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Both neural and genetic networks are significantly noisy, and stochastic effects in both cases
ultimately arise from molecular events. Nevertheless, a gulf exists between the two fields, with
researchers in one often being unaware of similar work in the other. In this Special Issue, we focus
on bridging this gap and present a collection of papers from both fields together. For each field, the
networks studied range from just a single gene or neuron to endogenous networks. In this intro-
ductory article, we describe the sources of noise in both genetic and neural systems. We discuss the
modeling techniques in each area and point out similarities. We hope that, by reading both sets of
papers, ideas developed in one field will give insight to scientists from the other and that a common
language and methodology will develop. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2213613�
. INTRODUCTION

Biological systems are successful despite existing in a
tochastic environment. Experimentalists and modelers,
owever, are just beginning to unravel the intricate interplay
f noise with determinism in these systems. They are guided
y an increasing number of theoretical, computational, and
xperimental tools. Each strand of biology has been success-
ul with a subset of these techniques, but the areas of neural
nd genetic networks are of particular note. Nevertheless, for
hoever reads the neural or genetic literature, it is clear that

here exists an intellectual divide: with few exceptions, they
o not cite each other.

This issue aims to help bridge this gap. We hope that
ringing together representative research from each area will
llow an idea born in one field to bring new insight to the
ther. At the same time, we wish to encourage the develop-
ent of a common language, especially as the two areas are

ot isolated in vivo: neural activity often influences cell sig-
aling and so gene expression, and vice versa.

Noise has multiple sources.1 In any experimental or
odeling effort, a challenge is to unambiguously identify

hese sources. Indeed, noise in one system may be consid-
red as dynamics in another. For example, determining how
on channels affect the firing patterns of a neuron is a com-
lex area of research. Yet, for the study of neural networks,
nly the coarse features of these stochastic patterns may be
ecessary to explain network oscillations. The challenge of
ppropriately bridging spatiotemporal scales is a central
heme of the issue.

Out of the numerous deserving contributors, we have
hosen studies where there is a direct link to real data. In
act, it is often when confronted with real data, and the vari-
bility of biological responses that one feels compelled to

se a stochastic approach. New experimental techniques are
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driving understanding, and models can now be directly com-
pared with experiment. Molecular biology has been revolu-
tionized by the development of noninvasive, fluorescent re-
porters and, indeed, they have allowed stochastic gene
expression to be quantified in vivo.2–5 Today’s challenge is to
understand the consequences of such stochasticity for cellu-
lar “design”: is noise a hindrance, potentially degrading the
function of biochemical networks, or is it a source of vari-
ability that cells exploit?

Neuroscience has also benefited from experimental de-
velopments. One can now visualize synaptic events in neu-
ron dendrites as well as waves of calcium activity permeat-
ing a neural network. Neuroscientists have access to
relatively long and clean time series of neural activity, even
though it is still difficult to simultaneously monitor many
neurons. Such data are beginning to appear for genetic
systems,6 but the time intervals between measurements are
much longer, limiting the types of analysis. In both areas, the
traditional approach has been to scrutinize the mean re-
sponse, but there is a subculture of scientists dedicated to
finding significance in the variance itself.

In this paper, we describe the sources of noise in both
neural and genetic networks, the modeling methods used,
and discuss parallels and similar problems. Finally, we
present the articles of the issue. We hope that by reading both
sets of papers, researchers in each field will see both new
synergies and new challenges.

II. SOURCES OF NOISE

A. Noise in genetic networks

The potential importance of noise in molecular biology
has long been recognized,7 but it is only within the last de-
cade that stochastic effects have been unambiguously mea-

2,3
sured during gene expression in both bacteria and
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ukaryotes.4,5 At the same time, the rediscovery of the
illespie algorithm8 and the availability of large amounts of

n vivo data, has led to a new recognition of the importance
f modeling and quantitative data analysis in both the experi-
ental and theoretical communities, spawning the new field

f “systems biology.” The seminal modeling papers demon-
trating that stochastic effects could alter cellular phenotypes
ere those of Arkin, McAdams, and co-workers.9,10 Since

hen, synthetic biology has allowed theoretical conjectures to
e tested in living cells,11,12 and there has been an explosion
n both modeling and experimental work. See Refs. 13–15
or reviews.

Gene expression is a complex, two stage process. First,
he DNA of the gene is transcribed into messenger RNA
mRNA� by the enzyme RNA polymerase: the information
tored in the nucleotide order on the DNA is copied into
nformation stored by the nucleotide order on the mRNA. An
xpressed gene can give rise to several mRNA transcripts.
econd, the mRNA is translated into protein by enzymes
alled ribosomes: the information stored in nucleotides on
he mRNA is translated into the amino acids of the protein.
everal ribosomes can bind to and translate a single mRNA
imultaneously. In our own cells, an entire mRNA is tran-
cribed, processed in the nucleus, and then exported to the
ytosol for translation. In bacteria, which have no nucleus,
ranslation occurs as soon as part of the mRNA is tran-
cribed.

A region of DNA called the promoter controls transcrip-
ion, and so gene expression. An unregulated gene, said to be
onstitutively expressed, is shown in Fig. 1�A� for a bacte-
ium. The promoter contains only a binding site for RNA
olymerase. Nearly all genes in vivo, however, are regulated.
roteins, called transcription factors, are able to bind to op-
rator sites in the DNA of the promoter region. Once bound,
hey either hinder the binding of RNA polymerase to the
romoter �Fig. 1�B�� and so repress gene expression—the
ranscription factors are then called repressors—or they en-
ourage the binding of RNA polymerase to the promoter
Fig. 1�C�� and activate gene expression—the transcription
actors are then called activators. Any particular promoter
an often be bound by both activators and repressors, leading
o gene expression that can be a highly nonlinear function of
he transcription factor concentration.

A further level of control is that the transcription factor’s
bility to bind DNA can be a nonlinear function of the con-
entration of another molecule, called an inducer. For ex-
mple, the lac operon in Escherichia coli encodes enzymes
o import and digest the sugar lactose �an operon is a collec-
ion of genes that are encoded end to end on the DNA and
onsequently are all transcribed into a single mRNA�. The
peron is repressed by a transcription factor called the lac
epressor in the absence of intracellular lactose. Sensibly,
here is very little expression if no lactose is present. If some
actose does enter the cell, it binds the lac repressor and by
oing so reduces the ability of the lac repressor to bind
NA. For high amounts of intracellular lactose, all the lac

epressors are bound by lactose and none bind DNA. The lac
peron is then expressed, and the cell synthesizes enzymes

ble to digest the lactose present. The levels of lactose ulti-
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mately control expression, with high levels of the inducer
lactose inducing expression.

Most transcription factors in bacteria consist of two
identical proteins bound together—they are then called
dimers—or sometimes of four identical proteins bound
together—they are then called tetramers. Such multimers aid
the recognition of DNA binding sites and contribute to the
nonlinearity in expression of a gene as the inducer changes.
Each protein in the multimer can potentially bind to the in-
ducer and, through what is known as an allosteric interaction,
the binding of an inducer to one protein in the multimer
increases the probability that an inducer will bind to another
protein in the multimer. Thus the transition of a transcription
factor from being able to bind DNA to being unable to bind
DNA can be a very steep sigmoidal function of the inducer
concentration. Such non-linearities are often referred to as
cooperativities, because one protein “cooperates� with the
other to help it bind to the inducer.

All these processes are chemical reactions and so are
potentially significantly stochastic. Reacting molecules come
together by diffusion, their motion driven by random colli-
sions with other molecules. Once together, such collisions
randomly alter the internal energies of the reactants and so
their propensity to react. Such stochastic effects, however,

FIG. 1. Gene expression in bacteria. �A� Constitutive �unregulated� expres-
sion. RNA polymerase �RNAP� binds to the promoter at a free RNAP bind-
ing site. It initiates transcription and moves down the DNA of the gene.
Ribosomes bind to and start translating the mRNA into protein as soon as
part of the mRNA is transcribed. Once it reaches the end of the gene, RNAP
dissociates from the DNA, but another RNAP may have already initiated an
additional round of transcription. Similarly, many ribosomes often translate
the same mRNA. �B� Negative regulation. A repressor transcription factor
has a binding site in the promoter region. This site overlaps the RNAP
binding site and so if a repressor is bound, its presence physically prevents
RNAP from binding to the promoter: there is no gene expression. �C� Posi-
tive regulation. For a gene with a weak RNAP binding site, very little
transcription occurs. When an activator transcription factor is also able to
bind to the promoter, its presence can increase the free energy of RNAP
binding and so it can enable high rates of transcription.
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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re only important when mean numbers of molecules are
ow. Then, individual reactions, which at most change the
umbers of molecules by one or two, matter. This stochas-
icity is referred to as intrinsic noise as it is inherent in the
ynamics of any biochemical system.

It is not just the stochasticity intrinsic to a cellular pro-
ess that generates variation; other cellular processes are also
uctuating and interact with the process of interest. The
ariation generated in this way is termed extrinsic noise.3,16

here are numerous extrinsic variables. For example, as a
ell grows, the number of ribosomes and the variance in the
umber of ribosomes can change altering the noise in gene
xpression. Similarly, fluctuations in the numbers of nutri-
nts in the extracellular environment, in the temperature, in
he number of amino acids available intracellularly, etc.,
ould all influence gene expression. Experimentally, in fact,
t is the extrinsic noise that dominates intrinsic noise and sets
ell-to-cell variation.3,5

. Noise in neural networks

Noise entered theoretical neuroscience many decades
go. The first Boolean model of McCullough and Pitts for
ogical computing in neural networks was quickly enlarged
o include stochastic effects. Early works on this model and
thers are in the collected papers in Refs. 17 and 18. An
xcellent overview of the first literature on stochastic neural
odeling can be found in Refs. 19 and 20. A more recent

eview is Ref. 21.
Figure 2 illustrates the main components of a neuron.

oise occurs in each part. A neuron has a transmembrane
otential of approximately −70 mV, with the inside being
ore negative than the outside. This polarization is main-

ained via ion pumps driven by metabolic energy. A typical
euron integrates current from incoming sources, approxi-
ately like an RC circuit. Via axons that end in chemical

ynapses, it connects to other, “postsynaptic,” neurons. The
presynaptic neuron” only affects postsynaptic neurons if its

IG. 2. Two neurons connected to one another via feedback. A neuron
eceives input in the form of current through its synapses. Dependent on the
on channels involved, these currents propagate in a linear or nonlinear
ashion to the soma. When the voltage at the soma of the left neuron exceeds
threshold, the soma fires an action potential that is transmitted both down

he axon to the neuron on the right and to its own dendrites. The triangle
epresents an excitatory connection from the left to the right neuron. The
ight neuron is connected to the one on the left via an inhibitory synapse.
oise from dendritic input from other neurons or from conductance fluctua-

ions of ion channels is present in all parts of this diagram, although much
ess in the axon.
oltage “depolarizes” sufficiently �becomes more positive� to

wnloaded 10 Jul 2006 to 137.122.32.57. Redistribution subject to AIP
open fast ion channels. The opening of these channels is a
regenerative or positive feedback process: channel openings
cause further depolarization that opens more channels. The
result is an explosive depolarization that activates other
kinds of channels that repolarize the membrane within a few
milliseconds. Known as the action potential, the resulting
sharp spike in voltage propagates along an axon that
branches and often ends in hundreds of synapses onto other
neurons. The arrival of the spike triggers a release of a
chemical �neurotransmitter� that opens ion channels in the
postsynaptic neurons. Neural networks thus combine ele-
ments of analog and digital communication.

Chemical synapses are not deterministic switches that
convert incoming spikes into the release of fixed packets of
neurotransmitter. Instead, they are characterized by a prob-
ability of transmitter release and often release a transmitter at
some low rate, even without any incoming spikes. The prob-
ability of release depends on the history of firing of both the
pre- and the postsynaptic neuron: once a neuron fires, it af-
fects every location in the neuron, including receptors at its
incoming synapses. Information flow is thus not unidirec-
tional across synapses. Many neurons are also electrically
coupled via protein structures called gap junctions that allow
the exchange of ions between different cells.

For a single neuron, the time evolution of the membrane
potential is governed by equations of the so-called Hodgkin-
Huxley �HH� formalism �see Ref. 22 for an introduction�.
This deterministic, nonlinear system of equations describes
the “known” mean activation and inactivation behavior of
various ion channels in response to voltage, ions, and some
other chemicals. The qualifier “known” is important: often
only partial knowledge of the ion channels is available, in-
volving painstaking, intracellular measurements with micro-
electrodes. In many cases, we have only extracellular record-
ings of cells, and must surmise their workings from the times
at which they fire in response to stimuli and from the effects
of various drugs on these responses. Nevertheless, the HH
formalism often predicts neural response to deterministic in-
puts, such as injected current, or to intrinsic noise sources,
such as conductance fluctuations, and to extrinsic noise
sources, such as a synapse. The HH equations are complex,
usually four or more coupled highly nonlinear ordinary dif-
ferential equations, and their behavior in the presence of
noise as well as for some deterministic cases is not well
understood. The deterministic behavior is often best charac-
terized in in vitro “slice” preparations, which are devoid of
much of the synaptic noise from other neurons.

The genetic noise described previously is a source of
variability within the neuron, but its effect on neuron firing
has barely been explored. Rather, researchers have focused
on noise sources that act on faster time scales: in ion chan-
nels and pumps, which control ion flow across the plasma
membrane;23 at synapses, which mediate connections be-
tween neurons; in whole neurons, via the summed currents
flowing through ion channels; in neural networks, where the
noise is related to the activity of all neurons impinging on a
given neuron; and in brain rhythms, generated by millions of
neurons interacting across large spatial scales. The dominant

source is usually synaptic noise, i.e., noise coming from the
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ctivity of other neurons. Synaptic strengths also fluctuate
ecause of the different availabilities of neurotransmitter and
f components of various biochemical signaling pathways.
oise on longer time scales arises from the long-term modu-

ation of neural activity by “neuromodulators” such as sero-
onin. A recent review of neuronal noise, particularly for sen-
orimotor control, can be found in Ref. 24.

II. A COMMON METHODOLOGY

Although there are many concepts common to both ar-
as, they often go under different names. Interactions be-
ween genes or neurons, including self-interactions, have two
olarities: positive and negative. One neuron can excite an-
ther, enhancing its probability to fire; one gene may cause
ctivation of another, increasing its probability to express
strictly, the protein product of one gene activates the tran-
cription of another gene�. Alternatively, one neuron can in-
ibit another neuron, and one gene can cause the repression
f another gene. The conductance of an ion channel can be
odulated by voltage or agonist molecules; similarly, the
NA binding properties of a transcription factor can be
odulated by the binding of an inducer.

In both areas, positive feedback is often associated with
i- or multistability, and negative feedback with homeostasis
nd oscillation. Both systems operate with delays: in neuro-
cience, delays come from the finite speed of propagation
own axons, or to integration of currents in synapses or cir-
uits that are not being modeled explicitly; in bacteria, it
ypically takes 3 min to synthesize a protein once RNA poly-
erase initiates transcription. Noise in both areas is ulti-
ately generated by molecular events, and the coefficient of

ariation, the ratio of standard deviation to the mean of a
istribution, is a common measure of variability. They also
hare the language of dynamical systems to characterize dif-
erent behaviors, including the concept of “bursting,” where
roteins are translated and action potentials fired in bursts,
nd the language of engineering to characterize network de-
ign and function, such as groups of neurons or motifs of
enes that act as switches, amplifiers, oscillators, etc.

V. HIERARCHY OF MATHEMATICAL MODELS

In both genetic and neural networks, similar mathemati-
al models are used. If the noise is intrinsic, a master equa-
ion governing the time evolution of the probability of the
tates of the system is adopted. If the noise is extrinsic, act-
ng on the system of interest, noise terms are added to the
eterministic equations.

. Genetic networks

For any system of biochemical reactions, the ultimate
evel of description is the chemical master equation. This
quation describes how the probability changes with time for
ny state of the system, where each state is defined by the
umber of molecules present of each chemical species. The
aster equation contains the deterministic, differential equa-

ion approximation that is often used to describe system dy-
amics: the mean of each chemical species obeys these de-

erministic equations as the numbers of molecules of all
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species increase. The master equation itself is analytically
solvable only for systems with first-order reactions. Never-
theless, several approximations exist, all of which exploit the
tendency of fluctuations to decrease as the numbers of mol-
ecules increase. The most systematic �and complex� is the
linear noise approach of van Kampen.25 If the concentration
of each chemical species is fixed, then changing the system
size �system volume�, �, alters the number of molecules of
every chemical species. The linear noise approximation is
based on a systematic expansion of the master equation in
�−1. It leads to Fokker Planck-like equations that accurately
describe small fluctuations around the stable attractor of the
system. For systems that just tend to steady state, a Langevin
approach is also often used.26,27 Here white noise terms are
added to the deterministic equations, with their magnitude
being determined by the steady-state chemical reactions. At
steady state, the Langevin and linear noise approaches are
equivalent. Unfortunately, all these methods usually become
intractable once the number of chemical species in the sys-
tem reaches more than three �one then needs analytical in-
versions of 4�4 matrices or a calculation of their eigenval-
ues�. Rather than numerically solving the master equation,
the Gillespie algorithm,8 a Monte Carlo method, is often
used to simulate one sample time course from the master
equation. By doing many simulations and averaging, the
mean and variance for each chemical species can be calcu-
lated as a function of time.

B. Neural networks

At the smallest length scale, noise is set by ions moving
through ion channels as voltage gradients, chemical gradi-
ents, or channel configurations change. Often the channels
have a number of structural configurations, each with its own
conductance, and a master equation can be used to calculate
the mean rates of transition between states. These rates are
usually estimated directly from data. Channel conductance
can then be incorporated into a kinetic description for the
membrane voltage, often following the deterministic HH for-
malism. By using the state-transition diagrams of ion chan-
nels to model fluctuations in channel conductance, Langevin-
type HH equations, i.e., HH equations that properly account
for channel noise, can also be derived. The analytical deter-
mination of the properties of the membrane fluctuations and
of the firing rate of such complex models is currently beyond
reach. One thus resorts to numerics, or theory on simplified
models such as the integrate-and-fire model, a first-order or-
dinary differential equation—it is linear, except for the reset
of the potential whenever it hits a fixed threshold.

The study of membrane voltage fluctuations has in fact
received considerable attention in the context of simplified
HH models �see Ref. 20 and references therein�. When the
dominant source of noise is assumed to be synaptic input, the
noise from incoming spikes is often approximated by Gauss-
ian white noise—the so-called “diffusion approximation.”
The membrane voltage then evolves as an Ornstein-
Uhlenbeck process, with the added twist, however, of an ab-
sorbing boundary at the threshold voltage. A particularly dif-
ficult challenge in this area is to identify the stochastic

differential description that also properly accounts for the
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iscrete nature and statistics of these incoming spikes �shot
oise� at synapses onto a neuron. The articles of Dorval et
l., Richardson and Gerstner, and Shuai and Jung herein dis-
uss the complexity of these issues. The firing properties of
ore realistic versions of these models, such as ones that

nclude the smooth synaptic response to a spike �see, e.g.,
ef. 28�, or that better represent the bifurcation from quies-
ence to periodic firing as a saddle-node bifurcation �the so-
alled quadratic integrate-and-fire model; see, e.g., Ref. 29�,
re keeping a number of theorists busy.

It is also expected that many of the effects observed in
onlinear stochastic systems will be seen in neural �and ge-
etic� systems, and that similar theoretical approaches will
e applicable—see, e.g., Ref. 30, which includes specific ex-
mples on neural and genetic noise. In fact, there is signifi-
ant interest in noise in excitable systems,31 where the inter-
ctions of noise with nonlinearities leads to novel and even
aradoxical behaviors. For example, noise can propagate sig-
als in excitable media,32 improve memory �see the paper of
enn and Fusi in this issue�, and increase signal-to-noise
atios via stochastic resonance.33,34 Research into the syn-
hronization properties of neurons, given their noisy dynam-
cs, has further benefited from recent advances in stochastic
ynchronization theory.35

A number of formalisms have emerged in recent years to
haracterize the firing activity in populations of stochastic
eurons, and to efficiently compute these properties in net-
ork simulations �see, e.g., Refs. 36–40�. The analyses use a

ange of techniques from mean field theory and linear re-
ponse theory, often incorporating the mean firing rate of a
ingle neuron obtained via first-passage time calculations
i.e., Fokker-Planck-type analyses�. Some also include the
act that the variance of the noise in a network of spiking
eurons is a function of the mean firing rate, with the con-
equence that the noise intensity becomes a dynamical quan-
ity when the mean is time dependent, as occurs e.g., during
etwork oscillations.

These formalisms also propose a variety of ways to deal
ith time delays. A major difficulty arises in fact when de-

cribing non-Markovian effects such as delays or memory in
onlinear systems, for which theory is only emerging. In a
oiseless world, delays lead to either nonlinear delay-
ifferential or to integrodifferential equations, depending on
heir range of values. Delays are often used to simplify the
escription of the spatial propagation of a signal. For ex-
mple, by using a delay one can avoid the partial differential
quations describing propagation of spikes along an axon.

Chaos is predicted in certain kinds of neural networks,41

nd so is another potential source of stochastic-like effects.
here have also been recent studies of how noise propagates

n feedforward networks,42,43 a novel area of investigation in
enetic networks as well.44 Finally, a more benign yet still
mportant form of noise arises from inhomogeneities of pa-
ameters in a network, such as synaptic connection strengths.
hese inhomogeneities, also present in the parameters of ge-
etic networks, can have important consequences for net-

ork synchrony.

wnloaded 10 Jul 2006 to 137.122.32.57. Redistribution subject to AIP
V. THIS ISSUE

The contributions in this issue reflect the perhaps more
established role that noise has in neuroscience. In genetic
networks, the initial focus has been understanding noise in
simple systems of one or a few genes. Here, this approach is
taken by Cox et al., who consider a single autoregulatory
gene, and Tsimring et al., who discuss ways to analyze in-
trinsic and extrinsic noise in simple gene networks.

For neural systems, noise ultimately originates from ion
channels and synapses: Shuai and Jung look at fluctuations in
clusters of ion channels; Dorval et al. model how synaptic
inputs determine the variability and reproducibility of neural
firing; and Richardson and Gerstner study the differences
between the effects of shot noise synaptic input and its
Gaussian white noise limit on membrane potential fluctua-
tions.

Synthetic biology allows three or four gene networks to
be constructed in vivo. Such networks are ideal for under-
standing and exploring the cell, particularly where dynamical
behavior designed into the network does not occur in vivo or
occurs substantially modified. Scott et al. analyze the oscil-
latory behavior of two synthetic oscillators and Hooshangi
and Weiss study how noise propagates through genes ar-
ranged in a cascade.

A similar level of complexity on the neural side is ex-
plored by Miller and Wang, who study the stability of long
term memory despite noise affecting the molecular compo-
nents of synapses and the firing patterns of short term
memory.

Understanding noise in endogenous genetic networks is
only beginning, and Gonze and Goldbeter present an analysis
of networks that generate circadian rhythms. In neural net-
works, the properties of large networks have been much
more explored: Neiman et al. consider methods to determine
the directionality of coupling between two biological oscil-
lators; Senn and Fusi discuss how the incorporation of noise
that mimics the probability of neurotransmitter release at
synapses leads to enhanced memory storage and retrieval in
neural nets; and Chen et al. discuss an analysis of the large
scale responses of neural networks.

Together the contributions highlight the challenges of
working at the interfaces of physics and biology. Unlike
physics, theory in biology is in its infancy and is still proving
its worth to a science dominated by experiment. Models will
have little impact unless closely tied to experimental data.
Yet the sheer complexity of biology, whether in genetic or
neural networks, necessitates computational approaches. It is
only a computer model that can store and integrate all the
data now available about particular systems; it is only with
simulation that the counterintuitive behaviors of these sys-
tems can be understood; and it is only with theory that bio-
logical principles will be discovered—principles essential to
going beyond the complexity and see how evolution has de-
signed these systems. We hope that this issue will provide
synergy between studies of genetic and neural networks, and
help pave the way toward both design principles and quan-

titative, predictive models.
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