes, which qualitatively alters the
relation between voltages and currents averaged over short
times. They showed this effect in both a reconstructed visual
pyramidal cell model and its simplified leaky integrate-and-
fire (LIF) version. Note that the context here is that the inhi-
bition is independent of the firing of the cell.

One can obtain divisive effects with (Fig. 1c) or without
(Fig. 1b) subtractive effects when the noise intrinsic to a cell
and/or associated with synaptic inputs, is taken into account
(Doiron et al. 2001; Chance et al. 2002; Longtin et al. 2002;
Prescott and De Koninck 2003). Our original study (Doiron
et al. 2001) was based on a compartmental ionic model built
from anatomical and physiological data from a pyramidal
cell of the electrosensory lateral line lobe of the weakly elec-
tric fish Apteronotus leptorhynchus. The simple inclusion of
noise in the gain control problem thus revealed a mechanism
for divisive gain control at the single cell level in a feed-
forward configuration. The noise arose naturally from sim-
ulations of the feedforward inhibitory synaptic input on the
compartmental model using the program NEURON, since
pre-synaptic spike trains had Poisson statistics. In other
words, the variance of the point process associated with the
inhibition increased in proportion with the mean frequency of
inhibitory inputs. This effect was then replicated in a simpler
integrate-and-fire version of the ionic model:

C
dV

dt
= − [g + σ(g)η(t)] V + I (1)

where η(t) was lowpass-filtered Gaussian white noise added
to the mean conductance g, meant to represent the mean
total inhibitory input in the compartmental model. The noise
on the total conductance was necessary to obtain sigmoi-
dally increasing f –I curves near rheobase, as seen experi-
mentally and in the compartmental model. f –I curves for
increasing mean levels of inhibition g simply shifted right-
wards (as in Holt and Koch 1997) if the noise intensity σ 2

was independent of the mean inhibition, i.e. subtractive gain
control occurred. However, if σ 2 was increased monotoni-
cally with g, as expected for Poisson statistics, divisive gain
control was observed at lower frequencies, with subtractive
behavior at higher frequencies. Further, purely divisive gain
control is possible if a balanced state of feedforward excita-
tion and inhibition exists (Chance et al. 2002). The question
then arises about the consequences of feedback instead of
feedforward, which is our focus below.

In fact, the role of noise, intrinsic or from synaptic inputs,
has a long history (Lindner et al. 2004). It has been implicated
in the linearization of f –I curves, smoothing of responses
via e.g. elimination of phase locking (Perkel et al. 1964;
Knight 1972; French et al. 1972), and amplification of slow

or fast subthreshold input via stochastic resonance (Longtin
1993). Input fluctuations are thought to be critical in the con-
trast invariance of orientation tuning in primary visual cortex
(Anderson et al. 2000; Hansel and van Vreeswijk 2002). Fur-
ther, the impact of conductance (Burkitt et al. 2003; Mitchell
and Silver 2003; Prescott and De Koninck 2003) and cur-
rent (Higgs et al. 2007; Arsiero et al. 2007) fluctuations on
response gain continues to be a subject of great interest.

1.2 Divisive control with adaptation and feedback

The role that feedback plays on gain control has also received
attention (Diez-Martinez and Segundo 1983). In many sys-
tems, and in sensory systems in particular, excitation or inhi-
bition actually arise from the activity of the neurons whose
gain is under investigation. Divisive gain control (Fig. 1b)
does occur in simple rate models of neurons with recurrent
feedback, a property that has lead to many studies of neu-
ral multiplication (see, e.g. Salinas and Abbott (1996) in the
visual gain fields context), or of gain control via shunting
inhibition and possible effects on network response time in
rate-based neural networks, both feedforward and recurrent
(Douglas et al. 1995; Chance and Abbott 2000). Other results
showing divisive effects owing to recurrent activity also exist
across the spiking neuron literature in the context of synchro-
nization (White et al. 1998; Pauluis et al. 1999; Le Masson et
al. 2002), lateral inhibition (Arevian et al. 2007), and autaptic
inhibition (Bacci et al. 2003).

In particular, the computational study of Douglas et al.
(1995) showed that divisive behavior is possible in conduc-
tance-based recurrent models. They performed an analysis
using a scenario where firing rate is proportional to mem-
brane voltage which is in turn inversely proportional to the
amount of conductance (both intrinsic, and from recurrent
synaptic connections). They also show the effect numeri-
cally in a recurrent network of conductance-based spiking
pyramidal cells and interneurons. Their numerics show that
input noise is suppressed by the network. Our study of divi-
sive control is motivated in part by the fact that Douglas
et al. (1995) tacitly assumed a simple relationship between
membrane voltage and output firing. Given the caveats later
raised by Holt and Koch (1997) about such an assumption
(discussed above), and by the need for matching theory and
numerics with networks stochastic neurons, we revisit the
feedback induced gain control originally proposed by Doug-
las et al. (1995).

Adaptation currents, typically either voltage (Brown and
Adams 1980) or calcium (Madison and Nicoll 1984) depen-
dent potassium currents, are also a form of feedback that is
internal to the cell. Adaptation requires (and follows) spik-
ing, but does not require self-feedback mediated by axonal
collaterals (autapses) or feedback from other populations.
The theoretical effect of adaptation on f –I curves was first
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studied by Ermentrout (1998). He showed that adaptation
causes a linearization of the f –I curve; while the analysis
was limited to suprathreshold signals, the numerics indicated
that the effect was also present in the whole peri-threshold
regime as well. We will show below that his analysis con-
tains the root of the divisive gain control via feedback which
we emphasize in our paper. Related ’internal’ divisive gain
control schemes can occur through synaptic manipulation
of active dendrites in weakly electric fish (Mehaffey et al.
2005), layer 5 pyramidal neurons (Larkum et al. 2004), and
looming sensitive neurons in locust (Gabbiani et al. 2002).

1.3 Gain control with feedback and noise

Given the strong influence that noise and feedback separately
have on gain, the time is ripe to analyze more thoroughly the
simultaneous effect of feedback and noise. Our paper is thus
first and foremost concerned with gain changes when spik-
ing feedback is present, and what role noise, both internal to
the neurons or external to the network, plays in such feed-
back mediated gain control. For generality, we include feed-
back delays in our analysis, to account for the finite time of
response to feedback currents when they arise from another
neuron population. In principle we are interested in the more
biophysically realistic spiking dynamics; however while. We
expect our focus is on leaky integrate-and-fire dynamics for
our simulations and theory. We expect our results generalize
to other firing dynamics such as quadratic integrate-and-fire,
and Hodgkin–Huxley dynamics as well.

The motivation for our work on feedback gain control
is drawn mainly from experiments on weakly electric fish,
although experimental examples of neural gain control are
ubiquitous. The primary receptors, known as electrorecep-
tors, project to pyramidal cells of the electrosensory lateral
line lobe (ELL). These in turn excite higher brain nuclei,
which in turn project back to the ELL. The projections are
of mixed polarity: the activity from higher brain excites the
ELL and also inhibits it via interneurons. It is natural to think
that, to first order, this feedback implements some form of
gain control. In vivo studies in the weakly electric fish have
shown that feedback can divisively alter the f –I curve to
reduce the frequency response range of the ELL (Bastian
1986) and in this way adapt to stimuli. Figure 2 shows the
change in mean firing rate as the feedback from the cerebel-
lar structure known as the EGP is opened in vivo. One sees
a change in slope, with relatively little change at rheobase—
although one may argue a small leftward shift of rheobase as
the feedback is opened (Fig. 1c), but more statistical analy-
sis may be needed to firmly establish this small effect. It is
thus clear that the feedback acts in a divisive inhibitory fash-
ion. More recent experimental results on lateral inhibition
(Arevian et al. 2007) and autaptic inhibition (Bacci et al.
2003) further motivate our study.
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Fig. 2 Change in firing rate with respect to baseline firing rate as a func-
tion of stimulus amplitude from in vivo measurements on a pyramidal
cell in the electrosensory lateral line lobe of the electric fish Apteronotus
leptorhynchus. In the control case (black squares) the feedback from
the cerebellar structure known as the EGP is intact. The main effect of
removing the feedback from the parallel fibers (opening the feedback
loop) is an increase in slope, which implies that the net polarity of the
feedback is inhibitory. Data are redrawn from Bastian (1986) (see also
Mehaffey et al. 2005)

Nelson (1994) studied how feedback could work in the
electric fish by focussing on the neuron transmembrane
potential as the quantity fed back to itself, rather than the
firing rate. His study enabled the understanding of filtering
properties that can arise from the feedback and how, with both
excitatory and inhibitory components, the filtering could be
set independently of the firing rate of the cell. Given the
results of Holt and Koch (1997), it is also natural to extend
this study to more realistic spiking networks where spike
trains are being fed back. One goal of our study is thus to see
how the feedback-mediated gain control in the electrosenso-
ry system (Bastian 1986) can arise from a realistic spiking
network.

In the next section, we present the model feedback network
of stochastic spiking neurons used in our study. Results are
presented in Sect. 3. Section 4 develops the theory applicable
to that network. Comparisons between theory and simulation
results are the subject of Sect. 5. A discussion of the results
along with suggestions of future research directions follows
in Section 6.

2 Model

The neural network we consider consists of N identical
stochastic leaky integrate-and-fire neurons connected by
delayed global feedback. Vi represents the membrane
potential of the i th neuron in the network. A given neuron i
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fires at time ti j whenever its voltage reaches a fixed threshold
θ = 1 from below. Immediately after this time, the voltage
Vi is reset to zero. Spikes have a minimal separation due to
the absolute refractory period τR chosen equal to 0.1. As in
Doiron et al. (2004), each of the neurons evolves according
to

dVi

dt
= −Vi + ηi (t) + Iext i (t) + g

N∑

k

Kτd ∗ xk(t) (2)

where

Iext i (t) = µ + σξi (t) (3)

Kτd ∗ x(t) =
∞∫

τd

dτ x(t − τ)α2(τ − τd)e−α(τ−τd ) . (4)

Each neuron has its own internal noise, ηi (t), modeled by
zero-mean Gaussian white noise with correlation function
〈ηm(t)ηn(t ′)〉 = 2Dintδ(t − t ′)δmn where δ(t − t ′) is the
Dirac delta function and δmn is the Kronecker delta. We will
refer to Dint as the internal noise intensity. The external input
current to the network consists of an average input bias, µ,
which is the same for all cells, and a time-varying input,
Iext i (t), which is modeled by another zero-mean Gaussian
white noise ξi (t). For simplicity we assume that this compo-
nent of external noise is global, i.e. ξi (t) ≡ ξ(t). The intensity
of Iext i (t) is dependent upon the associated intensity of the
time-varying input σ 2. The variance of the total noise for
each cell is then the sum of the individual variances of ηi and
ξi .

The last term in Eq. (2) represents the delayed spatiotem-
poral feedback, where xk(t) is the output spike train (seq-
uence of Dirac delta functions) of neuron k. Thus, when one
neuron fires, every neuron (including the one that just fired)
receives feedback current that begins after a fixed delay τd .
The time course of the current is determined by the convolu-
tion kernel Kd (Doiron et al. 2004), with smoothing param-
eter α. It is meant to mimic the smoothing properties of both
the distal cells providing feedback as well as synaptic kinet-
ics. A large value of α corresponds for example to rapid syn-
aptic kinetics. Another way to look at the convolution kernel
is that it mimics a distribution of feedback delays with a min-
imal delay τd . In this formulation, the cells in the network are
not connected directly to one another, but through the delayed
feedback. This is a good approximation for the pyramidal
cells of the ELL in weakly electric fish (Doiron et al. 2003;
Berman and Maler 1999). These cells receive input from the
primary sensory cells (electroreceptors) and feedback from
higher brain structures such as the nucleus prae-eminentialis
(Np). It is also a good approximation to certain parts of the
feedback between the optic tectum and the nucleus isthmi in
other animals (Brandt and Wessel 2007). Other systems may
involve direct coupling between the cells in the same nucleus

as well as more delayed input from distant nuclei (Schwabe et
al. 2006). The gain control results in these cases are expected
to be qualitatively similar to those below, except when delays
due to travel of neural information to and from distant nuclei
are sufficiently long that oscillatory activity ensues.

Time is scaled in units of the membrane time constant, and
all firing rates are determined after transients had decayed.
We consider negative feedback (g < 0) as well as positive
feedback (g > 0) cases separately. Throughout we take τd =
1. We are mainly interested in the mean firing rate of one cell
in the network as a function of its bias µ, i.e. its f –I curve
(where “I” is now µ)—although we will also discuss how the
rate varies with the variance (contrast) of the external noise.
Because the network is homogeneous, all cells will have the
same firing rate, which can thus be determined by averaging
the firing activity per unit time over the whole network.

At larger delays and negative feedback, the firing rates
in the network may oscillate, meaning that the spiking cells
participate in a network oscillation. The network oscillation
may also abruptly change its period, or its pattern (number
of spikes per period) as the bias changes (Figs. 5–7), due
to nonlinear phase locking effects caused by the feedback—
the precise study of these effects is beyond the scope of our
work. Also, the activity may be more or less synchronous,
depending on the level of noise (generally more synchronous
behavior with less noise). The simulation time at a given bias
may not correspond to an integer number of periods of the
steady state solution at that bias. This induces a small error
in the estimation of the rate at larger delays and inhibitory
strength. This error is minimized by using longer simulations,
and is insignificant for the gain effects we are interested in.
Nevertheless, these abrupt changes are most obvious in the
jagged or wavy aspect of the f –I curve for stronger inhib-
itory feedback, especially without noise (they are generally
smoothed out by increasing noise). The firing rates will thus
show an increasing trend as a function of bias, with fluctua-
tions around this trend due to the abrupt changes and to the
uneven sampling of the network oscillation.

3 Gain control with fluctuations and feedback

3.1 Noise-induced divisive gain control in the absence
of feedback

The mean firing rate, or “activity”, of a single neuron in the
network without feedback is computed from numerical sim-
ulations and plotted against input bias µ (the average input
current) in Fig. 3. This figure shows that, as noise intensity
is increased, the gain increases for input biases in the sub-
threshold regime (µ < 1 in this case), going from zero slope
(deterministic neuron) to a finite slope (noise-driven neuron).
At higher noise this slope will begin decreasing again (not
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Fig. 3 Mean firing rate f versus input bias I for one leaky integrate-
and-fire neuron for increasing intensity of noise (see Eq. 2). No feedback
is present (g = 0). For the zero-noise condition (solid line), we set both
noise intensities to zero (external: σ 2 = 0 and internal: Dint = 0). Spik-
ing occurs only for biases greater than 1. For the internal noise condition
(dashed line), Dint = 0.08 and σ 2 = 0. For the external noise condition
(dotted line), σ 2 = 0.16 and Dint = 0. With both internal and external
noise, σ 2 = 0.16 and Dint = 0.08. Time is scaled in units of the mem-
brane time constant (approximately 6 ms in the case of ELL pyramical
cells), thus 1 Hz corresponds to one spike in 6 ms. As the amount of
noise in the system increases the f –I curve becomes more linear, i.e.
the threshold nonlinearity is smoothed. This is due to noise-induced
firing, which is especially visible below the deterministic threshold

shown—this is relevant to the low frequency limit of stochas-
tic resonance—see Longtin (2000) and Lindner et al. 2004).
A slight reduction of the gain for input biases above thresh-
old (bias=1) is also observed. Overall, one observes that the
threshold nonlinearity is linearized. This linearization of the
f –I curve is due to noise-induced firing in the network; for
neurons operating in the subthreshold regime, noise allows
them to reach threshold, where they would not in the absence
of noise. For neurons in the superthreshold regime the noise
allows them (on average) to reach threshold slightly quicker
than they would without input fluctuations. As more noise
is added to the deterministic LIF network the neurons are
able to fire with lower levels of input bias. This effectively
linearizes the f –I curve and increases the overall activity of
the network.

3.2 Feedback-induced gain control in deterministic
networks

Next, simulations without noise but with feedback were done
to show that feedback alone can linearize f –I curves. This
linearization due to feedback is, as we will see, related to
the result of Ermentrout (1998) in the context of adapta-
tion. Inhibitory feedback linearizes the f –I curve, as seen
in Fig. 4. The top curve (solid line) shows the standard f –I
curve for a deterministic LIF network without feedback. As
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Fig. 4 f –I curves with increasing inhibitory feedback strength for a
network of N = 100 neurons without noise. As the strength of inhib-
itory feedback is increased the f –I curves divisively shift downward.
Other parameters used in the simulation are as in Fig. 3. Note that the
range of biases differs slightly from that used in Fig. 3 and α = 2

inhibitory feedback strength is increased, the f –I curve divi-
sively shifts downward, breaking off from the g = 0 curve at
lower values of the bias. Qualitatively one can say that, with
increasing inhibitory feedback, the f –I curve acquires an
increased curvature right near rheobase (near the break-off
point), but less curvature (i.e. more linearity) over a broader
range thereafter in comparison to the open loop curve. The
curves are nevertheless still not straight, being overall down-
ward concave, due in particular to the refractory period which
limits the rate. Further, at stronger feedback, the curves are
seen to acquire a wavy character, which relates to phase lock-
ing (see below).

To understand the mechanism behind the divisive gain
shift in Fig. 4, we first look at network raster plots and volt-
age traces for various feedback strengths and input biases.
Comparing Figs. 5b and a and 6b and a, we see that stron-
ger inhibitory feedback reduces the firing rate. This is due to
the hyperpolarizing effect of the delayed inhibitory spikes on
the membrane potential of the neurons in the network. The
decrease in membrane potential delays the next firing time
of the neurons (as long as the delay, τd , is not too large). In
other words, the inhibition causes the membrane potential to
take longer to reach threshold. For stronger inhibitory feed-
back, neurons fire at even later times, and thus as inhibitory
feedback strength is increased, the firing rate of the network
decreases further still.

In fact, the decrease is in proportion to the amount of firing
that would occur in the network without feedback. Thus the
f –I curves acquire a decreased slope, i.e. exhibit a divisive
effect, rather than become shifted to the right as for a sub-
tractive effect. In other words, the inhibition is less effective
for a low input bias compared to a high input bias, due to
the fact that the feedback is a function of firing rate which
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Fig. 5 Network raster plot and
single cell voltage curve for
µ = 1.1 for two strengths of
negative feedback (left panel
g = −0.6, right panel
g = −1.2) and α = 3 0
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Fig. 6 Network raster plot and
single cell voltage curve for
µ = 1.5 for two strengths of
negative feedback (left panel
g = −0.6, right panel
g = −1.2) and α = 3 0

20
40
60
80

100

N
eu

ro
n

80 82 84 86 88 90 92 94 96 98 100

Time
80 82 84 86 88 90 92 94 96 98 100

Time

0

0.5

1

Po
te

nt
ia

l

(a)

0
20
40
60
80

100

N
eu

ro
n

0

0.5

1

Po
te

nt
ia

l
(b)

depends on the input bias. In fact, as the input current is low-
ered to the rheobase current, the firing becomes increasingly
less sensitive to changes in feedback strength, since in that
limit the firing rate goes to zero. In contrast, for large inputs
an increase in feedback strength can significantly lower the
firing rate, due again to the dependence on µ of the inhibitory
current caused by the feedback. The multiplicative effect can
also be gauged visually in the time series by comparing the
magnitude of the shift in firing rate between Fig. 5b and a,
and the shift in firing rate between Fig. 6b and a obtained at
a higher bias. These divisive shifts are clearly displayed as
an increasing separation between curves in the f –I curves
of Fig. 4 (see also Fig. 8).

Figure 4 also shows that the smoothness of the f –I curve
disappears when inhibitory feedback is present in the net-
work (i.e. there are small bumps seen in the f –I curves with
inhibitory feedback). This is not caused by fluctuations due
to noise, since there is no noise here (Perkel et al. 1964). As
the input bias is increased for a constant, nonzero feedback
strength, the depolarization of the membrane occurs quicker
and the inhibitory feedback affects it at a later stage in its rise
time and with a smaller amplitude (compare Figs. 5b and 6b).
If the input bias is large enough, the neuron may even fire
before the inhibitory feedback has a chance to affect it, due
to the time delay of the feedback τd (Fig. 7b). This causes

different firing patterns for different input bias strengths. For
input bias values near the transition from one firing pattern
(Fig. 6b) to the next (Fig. 7b) the in-step phase locking of
neurons in the network becomes destabilized as in Fig. 7a.
As we will use the same simulation time to compute mean fir-
ing rate (see next subsection), and this span of time does not
contain an integer number of periods of the solution regard-
less of the parameters, the f –I curves for such noiseless
inhibitory feedback dynamics are not smooth like the no-
feedback case. This effect is however small compared to the
abrupt jumps caused by transitions between different firing
patterns.

3.3 The combined effects of fluctuations and feedback
on gain control

Introducing noise into a network with inhibitory feedback
further linearizes the f –I curve and smoothes out this bump-
iness. Figure 8 shows a comparison of a completely deter-
ministic network and three stochastic networks with varying
levels of noise. The divisive shift in the gain due to feedback
that is seen in the deterministic network (Fig. 8a) is also pres-
ent in Fig. 8b, c, d, which have both feedback and noise. The
curves in each plot further seem to connect up at low rates,
i.e. the behavior due to inhibition caused by self-feedback is
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Fig. 7 Network raster plot and
single cell voltage curve for
µ = 1.9 for two strengths of
negative feedback (left panel
g = −0.6, right panel
g = −1.2) and α = 3 0
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Fig. 8 f –I curves with
increasing inhibitory feedback
strength for a a network with no
noise, b a network with global
external noise, c a network with
internal noise and d a network
with both internal and global
external noise. Parameters are
the same as those in Fig. 3. As
the strength of inhibitory
feedback is increased, the curves
divisively shift down, without
and with noise. Linearization of
the f –I curves, especially near
and below threshold, is also seen
in the transition from a to d as
more noise is added. Circles
feedback gain g = 0, squares
g = −1.2, and crosses
g = −2.4. Noise intensities are
as in Fig. 3, and α = 2
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divisive rather than subtractive. Interestingly, in going from
no feedback and no noise to a feedback and noise situation,
there is both a slope change and a leftward shift which may
be seen in some experimental situations.

The addition of noise smoothes out the f –I curve (e.g.
the phase locking bumps) and linearizes it notably in the
subthreshold regime as seen in Fig. 3. It is also apparent
from Fig. 8b, c, and d that, while the noise linearizes the f –I
curve in the subthreshold regime, it also allows lineariza-
tion due to feedback in this regime, which is not possible in
Fig. 8a because the deterministic network does not fire below
threshold.

The combination of the two linearizing effects of noise
and feedback could possibly produce a gain shift similar to
the one seen in the weakly electric fish (Bastian 1986) and

in rat cortex (Chance et al. 2002) for unbalanced inhibition
and excitation. These experimental studies showed not only
a divisive gain shift, but a subtractive gain shift as well (a
small effect in the case of Bastian 1986). Figure 9 shows an
overlay of the solid line of Fig. 8a and the dashed line of
Fig. 8d. It is clear from the overlay that the combination of
the two linearization effects, starting from a situation with-
out noise and feedback, can produce a leftward shift and a
multiplicative decrease in the gain. The feedback produces
the divisive shift in the gain, with the onset of firing always
occurring at the same point since feedback effects require a
non-zero firing rate. The increase of noise shifts the initial
firing point to a lower input bias level, causing the subtrac-
tive shift in the gain. If for some reason the noise decreased,
the shift would be to the right. Thus, the model predicts that
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Fig. 9 f –I curve for a cell in the network with no feedback and no
noise, solid line compared to the f –I curve for a network with feedback
(g = −1.2) and noise (D = 0.16)

tuned variations of feedback gain and noise level can produce
a variety of effects seen upon manipulating feedback loops.

4 Theory

For a stochastic LIF neural network with feedback the mean
firing rate can be calculated using the system of implicit equa-
tions (Doiron et al. 2004):

r =
⎡

⎣τR + √
π

a∫

b

ex2
erfc(x)dx

⎤

⎦
−1

(5)

where

a = µeff − 	√
2D

, (6)

b = µeff√
2D

, (7)

and

µeff = µ + gr(µeff). (8)

The feedback strength g in the last equation can be interpreted
as taking into account the number of cells in the network, i.e.
it scales as 1/N (but we keep N fixed throughout our study).
The top equation is the expression for the mean firing rate of
any current based LIF model with additive Gaussian white
noise and drift µeff . This drift is however a corrected ver-
sion of the open loop drift µ since feedback spikes produce a
mean current of gr . Together these equations must be solved
self-consistently, i.e. using a root finding algorithm.

To calculate how gain depends on the strength of feedback
we take the derivative of the mean firing rate with respect to

the input bias. Differentiating Eq. (5) with respect to µ we
obtain

dr

dµ
= ∂r

∂µeff

∂µeff

∂µ
(9)

where

∂µeff

∂µ
= 1 + g

dr

dµ
. (10)

Substituting Eq. (10) back into Eq. (9) we get

dr

dµ
= ∂r

∂µeff

(
1 + g

dr

dµ

)
. (11)

Rearranging we obtain

dr

dµ
=

∂r
∂µeff

1 − g ∂r
∂µeff

. (12)

On the other hand,

∂r

∂µeff
(µeff) = r2

√
π

2D

[
ea2

erfc(a) − eb2
erfc(b)

]
. (13)

We note that this is exactly dr
dµ

(µ) for a stochastic network
without feedback, for which the open loop mean rate is:

r =
⎡

⎣τR + √
π

a∫

b

ex2
erfc(x)dx

⎤

⎦
−1

(14)

where

a = µ − 	√
2D

, (15)

b = µ√
2D

. (16)

This means that the following holds:

∂r(g)

∂µeff
= dr(g = 0)

dµ
(17)

i.e. ∂r
∂µeff

is equal to the open loop (no feedback) slope dr(g=0)
dµ

.
By looking at the curve for g = 0 in Fig. 10 we see that
the slope is approximately constant for a sufficiently small
range of µ. This will depend on the total noise intensity, D,
of the system, which also affects the firing rate. In this case,
D = 0.16 and 0.3 < µ < 5.0 is sufficient.

For an approximately constant slope dr(g=0)
dµ

≡ γ , which
is a positive constant, Eq. (12) becomes

dr(g)

dµ
	 γ

1 − gγ
. (18)

Integrating this relation with respect to µ yields

r(g) 	 γ

1 − gγ
µ + C (19)

where C is the constant of integration. Equation 19 reveals
that inhibitory feedback (g < 0) divisively reduces the
positive slope of the f –I curve, similarly to the effect of
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Fig. 10 Mean firing rate of a cell in the network as a function of the
input bias (µ) for various inhibitory (open circles) and excitatory (open
squares) feedback strengths. The solid circles represents the activity of
a network with no feedback. Parameters used for these simulations were
σ 2 = 0.16. The theoretical (solid lines) activity of the network, Eq. (5),
matches numerical simulations (symbols) very well. Here α = 3

deterministic adaptation studied in Ermentrout (1998). The
reduction is proportional to |g|. For positive feedback, this
equation further predicts a divisive increase in the positive
slope of the f –I curve as g increases.

5 Comparison of theory and simulations

5.1 f –I curves for positive or negative feedback

So far we have looked at inhibitory feedback, but as we will
see below, excitatory feedback also divides the gain of the
f –I curves. Thus in this Section, we compare theory and sim-
ulation results separately for inhibitory and excitatory feed-
back.

Figure 10 shows the network activity as a function of
input current bias (µ) for excitatory and inhibitory feedback
in our stochastic LIF neural network. Agreement between
the network simulations and the rates estimated from the
self-consistent equations is very good for a wide range of
inhibitory feedback strengths. Looking at the f –I curves for
g = −2.4 and g = −3.6 in Fig. 10, we see that increasing
already strong inhibitory feedback only elicits a small divi-
sive decrease in the gain. This indicates a limitation of the
network to modify its firing frequency for extremely strong
inhibitory feedback.

Increasing excitatory feedback causes the activity of the
network to increase as compared to the zero feedback case.
The f –I curve near the onset of firing shows a divisive
increase in the gain for increasing excitatory feedback. Inter-
estingly, for larger input bias values, the gain divisively
increases for weak excitatory feedback, but divisively
decreases for strong excitatory feedback (compare the slope
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Fig. 11 Mean firing rate on a cell in the network as a function of the
input bias (µ) for various inhibitory (open circles) and excitatory (open
squares) feedback strengths. The solid circles represent the activity of a
network with no feedback. Parameters used for these simulations were
σ 2 = 0.16 and Dint = 0. The theoretical linear approximation to the
network activity Eq. (19) (solid lines) matches numerical simulations
(symbols) for inhibitory feedback, and for a small range of biases around
threshold for excitatory feedback. Here α = 3

of the two top curves at higher biases). A further increase of
excitatory feedback strength or input bias has less effect at
such extreme high firing rates. All of these effects are accu-
rately predicted by theory (Eq. 5), as the theoretical results
match well with simulation results in Fig. 10.

The linear approximation, Eq. (19), also predicts simula-
tion results for values of input bias larger than approximately
0.3. For γ < 1− gγ the slope of the f –I curve will be small
and positive. This occurs for all negative values of g as seen
in Fig. 10 for all values of µ. More rigorously we compare
simulation data to Eq. (19) in Fig. 11 and see that indeed the
approximation is good for inhibitory feedback for all values
of input bias.

For γ > 1−gγ the slope of the f –I curve will be positive
and larger than the open loop slope for the stochastic network.
This occurs for a small range of positive g values for certain
values of µ—see Fig. 10 for g = 1.2. The expanded range
in Fig. 11 reveals that Eq. (19) indeed matches simulation
results for small positive feedback only for intermediate val-
ues of input bias.

An interesting effect, which is not accounted for by the
linear approximation, is the decrease of the slope for large
positive values of g, as seen in the top two curves of Fig. 10.
The network here exhibits bistability, a nonlinear effect, and
jumps to its higher rate (Laing and Longtin 2003). At such
large rate values, the open-loop slope γ tends toward zero,
due to the saturation caused by the absolute refractory period;
thus, regardless of g, the slope of the f –I curve is approx-
imately zero as seen from the top two curves of Fig. 10.
A larger value of g brings on the saturation even earlier, and
consequently, the slope is slightly smaller.
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Fig. 12 The gain (slope of the f –I curves) of a given cell in the net-
work plotted against feedback strength, g, for two different values of
input bias, µ. The black squares and red circles represent simulation
data for µ = 0.5 and µ = 1.5 respectively. The slope was calculated
using two simulated points on the f –I curve close to µ = 0.5 and
µ = 1.5, for various g. The parameters used for these simulations
are the same as in Fig. 10. The solid lines represent theoretical results
obtained from Eq. (12), which agree very well with simulation results.
Noise intensities are as in Fig. 3. Here α = 3

In summary, the linear theoretical approximation predicts
simulation results for values of µ around 1, i.e. around the
threshold value in the absence of noise. There, the slope of
the f –I curve increases as g goes from negative to small
positive values. And for positive g values, the agreement is
limited to a narrower range as g becomes larger.

If we return to the full solution of the self-consistent rate
equation, we find that we can accurately predict theoretical
values of firing rates and the slope of f –I curves for a wide
range of feedback strengths, as shown in Fig. 12. In particu-
lar, the decrease in gain for stronger positive feedback is seen
clearly on the curves.

5.2 Mean firing rate versus stimulus contrast

Separating the external input into a time-dependent and time-
independent part allows us to look at the effect of the
external noise intensity on the activity of the network inde-
pendent of the average external input (input bias). This
amounts to looking at the effect of stimulus contrast around
a given stimulus mean, assuming here that the stimulus is a
Gaussian white noise, for simplicity. The activity of the net-
work for a constant input bias and increasing signal (stim-
ulus) noise strength, as seen in Fig. 13, behaves similarly
to that found for increasing input bias and constant noise
strength, which had been our focus up to know. As the signal
noise strength increases, so does the activity of the network.
Increasing the inhibitory feedback strength of the network
lowers the overall activity in a divisive manner, as before.
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Fig. 13 Firing activity of one cell in the network as a function of input
noise strength (σ ), which represents the stimulus contrast, for vari-
ous amounts of inhibitory (open circles) or excitatory (open squares)
feedback. The solid circles represents the activity with no feedback.
Parameters used for these simulations are as in Fig. 10 with µ = 0.5.
The theoretical activity of the network (solid lines), Eq. (5), matches
numerical simulations (symbols) very well. Here α = 3

Increasing the positive feedback strength of the network
increases the network activity in a divisive manner (not shown
- this is true increasing g from 0 to 1.2, but this is not quite vis-
ible in Fig. 13). Figure 13 further shows that, for increasing
inhibitory feedback strength at already large negative values
of g, the network is less and less able to change its rate. And
at large positive values of g, increasing signal noise strength
has even less effect on the network activity. Theoretical net-
work activity is also plotted in Fig. 13 to show again that
Eq. 5 predicts the activity of the network fairly well.

In summary, for a network with low activity, increasing
the input noise strength increases the activity of the network
(see inset of Fig. 13), but networks with high activity and/or
large feedback strengths are virtually unaffected by increas-
ing the input noise strength. These results agree with those
found in Doiron et al. (2001) and Burkitt et al. (2003).

6 Discussion

We have presented a theoretical and numerical analysis of the
influence of additive (i.e. current) spike-based delayed feed-
back on gain control. The study was motivated by electrosen-
sory neurons that receive stimulus input (via receptor cells)
and as well as feedback input from higher brain centers. This
is a common set-up for many other sensory pathways, includ-
ing thalamo-cortical and cortico–cortico systems. Modeling
feedback as a current input is a good approximation when the
feedback arrives at dendritic sites, and the spiking is decided
at the hillock (Koch 1999). We have shown that negative spik-
ing feedback in the network of stochastic LIF neurons leads
to a decrease in slope of the f –I curve without changing
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its threshold, and is thus a purely divisive effect. In contrast,
positive feedback increases the slope, and could be labeled as
a purely multiplicative effect since the gain increases. Nev-
ertheless, we feel that it is perhaps best to keep a commonly
accepted label of “division” for both these effects, which
are in fact pure “scaling” effects. When sufficiently strong,
positive feedback leads to a jump to higher firing rates; such
a jump, which is caused by bistability, is not seen in the neg-
ative feedback case.

The divisive control is seen from zero to large firing fre-
quencies, as opposed to the noise-induced divisive control
in open-loop which occurred at lower rates in Doiron et al.
(2001). By itself, the feedback linearizes the f –I curve in
a manner described by Ermentrout (1998) in the context of
spike frequency adaptation, or by Douglas et al. (1995) in
the context of contrast invariance using recurrent nets. Our
addition of noise extends this linearization well into the sub-
threshold domain, whether this noise is intrinsic to the cell
or from external input. The combination of the noise and
feedback results in an important linearization and divisive
behavior without a concomitant threshold shift, i.e. without
a subtractive gain control. This is in contrast to recently pro-
posed noise-based divisive gain control (Doiron et al. 2001)
in which there is also a threshold change unless a balanced
of excitation and inhibition is somehow carefully maintained
(Chance et al. 2002).

The feedback delay, included in our study for general-
ity, does not affect the results significantly except for the
emergence of oscillations in the presence of moderate to
strong negative feedback. This leads to a sequence of differ-
ent phase locking patterns as the bias current increases. This
finer structure of the f –I curve disappears progressively as
the level of noise increases, as expected from open-loop stud-
ies (French et al. 1972). Most of our results were obtained for
the classic f –I curves. But we also considered mean firing
frequency-versus-stimulus contrast, the latter being defined
as the standard deviation of a band-limited noisy modula-
tion around a fixed bias. We found that divisive effects occur
also in this case, which is relevant when certain stimuli leave
the mean depolarization of a cell unchanged, as has recently
been observed in primary visual cortex in response to spa-
tially broadband stimuli (Cardin et al. 2008).

The self-consistent rate equation for the recurrent network
of stochastic LIF neurons has been solved numerically at dif-
ferent values of the bias to obtain f –I curves. The predictions
agree well with numerical simulations of the network activ-
ity. Further we have developed a theory for the dependence of
the gain on the parameters of the problem, including the feed-
back gain and noise level. It yields good agreement with the
numerical simulations. It also extends to the positive feed-
back case, and explains certain features of the f –I curves
even near the saturation regime imposed by the refractory
period.

The self-consistent rate equation used to calculate the
closed loop f –I curves was posited only for the mean rate.
This is simply a balance that takes into account the effect
of the mean of the feedback on the bias of the cell, with
the result that one of the cells in closed loop fires at a rate
given by its open loop characteristic but with a corrected or
“effective” bias. This effective bias is higher (lower) than the
open-loop bias when positive (negative) feedback is present.
Note however that the feedback input is also an extra source
of noise for the single cells, and in principle one may wish
to write a second self-consistent equation—coupled to the
first—for the variance of the rate. Given that our results are
fairly accurate using only a self-consistent equation for the
rate, this suggests that the extra noise variance contributed
by the feedback is not significant. This can be understood
from two considerations.

First, at low rates, there is little current being fed back, and
thus its variance is also small. So the effect is basically one of
linearization by feedback as described by Ermentrout (1998)
and extended here to the stochastic context (apart from the
delay effects). At higher rates, the variance may be higher,
but the f –I curves are less sensitive to increases in noise as
Fig. 3 reveals. This is a form of noise suppression, however
the context here is internal and/or input (external) noise, as
opposed to external noise with deterministic neurons as in
Douglas et al. (1995). The second consideration is the aver-
aging that occurs in the network, due to the 1/N factor in
the feedback coupling. The standard deviation of the total
feedback current is proportional to

√
N times the standard

deviation of the current contributed by one cell. Dividing by
N yields a relatively lower fluctuation in comparison to the
mean rate (see also Chacron et al. 2005).

Our results on divisive control offer a possible explanation
for the observation of an increase in slope of the f –I curve
in the weakly electric fish (Bastian 1986), which is the main
effect of opening an important feedback loop. Insofar as the
main effect of opening the feedback is a slope change, our
study suggests how this can occur. However, if there is a con-
comitant shift of rheobase, then a change in noise along with
the feedback can account for that, as seen in going from the
solid line in Fig. 8a to the dashed line in Fig. 8d. The increased
feedback alone is clearly not able to account for both slope
change and a significant subtractive shift, even though feed-
back spikes contribute some noise (which is taken account
by the simulation).

Related work (Mehaffey et al. 2005) in an in vitro prep-
aration of the ELL has shown how inhibition targeting the
proximal apical dendrite of ELL pyramidal cells can also
replicate the in vivo results (Bastian 1986). In that study the
active dendrite of the ELL pyramidal cell acted as a source of
positive feedback on the cell’s soma, and in an analogous way
to the results presented here, increased the slope of the static
transfer curve. Inhibition from descending pathways reduced
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the total dendro-somatic current, which resulted in an overall
reduction of the positive feedback and caused a decrease in
the f –I curve slope. From a biophysical perspective there
are significant differences between the electrosensory gain
control scheme presented here and the one in Mehaffey et al.
(2005), however, the overall conclusions on how feedback
influences the static transfer gain of spiking neurons are very
similar. To our knowledge, there is no reason as to why these
gain control schemes could not be both active during elect-
rosensing, increasing the overall range of gain modulation in
the electrosensory system.

The work also extends the gain control model of
Nelson (1994) which can be considered a first approxima-
tion to the gain control problem. In that approach, the neuron
transmembrane potential was the quantity fed back to itself,
rather than the firing rate. It would be interesting to extend
our work here to the specific context of simultaneous posi-
tive and negative feedback loops that he studied, although the
inclusion of reversal potentials for both positive and negative
feedback pathways would seriously complicate the theoret-
ical analysis. Nevertheless, we expect the divisive effects
discussed here to simply compete with one another. It is also
worth considering the effect of simultaneous positive and
negative delayed feedback on gain control, in which scal-
ing may occur on top of a mixture of chaotic and stochastic
network dynamics (Laing and Longtin 2003).

Relatedly, the feedback synaptic input used in our work
acts additively on the current balance equation. It is on equal
footing with the individual internal noise source for each
cell, and with external input from e.g. external stimuli. In the
inhibitory case, it is only an approximation to shunting inhi-
bition which, by definition, involves a synapse with reversal
potential near the resting potential and thus acts most strongly
when the inhibitory input drives the cell in the vicinity of rest-
ing potential. We have verified (not shown) that the numeri-
cal results found here for additive “current-based” feedback
also hold for the case of conductance-based feedback. Thus,
divisive behavior is seen for either feedback shunting inhibi-
tion or for excitatory synaptic feedback, either with internal
noise or without. This extends the results in Douglas et al.
(1995) to the case where the cells have internal noise. A
theoretical analysis of such conductance-based feedback is
more involved than the additive noise case and will be left
for future work.

We have chosen the feedback strength g and the intensity
of the noises σ and Dint as control parameters; the specific
values chosen are consistent with past studies (Doiron et al.
2004, 2003). A full parametric study with α and τ for dif-
ferent values of feedback gain and noise is beyond the scope
of our study. Nevertheless we have performed preliminary
simulations for values of α ranging from 0.2 to 20 in the
presence of internal noise (Dint = 0.08) and g = −1.2. For
0.2 < α < 10 the results are statistically the same as those

for α = 2, but begin deviating for larger values of α, i.e.
for much faster synaptic kinetics (not shown). For example,
for α = 20, divisive gain control is still observed, but the
feedback is less effective, corresponding to firing rates about
20% higher than for α = 2. The systematic exploration of
these effects is left for future studies, but divisive behavior is
nevertheless insensitive to large variations in α, in agreement
with our theory.

While we have limited our analysis to a network of LIF
models with additive feedback, other single cell spiking
dynamics could be considered. From a theoretical standpoint,
one could use the firing function that best fits experimental
data. For example, Type I dynamics may underlie firing in
open loop; in this case the analytic modeling could proceed
using mean firing rate formulae developed for the stochastic
quadratic integrate-and-fire model (Lindner et al. 2003). And
in the absence of a good theory for the open loop f –I curve,
a numerical interpolating fit to the experimental f –I curve
could be used in the self-consistent rate equation that needs
to be solved (numerically) to obtain the steady state firing
rate.

Our approach can be extended to networks involving
sub-populations of cells with different strengths and polari-
ties of feedback amongst them. In this case one would likely
see a combination of the effects reported here. The analytic
work would then involve writing and solving a self-consis-
tent set of equations to obtain the effective biases of each
population and their associated f –I curves.

We expect that including adaptation currents explicitly
would enhance linearization of the f –I curves and support
the divisive behavior further, although in the presence of
noise it will render the analytic modeling more challeng-
ing. And eventually one would like to understand the gain
control for inputs that are not slow, a venture that would
require importing linear response functions calculated using
Fokker–Planck theory. In particular it would be interesting to
compute the response time of the network with spiking feed-
back, and compare to rate model descriptions in which this
time is known to vary with recurrent feedback, sometimes
unfavorably due to critical slowing down near instabilities
brought on by negative feedback (Chance and Abbott 2000).

Finally, feedback pathways are known to exhibit varying
forms of plasticity. It is known for example that the cere-
bellar EGP feedback pathway to the ELL pyramidal cells,
that was impaired in the motivating study of Bastian (1986),
exhibits anti-Hebbian plasticity designed to cancel redundant
inputs (Bastian et al. 2004), as it does in mormyryd elec-
tric fish (Grant et al. 1996; Bell et al. 1997). Other feedback
pathways in the electric fish are known to involve a mixture of
short-term facilitation and depression. The feedforward path-
way to cells in the ELL further involve a mostly depressing
synapse (Len Maler, personal communication). Future work
will aim to figure out the role that such plastic feedforward
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and feedback connections play in the regulation of gain over
a range of time scales in the input.
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